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Preface

The aim of the present monograph is to introduce the reader to some central
topics in discrete harmonic analysis, namely character theory of finite Abelian
groups, (additive andmultiplicative) character theory of finite fields, graphs and
expanders, and representation theory of finite (possibly not Abelian) groups,
including spherical functions, associated Fourier transforms, and spectral anal-
ysis of invariant operators. An important transversal topic, which is present in
several sections of the book, is constituted by tensor products, which are devel-
oped for matrices, graphs, and representations.
We have written the book to be as self-contained as possible: it only requires

some elementary notions in linear algebra (including the spectral theorem and
its applications), abstract algebra (first rudiments in the theory of finite groups
and rings), and elementary number theory.
First of all, we study in detail the structure of finite Abelian groups and their

automorphisms. We then introduce the corresponding character theory leading
to a complete analysis of the Fourier transform, focusing on the connections
with number theory. For instance, we deduce Gauss law of quadratic reciprocity
from the spectral analysis of the Discrete Fourier Transform. Actually, charac-
ters of finite Abelian groups will appear also, as a fundamental tool in the proof
of several deep results, in subsequent chapters, constituting this way the central
topic and common thread of the whole book.
We also present Dirichlet’s theorem on primes in arithmetic progressions,

which is based on the character theory of finite Abelian groups as well as Tao’s
uncertainty principle for (finite) cyclic groups [157].
Our treatment also includes an exposition of the Fast Fourier Transform,

focusing on the theoretical aspects related to its expressions in terms of fac-
torizations and tensor products. This part of the monograph is inspired, at least
partially, by the important work of Auslander and Tolimieri [15] and the papers

xi
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xii Preface

by Davio [50] and Rose [130]. The book by Stein and Shakarchi [150] has been
a fundamental source for our treatment of Dirichlet’s theorem as well as for the
first section of the chapter on the Fast Fourier Transform.
The second part of the book constitutes a self-contained introduction to the

basic algebraic theory of finite fields and their characters. This includes, on the
one hand, a complete study of the automorphisms, norms, traces, and quadratic
extensions of finite fields and, on the other hand, additive characters and multi-
plicative characters and several associated sums (trigonometric and Gaussian)
and the Fast Fourier Transform over finite fields. One of the main goals is to
present the generalizedKloosterman sums fromPiatetski-Shapiro’smonograph
[123], which will play a fundamental role in Chapter 14 on the representation
theory of GL(2,Fq). We also introduce the reader to the study, initiated by
André Weil [165], of the number of solutions of equations over finite fields and
present the Hasse-Davenport identity [48], which relates the Gauss sums over
a finite field and those over a finite extension.
The third part is devoted to harmonic analysis on finite graphs and several

constructions such as the replacement product and the zig-zag product. The
central themes are expanders and Ramanujan graphs. We present the basic
theorems of Alon-Milman and Dodziuk, and of Alon-Boppana-Serre, on the
isoperimetric constant and the spectral gap of a (finite, undirected, connected)
regular graph, and their connections. We discuss a few examples with explicit
computations showing optimality of the bounds given by the above theorems.
We then give the basic definitions of expanders and describe three fundamental
constructions due to Margulis, to Alon, Schwartz, and Shapira (based on the
replacement product), and to Reingold, Vadhan, and Wigderson (based on the
zig-zag product). In these constructions, the harmonic analysis on finite Abelian
groups and finite fields we developed in the previous parts plays a crucial role.
The presentation is inspired by the monographs by Terras [159], Lubotzky
[99], and by Davidoff-Sarnak-Valette [49], as well as by the papers by Hoory-
Linial-Wigderson [74], Alon-Schwartz-Shapira [10], and Alon-Lubotzky-
Wigderson [8].
The final part of the present monograph is devoted to the representation the-

ory of finite groups with emphasis on induced representations and Mackey the-
ory. This includes a complete description of the irreducible representations of
the affine groups and Heisenberg groups with coefficients in both the finite field
Fq and the ring Z/nZ. Moreover, both the Discrete Fourier Transform and the
Fast Fourier Transform are revisited, following Auslander-Tolimieri [15] and
Schulte [142], in terms of two different realizations of a particular representa-
tion of the Heisenberg group. In Chapter 13 we develop, with a complete and
original treatment, the basic theory of multiplicity-free triples, their associated
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Preface xiii

spherical functions, and (commutative) Hecke algebras. This is a subject that
has not yet received the attention it deserves. As far as we know, this notion is
just mentioned in some exercises inMacdonald’s book [105]. The classical the-
ory of finite Gelfand pairs, which constitutes a particular yet fundamental case,
was essentially covered in our first monograph [29]. The exposition culminates
with a complete treatment of the representation theory of GL(2,Fq), along the
lines developed by Piatetski-Shapiro [123]: our approach, via multiplicity-free
triples, constitutes our original contribution to the theory.
All this said, one can use this monograph as a textbook for at least four dif-

ferent courses on:

(i) Finite Abelian groups, the DFT, and the FFT (the structure of finite
Abelian groups, their character theory, and the Fourier transforms): Sec-
tions 1.1, 1.2, and 1.3, and Chapters 2, 4, and 5. The remaining sections
in Chapter 1 as well as Chapter 3 are optional.

(ii) Finite commutative harmonic analysis (the structure of finite Abelian
groups, their character theory, and the Fourier transforms; Dirichlet’s
theorem; finite fields and their characters): Sections 1.1, 1.2, and 1.3,
and Chapters 2, 3, 4, 6, and 7.

(iii) Graph theory (a brief introduction to finite graphs, various notions of
graph products, spectral theory, and expanders): Sections 1.1, 1.2, 1.3,
2.1, 2.2, 2.3, and 2.4, and Chapters 8 and 9 (omitting, if necessary, the
parts involving character theory of finite fields).

(iv) Finite harmonic analysis (representation theory of finite groups: from
the basics to GL(2,Fq)): Sections 1.1, 1.2, and 1.3, Chapters 2, 4, and
6, Sections 7.1, 7.2, 7.3, and 7.4, and the whole of Part IV (Section 12.5,
Chapter 13, and Sections 14.7 and 14.8 may be omitted).

We thank Alfredo Donno for interesting discussions as well as for helping us
with some figures. We also express our deep gratitude to Sam Harrison, Kaitlin
Leach, Clare Dennison, Adam Kratoska, and Mark Fox from Cambridge
University Press as well as the project manager Vijay Kumar Bhatia and the
copyeditor Sara Barnes, for their constant encouragement and most precious
help at all stages of the editing process.

Roma, 31 July 2017 TCS, FS, and FT
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Part I

Finite Abelian groups and the DFT
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1

Finite Abelian groups

This chapter contains an elementary, self-contained, but quite complete exposi-
tion of the structure theory of finite Abelian groups, including a detailed account
on their endomorphisms and automorphisms. We also provide all the necessary
background in number theory (only basic prerequisites are assumed).

1.1 Preliminaries in number theory

In this section we review some basic facts on elementary number theory.
Most of the proofs are elementary and often left as exercises. More details
can be found in the monographs by Apostol [13], Davenport [47], Herstein
[71], Ireland and Rosen [79], Mac Lane and Birkhoff [113], Nagell [117], and
Nathanson [118].
We denote by N = {0, 1, 2, . . .} the set of natural numbers, and we recall

that, by Peano’s axioms (see [113]), every non-empty subset A ⊆ N admits a
(unique) minimal element.
Also, a basic tool in elementary number theory is the division (Euclidean)

algorithm (long division): let a, b ∈ Z such that b ≥ 1, then there exist unique
q, r ∈ Z with 0 ≤ r < b such that

a = bq+ r. (1.1)

If r = 0, one says that b divides a and we write b|a.
Theorem 1.1.1 (Definition of the greatest common divisor) Let a, b ∈ Z
with (a, b) �= (0, 0). Then there exists a unique positive integer d satisfying the
following conditions:

(i) d|a and d|b;
(ii) if d′|a and d′|b, then d′|d.

3
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4 Finite Abelian groups

Moreover, there exist (not necessarily unique) m0, n0 ∈ Z such that (Bézout
identity)

d = m0a+ n0b. (1.2)

Definition 1.1.2 The positive integer d as in the above statement is called the
greatest common divisor of a and b and it is denoted by gcd(a, b).

Proof of Theorem 1.1.1 Suppose that d1 and d2 are two positive integers satis-
fying conditions (i) and (ii). Then, by (ii) we have d1|d2 and d2|d1. This forces
d1 = ±d2, and therefore d1 = d2 by positivity. This proves uniqueness. In order
to show existence, consider the set

I = {ma+ nb : m, n ∈ Z} ⊆ Z.

Note that if z, z′ ∈ I then z+ z′ ∈ I and −z ∈ I. As a consequence, I+ =
I ∩ (N \ {0}) is a non-empty subset of N. Let d = m0a+ n0b denote the mini-
mal element of I+: we claim that I = {hd : h ∈ Z}. Indeed, the inclusion ⊇ is
obvious, while if k ∈ I , by the division algorithmwe can find q, r ∈ Z such that
k = qd + r with 0 ≤ r < d. Now, since r = k − qd ∈ I+ ∪ {0}, by minimality
of d we necessarily have r = 0, that is, k ∈ {hd : h ∈ Z}. This shows the other
inclusion and proves our claim. Since a = a · 1+ b · 0, b = a · 0+ b · 1 ∈ I,
there exist h1, h2 ∈ Z such that a = h1d and b = h2d, so that d|a and d|b. On
the other hand, if d′|a and d′|b, say a = h′1d

′ and b = h′2d
′, with h′1, h

′
2 ∈ Z,

then d = m0a+ n0b = m0h′1d
′ + n0h′2d

′ = (m0h′1 + n0h′2)d
′ so that d′|d. This

shows that d = gcd(a, b). �

Remark 1.1.3 The set I is an ideal in the ring Z, and Z is a principal ideal
domain (see Section 6.1).

From the proof of Theorem 1.1.1 we immediately deduce the following:

Corollary 1.1.4 Given a, b, c ∈ Z with (a, b) �= (0, 0), the linear equation

na+ mb = c

has a solution (n,m) ∈ Z2 if and only if gcd(a, b) divides c.

(See also Proposition 1.2.13 below.)

Exercise 1.1.5 Let a1, a2, . . . , an ∈ Z with (a1, a2, . . . , an) �= (0, 0, . . . , 0).

(1) Show that there exists a unique positive integer d satisfying the follow-
ing conditions:
(i) d|ai for all i = 1, 2, . . . , n;
(ii) if d′|ai for all i = 1, 2, . . . , n, then d′|d.
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1.1 Preliminaries in number theory 5

In particular, setting d2 = gcd(a1, a2) and di = gcd(di−1, ai) for i ≥ 3,
show that d = dn;

(2) show that there exist mi ∈ Z, i = 1, 2, . . . , n, such that (generalized
Bézout identity) d = m1a1 + m2a2 + . . .+ mnan.

Definition 1.1.6 Let a1, a2, . . . , an ∈ Z with (a1, a2, . . . , an) �= (0, 0, . . . , 0).
The number d in Exercise 1.1.5 (1) is called the greatest common divisor of the
ais and it is denoted by gcd(a1, a2, . . . , an). One says that a1, a2, . . . , an ∈ Z
are relatively prime provided gcd(a1, a2, . . . , an) = 1.

An integer p > 1 is said to be prime if its positive divisors are exactly 1
and p.

Exercise 1.1.7 (Euclidean algorithm) Let a, b ∈ N and suppose that b ≥ 1
and b � a. Set r0 = a, r1 = b, and recursively define, by the division algorithm,

rk = rk+1qk+1 + rk+2

where 0 ≤ rk+2 < rk+1, for all k ≥ 0. Show that gcd(a, b) = rn where n ∈ N is
the largest index for which rn > 0 (so that rn+1 = 0).

Exercise 1.1.8 Let a, b, c ∈ Z and p a prime number.

(1) Prove that if gcd(a, b) = 1 and a|bc then a|c;
(2) deduce that if p|bc then p|b or p|c.

Exercise 1.1.9 (Fundamental theorem of arithmetic) Let n ≥ 2 be an inte-
ger. Show that there exists a unique prime factorization

n = p1
m1 p2

m2 · · · phmh

where p1 < p2 < · · · < ph are prime numbers, m1,m2, . . . ,mh ≥ 1 are the
multiplicities, and h ≥ 1.
Hint. For uniqueness, use induction combined with Exercise 1.1.8.

Exercise 1.1.10 Let a1, a2, . . . , an ≥ 2 be integers. Suppose that

aj = p1
m1 j p2

m2 j · · · phmh j

with distinct primes pi and multiplicities mi j ≥ 0, for all i = 1, 2, . . . , h and
j = 1, 2, . . . , n. Show that

gcd(a1, a2, . . . , an) = p1
m1 p2

m2 · · · phmh

where mi = min{mi j : j = 1, 2, . . . , n} for all i = 1, 2, . . . , h.
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6 Finite Abelian groups

Exercise 1.1.11 (Euclid’s proof of the infinitude of primes)

(1) Let p1, p2, . . . , pn, n ≥ 1, be distinct primes. Show that the number
p1p2 · · · pn + 1 is not divisible by pi for all i = 1, 2, . . . , n;

(2) deduce that the set of prime numbers is infinite.

There are many other proofs of the infinitude of primes. Six of them (includ-
ing Euclid’s proof) are in the book by Aigner and Ziegler [5]. A deep general-
ization of this fact will be presented in Chapter 3.

Definition 1.1.12 Let n ≥ 1 and a, b ∈ Z. One says that a is congruent to b
modulo n, and one writes a ≡ bmod n, provided n|(a− b).

Exercise 1.1.13 Let n ≥ 1.

(1) Show that the congruence relation ≡ mod n is an equivalence relation;
(2) suppose that a = nq+ r, with 0 ≤ r < n. Show that a ≡ r mod n;
(3) deduce that there are exactly n equivalence classes and that a complete

list of representatives is provided by 0, 1, . . . , n− 1.

For n ≥ 1 and a ∈ Z we denote by

a = {a+ hn : h ∈ Z} (1.3)

the equivalence class containing a.
We denote by Z/nZ = {a : a ∈ Z} = {0, 1, . . . , n−1} the corresponding

quotient set.

Exercise 1.1.14 Let n ≥ 1 and a, b ∈ Z. Set

a+ b = a+ b and a · b = ab. (1.4)

(1) Show that the operations + and · in (1.4) are well defined;
(2) show that (Z/nZ,+) is a cyclic group;
(3) show that (Z/nZ,+, ·) is a unital commutative ring;
(4) show that a is invertible in (Z/nZ,+, ·) if and only if gcd(a, n) = 1;
(5) deduce that if p is a prime, then (Z/pZ,+, ·) is a field.

For (5), see also Corollary 6.1.13.

Notation 1.1.15 Let n ≥ 1. For k,m ∈ Z we write

km = m+ m+ · · · + m (k summands)

if k ≥ 0, and km = −(|k|m) if k < 0, where m is as in (1.3).
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1.1 Preliminaries in number theory 7

The notation above is consistent with the fact that (Z/nZ,+), as any Abelian
group, is a Z-module; see the monographs by Herstein [71], Lang [93], and
Knapp [87].

Lemma 1.1.16 Let r and s be positive integers with gcd(r, s) = 1. Then for
every 0 ≤ k ≤ rs− 1 there exist unique 0 ≤ u ≤ r − 1 and 0 ≤ v ≤ s− 1 such
that

k ≡ us+ vr mod rs. (1.5)

Proof. As u and v vary, with 0 ≤ u ≤ r − 1 and 0 ≤ v ≤ s− 1, the expression
us+ vr yields (at most) rs integers; therefore it suffices to show that these are
all distinct mod rs. Indeed, for 0 ≤ u, u′ ≤ r − 1 and 0 ≤ v, v ′ ≤ s− 1we have
(keeping in mind that gcd(r, s) = 1):

us+ vr ≡ u′s+ v ′r mod rs �⇒ (u− u′)s+ (v − v ′)r ≡ 0 mod rs

(by Exercise 1.1.8.(1)) �⇒
{
u ≡ u′ mod r

v ≡ v ′ mod s

�⇒ u = u′ and v = v ′. �

Notation 1.1.17 For n ≥ 1 we denote by

� Zn the additive group (Z/nZ,+) of integers mod n;
� Cn the multiplicative cyclic group of order n;
� Z/nZ the ring (Z/nZ,+, ·) of integers mod n.

When n = p is a prime, we shall denote by Fp the finite fieldZ/pZ (cf. Exercise
1.1.14.(5)).

Note that ifCn is generated by the element a ∈ Cn, then the map k �→ ak, for
all k ∈ Z, is well defined and establishes a natural group isomorphism of Zn

onto Cn.
We shall examine the structure of all finite fields in Section 6.3.

Definition 1.1.18 The Euler totient function is the map ϕ defined by

ϕ(n) = |{m ∈ N : 1 ≤ m ≤ n, gcd(m, n) = 1}|

for all n ≥ 1, where | · | denotes cardinality. In words, the value ϕ(n) equals
the number of positive integers less than or equal to n that are relatively prime
to n.
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8 Finite Abelian groups

Proposition 1.1.19 Let n be a positive integer. Then in the cyclic groupZn there
are exactly ϕ(n) distinct generators.

Proof. Let 1 ≤ m ≤ n− 1 and suppose that gcd(m, n) = 1. By Bézout identity,
we can find a, b ∈ Z such that am+ bn = 1. Let 1 ≤ h ≤ n− 1 be such that
h = a. Then, in Zn we have m+ m+ · · · + m = hm = am = 1. As 1 clearly
generates Zn, this shows that m generates Zn as well. On the other hand, if
gcd(m, n) = q > 1, then we can find h, k ∈ N such that m = hq and n = kq.
Note that 1 ≤ k < n. Then we have km = km = khq = hn = 0 so that the
(cyclic) subgroup generated by m in Zn has order ≤ k and therefore cannot
equal the whole Zn. This shows that m is not a generator of Zn.
The statement then follows from the definition of ϕ(n). �

Proposition 1.1.20 (Gauss) Let n be a positive integer. Then we have∑
1≤r≤n
r|n

ϕ(r) = n.

Proof. For every positive divisor r of n let us set

A(r) := {k ∈ N : 1 ≤ k ≤ n, gcd(k, n) = n/r}. (1.6)

For 1 ≤ k ≤ n we clearly have k ∈ A(r) with r = n/ gcd(k, n), and such an r is
unique, so that

{1, 2, . . . , n} =
∐

1≤r≤n
r|n

A(r). (1.7)

Now, for every k ∈ A(r) there exists a unique positive integer j such that k =
j nr . It follows that 1 ≤ j ≤ r and

n

r
= gcd(k, n) = gcd

(
j
n

r
, r
n

r

)
= n

r
gcd( j, r)

so that gcd( j, r) = 1. Conversely, if r|n and gcd( j, r) = 1, then gcd( j nr , n) =
gcd( j nr , r

n
r ) = n

r . As a consequence, A(r) = { j nr : gcd( j, r) = 1} so that

|A(r)| = ϕ(r) (1.8)

and therefore, from (1.7) we deduce

n =
∑
1≤r≤n
r|n

|A(r)| =
∑
1≤r≤n
r|n

ϕ(r).

�
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1.1 Preliminaries in number theory 9

Theorem 1.1.21 Let p be a prime number. The (multiplicative) group F∗
p of

invertible elements in the field Fp is cyclic (of order p− 1).

Proof. We first observe that |F∗
p| = |{1, 2, . . . , p−1}| = p− 1.

For every positive divisor r of p− 1 let us set

B(r) := {α ∈ F∗
p : α is of order r}.

Thus, if α ∈ B(r), we have αr = 1 and α generates a cyclic group 〈α〉 of order
r consisting exactly of all the solutions in Fp of the equation xr = 1. That is,
B(r) ⊆ 〈α〉 (recall also that over any field, an equation of degreem has at mostm
solutions). By virtue of Proposition 1.1.19, 〈α〉 has ϕ(r) generators, namely the
powers αh with 1 ≤ h ≤ r and gcd(h, r) = 1. As a consequence, if B(r) �= ∅
we have |B(r)| = ϕ(r). Therefore

p− 1 = |F∗
p | =

∑
r|(p−1)

|B(r)| ≤
∑

r|(p−1)

ϕ(r) = p− 1,

where the last equality follows from Proposition 1.1.20. Since the above is
indeed an equality, we deduce that B(r) �= ∅ for every r which divides p− 1.
In particular, every element α ∈ B(p− 1) is of order p− 1 and therefore
〈α〉 = F∗

p. �
Exercise 1.1.22 (Fermat’s little theorem) Show that if p is a prime, then for
all n ∈ Z we have np ≡ n mod p so that, if in addition p � n, then np−1 ≡
1 mod p.

We end this section with the following well-known results (see also Remark
5.2.15), which we deduce from Theorem 1.1.1.

Corollary 1.1.23 (Chinese remainder theorem I) Let r, s be two positive
integers such that gcd(r, s) = 1. Then for all (a, b) ∈ Z there exists x =
x(a, b) ∈ Z solution to the system{

x ≡ a mod r

x ≡ b mod s.
(1.9)

Proof. By Bézout identity, we can find u, v ∈ Z such that 1 = ur + vs. We
leave it to the reader to check that the quantities a+ (b− a)ur and b+ (a−
b)vs are equal and constitute a solution to (1.9). �
Exercise 1.1.24 With the notation from Corollary 1.1.23, set δ1 = x(1, 0) and
δ2 = x(0, 1). Show that x(a, b) = aδ1 + bδ2.

Exercise 1.1.25 (Chinese remainder theorem II) Let r1, r2, . . . , rn be posi-
tive integers such that gcd(ri, r j ) = 1 for all 1 ≤ i < j ≤ n.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.002
https://www.cambridge.org/core


10 Finite Abelian groups

(a) Show that for all (a1, a2, . . . , an) ∈ Zn there exists a solution x =
x(a1, a2, . . . , an) ∈ Z of the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x ≡ a1 mod r1

x ≡ a2 mod r2

· · · · · ·
x ≡ an mod rn;

(1.10)

(b) set R = r1r2 · · · rn. Show that y ∈ Z is another solution to (1.10) if and
only if x ≡ y mod R.

Hint. For every i = 1, 2, . . . , n denote by δi ∈ Z a solution to (1.9) with a =
1, b = 0, r = ri, and s = R/ri. Show that δi is a solution to (1.9) with a = 1, b =
0, r = ri, and s = r j, for all j �= i. Then show that x(a1, a2, . . . , an) = a1δ1 +
a2δ2 + · · · + anδn.

Proposition 1.1.26 Let n ≥ 1, m ∈ Z, and set d = gcd(m, n). Then, in the
cyclic group Zn the element m has order n

d .

Proof. For k ∈ Z we have

km ≡ 0 mod n ⇔ n | km
⇔ n

d
| km
d

⇔ n

d
| k,

since n
d and m

d are relatively prime. �
Exercise 1.1.27 Deduce Proposition 1.1.19 from Proposition 1.1.26.

1.2 Structure theory of finite Abelian groups: preliminary results

In this section we review some basic facts on finite Abelian groups and their
structure. Our exposition is based on the following monographs: by Machì
[102], Zappa [170], Kurzweil and Stellmacher [90], Kurosh [89], Rotman
[132], Herstein [71], Nathanson [118], and on the papers [18, 72, 120].
We use additive notation. In particular, for a ∈ Zn and r ∈ Nwe set ra = a+

a+ · · · + a (r summands). Moreover, for an element a (respectively a subset B)
of an Abelian group A, we denote by 〈a〉 = {ra : r ∈ N} (respectively 〈B〉) the
subgroup of A generated by a (respectively B) and by o(a) = |〈a〉| ∈ N ∪ {∞}
the order of a.
Let A be a finite Abelian group and let A1,A2, . . . ,Ak ≤ A, k ≥ 1 be sub-

groups of A.
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1.2 Structure theory of finite Abelian groups: preliminary results 11

Definition 1.2.1 The sum of the subgroups A1,A2, . . . ,Ak is the subgroup

B = A1 + A2 + · · · + Ak (1.11)

formed by all elements a ∈ A which can be expressed as

a = a1 + a2 + · · · + ak (1.12)

with aj ∈ Aj, j = 1, 2, . . . , k.
One says that the subgroup B in (1.11) is an (internal) direct sum, and we

write

B = A1 ⊕ A2 ⊕ · · · ⊕ Ak, (1.13)

provided that the expression (1.12) is unique for every a ∈ B.

Proposition 1.2.2 The following conditions are equivalent for B = A1 + A2

+ · · · + Ak:

(i) B is a direct sum;
(ii) if a1 + a2 + · · · + ak = 0with a j ∈ Aj, j = 1, 2, . . . , k, then a1 = a2 =

· · · = ak = 0;
(iii) (A1 + A2 + · · · + Aj−1 + Aj+1 + · · · + Ak ) ∩ Aj = {0} for all j = 1,

2, . . . , k;
(iv) |B| = |A1| · |A2| · . . . · |Ak|.

Moreover, if one of the above conditions holds and

Aj = Bj,1 ⊕ Bj,2 ⊕ · · · ⊕ Bj,h j ,

where the Bj,is are subgroups and h j ≥ 1, for all j = 1, 2, . . . , k, then

B =
k⊕
j=1

h j⊕
i=1

Bj,i.

Proof. We leave it as an easy exercise. �
Let now B1,B2, . . . ,Bk be Abelian groups.

Definition 1.2.3 The (external) direct sum of the groups B1,B2, . . . ,Bk,
denoted

B1 ⊕ B2 ⊕ · · · ⊕ Bk, (1.14)

is the Cartesian product B1 × B2 × · · · × Bk endowed with the group operation

(b1, b2, . . . , bk )+ (b′1, b
′
2, . . . , b

′
k ) = (b1 + b′1, b2 + b′2, . . . , bk + b′k )

for all bi, b′i ∈ Bi, i = 1, 2, . . . , k.
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12 Finite Abelian groups

Note that

|B1 ⊕ B2 ⊕ · · · ⊕ Bk| = |B1| · |B2| · . . . · |Bk|. (1.15)

The notions of internal and external direct sum are strictly correlated:

Proposition 1.2.4

(i) Let B = B1 ⊕ B2 ⊕ · · · ⊕ Bk be an external direct sum. For every j =
1, 2, . . . , k, denote by Aj the subgroup, isomorphic to Bj, consisting of
all elements of B of the form (0, 0, . . . , 0, a j, 0, . . . , 0) with a j ∈ Bj in
the jth coordinate. Then,

B = A1 ⊕ A2 ⊕ · · · ⊕ Ak

as an internal direct sum;
(ii) the internal direct sum (1.11) is isomorphic to the external direct sum

of the groups A1,A2, . . . ,Ak.

Proof. We leave it as an easy exercise. �
As a consequence, in the sequel, if B ∼= B1 ⊕ B2 ⊕ · · · ⊕ Bk, by abuse of

language we shall regard the groups Bj, j = 1, 2, . . . , k, as subgroups of the
Abelian group B.

We now focus on some basic results on cyclic groups and their structure.

Proposition 1.2.5 Let r, s be two positive integers satisfying gcd(r, s) = 1.
Then if n = rs we have

Zn
∼= Zr ⊕ Zs.

Proof. Let a be a generator of Zn and set b = ra and c = sa. Since sb = sra =
na = 0 and kb = kra �= 0 for 0 ≤ k < s, we have that o(b) = s and, similarly,
o(c) = r. Moreover,

〈b〉 ∩ 〈c〉 = 0.

Indeed, if kb = hc with 0 ≤ k < s and 0 ≤ h < r then

kra = hsa

with 0 ≤ kr, hs < n, which implies that kr = hs. Since gcd(r, s) = 1 we nec-
essarily have s|k and r|h (see Exercise 1.1.8.(1)) and this forces h = k = 0.
Finally, by Bézout identity (cf. Theorem 1.1.1), there exist u, v ∈ Z such that
ru+ sv = 1 so that

a = 1a = ura+ vsa = ub+ vc.
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1.2 Structure theory of finite Abelian groups: preliminary results 13

This implies that Zn = 〈b〉 ⊕ 〈c〉 ∼= Zr ⊕ Zs. �

Definition 1.2.6 An Abelian group is termed indecomposable if it cannot be
written as a direct sum of two or more nontrivial subgroups.
A p-primary cyclic group is a cyclic group of order a nontrivial power of a

prime p.

From Proposition 1.2.5 we deduce:

Corollary 1.2.7 (Chinese remainder theorem III) Let n = pk11 p
k2
2 · · · pktt be

the prime factorization of an integer n ≥ 2. Then

Zn
∼= Z

p
k1
1
⊕ Z

p
k2
2
⊕ · · · ⊕ Zpktt

. (1.16)

That is, every cyclic group may be written as a direct sum of p-primary cyclic
groups corresponding to distinct primes p.

Exercise 1.2.8 Show that the Chinese remainder theorem III (Corollary 1.2.7)
is equivalent to the Chinese remainder theorem II (Exercise 1.1.25).

Corollary 1.2.9 Let m and n be two positive integers and suppose that m
divides n. Then Zn contains an element of order m.

Proof. Let n = pk11 p
k2
2 · · · pktt be the prime factorization of n. Then we can write

m = ph11 p
h2
2 · · · phtt with 0 ≤ hi ≤ ki, i = 1, 2, . . . , t. In the notation of Corollary

1.2.7, let a1, a2, . . . , at be the generators of the primary cyclic subgroups in
(1.16). We claim that the element

z = pk1−h11 a1 + pk2−h22 a2 + · · · + pkt−htt at

has order m. Indeed,

mz = m

ph11
pk11 a1 +

m

ph22
pk22 a2 + · · · + m

phtt
pktt at = 0

and if m′|m and m′ < m, say m′ = p
h′1
1 p

h′2
2 · · · ph′tt (with 0 ≤ h′i ≤ hi, for all i =

1, 2, . . . , t, and there exists 1 ≤ j ≤ t such that h′j < h j) then

m′z = m′

p
h′1
1

p
k1−h1+h′1
1 a1 + m′

p
h′2
2

p
k2−h2+h′2
2 a2 + · · · + m′

ph
′
t
t

pkt−ht+h
′
t

t at �= 0

since

m′

p
h′j
j

p
k j−h j+h′j
j a j �= 0.

This proves the claim and the corollary. �
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14 Finite Abelian groups

Proposition 1.2.10 Let p be a prime number and let a be a generator of the p-
primary cyclic group Zpk . Then every nontrivial subgroup of Zpk contains the
element pk−1a. In particular, Zpk is indecomposable.

Proof. Let x ∈ Zpk be any nontrivial element. Then we can find 0 < s < pk

such that x = sa. Wemay decompose s in the form s = phr, with 0 ≤ h < k and
r ∈ N such that gcd(p, r) = 1. Thenwe can find u, v ∈ Z such that ru+ pv = 1
so that

(pk−h−1u)x = pk−h−1usa

= pk−1ura

= pk−1(1− pv )a

= pk−1a

that is, pk−1a ∈ 〈x〉. This shows that every nontrivial subgroup of Zpk contains
pk−1a.
The last statement then follows from Proposition 1.2.2.(iii). �

Corollary 1.2.11 For every n ≥ 2, the cyclic group Zn has a unique decompo-
sition as a direct sum of p-primary cyclic groups and it is given by (1.16).

Proposition 1.2.12 Let n ≥ 1, and let a be a generator of the cyclic group Zn.
Then every subgroup A of Zn is cyclic and A = 〈 nma〉 where m = o(A). Con-
versely, for every divisor m of n there exists a unique subgroup Am ≤ Zn of
order m.

Proof. Let A be a non trivial subgroup of Zn. Set

h = min{k ∈ N : ka ∈ A}
and let us show thatA = 〈ha〉. Indeed, if sa ∈ A, then, by the division algorithm,
there exist q ∈ N and 0 ≤ r < h such that s = qh+ r so that

ra = sa− qha ∈ A

forcing r = 0 and sa = qha ∈ 〈ha〉.
On the other hand, if m divides n, then o( nma) = m. Indeed, m n

ma = na = 0,
while if 0 < r < m then r nm < n so that (r nm )a = r( nma) �= 0. This shows that
Am = 〈 nma〉 (uniqueness follows from the first part). �

Proposition 1.2.13 Let n ≥ 1, a, b ∈ Z, and set d = gcd(a, n). Then the linear
congruence

ma ≡ b mod n (1.17)
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1.2 Structure theory of finite Abelian groups: preliminary results 15

has a solution m ≥ 1 if and only if

b ≡ 0 mod d.

If this is the case, (1.17) has d distinct pairwise non-congruent solutions.

Proof. We havema ≡ b mod n if and only if there exists k ∈ Z such thatma =
b+ kn, that is, b = ma− kn. By Corollary 1.1.4, this last equation admits a
solution (m, k) ∈ Z2 if and only if d divides b. By Proposition 1.1.26 the linear
congruence

ha ≡ 0 mod n

has exactly d non-congruent solutions, namely h = n
d , 2

n
d , . . . , (d − 1) nd , n. If

b ≡ 0 mod d and m0 is a fixed solution of (1.17), then a complete list of pair-
wise non-congruent solutions of (1.17) is given by

m = m0,m0 + n

d
,m0 + 2

n

d
, . . . ,m0 + (d − 1)

n

d
. �

Remark 1.2.14 We write Proposition 1.2.13 in a more abstract form by using
multiplicative notation. Let n ≥ 1, recall that Cn denotes the multiplicative
cyclic group, and let x ∈ Cn be a generator. Let a ∈ Z and set d = gcd(a, n).
Given z ∈ Cn consider the equation (in the variable y inCn)

ya = z. (1.18)

� If z = ud for some u ∈ Cn, then (1.18) has d solutions;
� otherwise, (1.18) has no solutions.

(Just set z = xb and y = xm, and consider the exponents.)

We now examine arbitrary Abelian groups (not necessarily cyclic). We begin
with a kind of converse to Proposition 1.2.5.

Proposition 1.2.15 Let A be a finite Abelian group. Let a, b ∈ A and suppose
that gcd(o(a), o(b)) = 1. Then o(a+ b) = o(a)o(b).

Proof. Set o(a) = r, o(b) = s and observe that rs(a+ b) = rsa+ rsb =
s(ra)+ r(sb) = 0. Suppose now thatm ∈ N satisfiesm(a+ b) = 0. As a conse-
quence,ma = −mb so that sma = −msb = 0 and therefore r divides sm. Since
r and s are coprime, we deduce that r dividesm. Analogously, s dividesm. Since
gcd(r, s) = 1 this implies that m is a multiple of rs. Therefore rs is the order of
a+ b. �
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16 Finite Abelian groups

Remark 1.2.16 In general, we do not have o(a+ b) = o(a)o(b)
gcd(o(a),o(b)) =

lcm(o(a), o(b)), where lcm denotes the least common multiple. For instance,
just consider the case a = −b.
Proposition 1.2.17 Let p be a prime number andμ1 ≥ μ2 ≥ · · · ≥ μh positive
integers. Then the Abelian group

A = Zpμ1 ⊕ Zpμ2 ⊕ · · · ⊕ Zpμh

is not cyclic.

Proof. The elements in A of maximal order are of the form a1 + a2 + · · · + ah,
where a1 is a generator of Zpμ1 and ai ∈ Zpμi for i = 2, 3, . . . , h; their order is
pμ1 . �

Exercise 1.2.18 Let A be a finite Abelian group and a, b ∈ A. Show that A con-
tains an element of order lcm(o(a), o(b)).

The following is, probably, the most difficult exercise in Herstein’s book [71]
(it is Exercise 26 in Section 2.5). Its difficulty relies on the fact that the author
asked for a proof based only on tools developed up to Section 2.5 of his book.
A proof in this style was published by Robert Beals [18].

Exercise 1.2.19 Let A be a finite Abelian group and B,C ≤ A subgroups of A
with |B| = m and |C| = n. Show that A contains a subgroup of order lcm(m, n).

Exercises 1.2.18 and 1.2.19 are quite easy once the whole structure theory
of finite Abelian groups will be fully developed (in the remaining part of this
chapter).

Proposition 1.2.20 Let A be a finite Abelian group and a ∈ A an element of
maximal order. Then for all b ∈ A one has that o(b) divides o(a).

Proof. Fix b ∈ A and let pk be a prime power in the factorization of o(b). Sup-
pose that o(a) = phm, where h ≥ 0 and gcd(p,m) = 1. By Corollary 1.2.9,
there exist c ∈ 〈a〉 with o(c) = m and d ∈ 〈b〉 with o(d) = pk. Then, by Propo-
sition 1.2.15, o(c+ d) = pkm so that, by maximality of o(a), we necessarily
have k ≤ h. This shows that every prime power in the factorization of o(b)
divides o(a). It follows that o(b) divides o(a). �

Lemma 1.2.21 Let A be a finite Abelian group, a ∈ A an element of maximal
order, b ∈ A an arbitrary element, and denote by m the order of b+ 〈a〉 in
the quotient group A/〈a〉. Then there exists c in the coset b+ 〈a〉 such that
o(c) = m.
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1.2 Structure theory of finite Abelian groups: preliminary results 17

Proof. First of all we observe that mb+ 〈a〉 = m(b+ 〈a〉) = 〈a〉 so that mb ∈
〈a〉 and we can find n ∈ N such that

mb = na. (1.19)

Setting

h = o(a) and t = gcd(n, h),

by Proposition 1.1.26 we have o(na) = h
t .

We claim that

o(b) = mh

t
. (1.20)

Indeed, setting r =o(b), by (1.19) we have mh
t b = h

t mb = h
t na = 0 and this

implies

r|mh
t

. (1.21)

Conversely, since r(b+ 〈a〉) = (rb+ 〈a〉) = 〈a〉 and, by hypothesis, o(b+
〈a〉) = m, we have that m divides r. Thus we can find q ∈ N such that r = qm.
As a consequence, by (1.19) we have

0 = rb = qmb = qna.

Since o(na) = h
t , we deduce that h

t divides q, that is, there exists s ∈ N such
that q = s ht . It follows that

r = qm = sm
h

t
= s

mh

t

so that mht divides r and, by (1.21),

o(b) = r = mh

t
.

Thus, the claim (1.20) follows.
From Proposition 1.2.20 it follows that r = mh

t divides h (the order of a,
which is maximal) and therefore,m|t. Thus we can find k ∈ N such that t = km.
Setting v = n

t (this is an integer since t = gcd(n, h)) and recalling (1.19), we
have

mb = na = vta = mvka. (1.22)

Setting

c = b− vka
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18 Finite Abelian groups

we have b+ 〈a〉 = c+ 〈a〉 and by (1.22)

mc = mb− mvka = 0.

This shows that o(c)|m. Since m = o(b+ 〈a〉) = o(c+ 〈a〉) ≤ o(c) ≤ m, we
deduce that o(c) = m. �

1.3 Structure theory of finite Abelian groups: the theorems

In this section we present the three structure theorems for finite Abelian groups.

Theorem 1.3.1 (Invariant factors decomposition) Let A be a finite Abelian
group. Then there exists a unique finite sequence r1, r2, . . . , rk, k ≥ 1, of posi-
tive integers such that

(i) r j divides r j−1 for all j = 2, 3, . . . , k;
(ii) |A| = r1r2 · · · rk;
(iii) A ∼= Zr1 ⊕ Zr2 ⊕ · · · ⊕ Zrk .

Proof. First of all we show, by induction on n = |A|, that such a sequence exists.
The case n = 1 is trivial (take k = 1 = r1). Let now n ≥ 2 and suppose the
statement holds for all finite Abelian groups of order 1 ≤ h ≤ n− 1. Let then
a1 ∈ A such that r1 = o(a1) is maximal and consider the quotient group A′ =
A/〈a1〉. We have |A′| = |A|/o(a1) < n so that, by the inductive hypothesis, we
can find a finite sequence r2, r3, . . . , rk of positive integers such that r j divides
r j−1 for all j = 3, 4, . . . , k,

|A′| = r2r3 · · · rk (1.23)

and

A′ ∼= Zr2 ⊕ Zr3 ⊕ · · · ⊕ Zrk . (1.24)

By virtue of Lemma 1.2.21, we can find elements a2, a3, . . . , ak ∈ A such
that the summand Zr j is generated by aj + 〈a1〉 and

o(a j ) = r j (1.25)

for all j = 3, 4, . . . , k. Clearly,

A = 〈a1〉 + 〈a2〉 + · · · + 〈ak〉. (1.26)

Indeed, if b ∈ A then by virtue of (1.24) we can find integers m2,m3, . . . ,mk

such that

b+ 〈a1〉 = m2(a2 + 〈a1〉)+ m3(a3 + 〈a1〉)+ · · · + mk(ak + 〈a1〉)
= (m2a2 + 〈a1〉)+ (m3a3 + 〈a1〉)+ · · · + (mkak + 〈a1〉)
= (m2a2 + m3a3 + · · · + mkak )+ 〈a1〉
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1.3 Structure theory of finite Abelian groups: the theorems 19

so that b− (m2a2 + m3a3 + · · · + mkak ) ∈ 〈a1〉, and therefore we can find
m1 ∈ N such that b = m1a1 + m2a2 + m3a3 + · · · + mkak. This shows (1.26).
From (1.23) and o(a1) = r1 we deduce that |A| = r1|A′| = r1r2 · · · rk

(namely, condition (ii)) so that, by virtue of Proposition 1.2.2, the sum (1.26) is
indeed a direct sum, and (iii) follows as well. Moreover, by Proposition 1.2.20
we deduce that r2 divides r1 so that, by induction, also (i) is satisfied.

We now turn to uniqueness of the sequence r1, r2 . . . , rk. Suppose that
s1, s2, . . . , sh, h ∈ N, is also a sequence of integers satisfying (i), (ii), and
(iii). For every j = 1, 2, . . . , h, we denote by bj ∈ A a generator of the sum-
mand Zs j so that, for every c ∈ A, we can find n1, n2 . . . , nh ∈ N such that c =
n1b1 + n2b2 + · · · + nhbh. From (i) we deduce that s1c = 0 so that s1 = o(b1)
is the maximal order of the elements of A so that (cf. the first part of the proof)

s1 = r1.

Suppose then that we have, for some 2 ≤ j ≤ min{h, k},
s1 = r1, s2 = r2, . . . , s j−1 = r j−1 and s j �= r j. (1.27)

To fix ideas, suppose that s j < r j and denote by

B = {s jc : c ∈ A}
the set of s j-multiples of the elements of A. Clearly, B is a subgroup of A.
Moreover (cf. (1.26)), if c ∈ A we can find m1,m2 . . . ,mk ∈ N such that c =
m1a1 + m2a2 + · · · + mkak. Thus

s jc = m1(s ja1)+ m2(s ja2)+ · · · + mk(s jak ),

which implies that

B = B1 ⊕ 〈s ja j〉 ⊕ B2 (1.28)

where B1 = 〈s ja1〉 ⊕ 〈s ja2〉 ⊕ · · · ⊕ 〈s ja j−1〉 and B2 = 〈s ja j+1〉 ⊕ 〈s ja j+2〉 ⊕
· · · ⊕ 〈s jak〉, and each summand in B1 ⊕ 〈s ja j〉 is nontrivial since s j < ri =
o(ai) for all i = 1, 2, . . . , j; in particular,

o(s ja j ) = o(aj )

gcd(s j, r j )
= r j

gcd(s j, r j )
> 1. (1.29)

Similarly, we have

B = 〈s jb1〉 ⊕ 〈s jb2〉 ⊕ · · · ⊕ 〈s jb j−1〉, (1.30)

since s jb� = 0 for � = j, j + 1, . . . , h. Note that

o(s jai) = o(ai)

s j
= ri
s j

= si
s j

= o(s jbi), (1.31)
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20 Finite Abelian groups

for i = 1, 2, . . . , j − 1. From (1.30) and (1.31) we deduce that B = B1 so that,
in particular, 〈s ja j〉 is trivial, a contradiction with (1.29). This shows that h = k
and s1 = r1, s2 = r2, . . . , sh = rh, and uniqueness follows. �

Definition 1.3.2 The positive integers satisfying (i), (ii), and (iii) in Theorem
1.3.1 are called the invariant factors of A.

Corollary 1.3.3 (Cauchy’s theorem for Abelian groups) Let A be a finite
Abelian group. Suppose that p is a prime divisor of the order of A. Then A
contains an element of order p.

Proof. Let r1, r2, . . . , rk denote the invariant factors of A. Since p divides
|A| = r1r2 · · · rk, by virtue of Exercise 1.1.8.(2), we can find 1 ≤ j ≤ k such
that p|r j (in fact, by Theorem 1.3.1.(i), we always have p|r1). From Corollary
1.2.9 we deduce that the subgroup Zr j , and therefore A, contains an element of
order p. �

Remark 1.3.4 The above is a quite unusual proof of Cauchy’s theorem for
Abelian groups. Indeed, any book on group theory or on undergraduate algebra
contains a direct proof of the more general result, namely the Cauchy theorem
for not necessarily Abelian groups. Often (e.g. Robinson [129]), one deduces
Cauchy’s theorem from the even more general Sylow theorem. In other books
(e.g. Herstein [71], Lang [93], Mac Lane and Birkhoff [113], and Rotman
[132]) the Abelian case is proved as a first step towards the general case. Finally,
in Machì’s monograph [102] there is an elementary direct proof of the general
result based on the paper by McKay [106] (cf. Exercise 1.3.6 below). In the
next exercise we outline a direct proof of Corollary 1.3.3 following [120].

Exercise 1.3.5 LetA be a finite Abelian group. Suppose that p is a prime divisor
of the order of A and let B be a proper maximal subgroup of A.

(1) Show that the quotient group A/B is cyclic of prime order;
(2) show that if p does not divide |B| then there exists c ∈ A such that 〈c〉 +

B = A and |〈c〉/(〈c〉 ∩ B)| = p;
(3) use (1) and (2) to give (another) inductive proof of Corollary 1.3.3.

As mentioned above, in the next exercise we outline a direct proof of the
general Cauchy theorem. We use some elementary notions on group actions
that will be further developed in Section 10.4.
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1.3 Structure theory of finite Abelian groups: the theorems 21

Exercise 1.3.6 Let G be a finite (not necessarily Abelian) group: we use mul-
tiplicative notation. Suppose that p is a prime divisor of the order of G and
set

X = {(g1, g2, . . . , gp) ∈ Gp : g1g2 · · · gp = 1G}.
(1) Show that |X | = |G|p−1;
(2) show that Zp acts on X by cyclic permutations, namely that if

x = (g1, g2, . . . , gp) ∈ X and t is a fixed generator of Zp then tx =
(g2, g3, . . . , gp, g1) ∈ X ;

(3) for x ∈ X denote by Stabx = {s ∈ Zp : sx = x} the stabilizer of x: show
that Stabx is a subgroup of Zp and, from Lagrange’s theorem, deduce
that it is either trivial or the whole Zp;

(4) denote by Zpx = {sx : s ∈ Zp} the orbit of x ∈ X and show that |Zpx| =
p/|Stabx| (orbit-stabilizer theorem);

(5) deduce that the only possible orbit sizes are 1 and p;
(6) show that Zpx = {x} if and only if there exists g ∈ G such that x =

(g, g, . . . , g), so that, necessarily, gp = 1G;
(7) letm (respectively n) denote the number of orbits of size 1 (respectively

p): from (5) and (6) deduce that m+ np = |G|p−1 and m ≥ 1;
(8) from (7) deduce that m ≥ 2 (in fact m is divisible by p) and therefore,

by (6), there exists g ∈ G of period p.

Theorem 1.3.7 (Primary decomposition) Let A be a finite Abelian group. Let

|A| = pk11 p
k2
2 · · · pktt (1.32)

be the prime factorization of the order of A. Then

Ai = {a ∈ A : o(a) is a power of pi}
is a subgroup of A of order pkii , for i = 1, 2, . . . , t, and

A = A1 ⊕ A2 ⊕ · · · ⊕ At . (1.33)

Proof. We first remark that, by virtue of Corollary 1.3.3, Ai �= {0}, and we leave
it as an exercise to check that Ai is a subgroup for i = 1, 2, . . . , t.

Let a ∈ A. Then, since o(a) divides |A|, there exists a nonempty subset
{i1, i2, . . . , im} of {1, 2, . . . , t} and integers 1 ≤ hj ≤ ki j , j = 1, 2, . . . ,m, such
that

o(a) = ph1i1 p
h2
i2
· · · phmim .

By the Chinese remainder theorem III (Corollary 1.2.7), we have

〈a〉 = Z
p
h1
i1

⊕ Z
p
h2
i2

⊕ · · · ⊕ Zphmim
⊆ Ai1 + Ai2 + · · · + Aim .
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22 Finite Abelian groups

This shows that

A = A1 + A2 + · · · + At . (1.34)

We claim that the above sum is direct. Suppose that a1 + a2 + · · · + at = 0,
where ai ∈ Ai, i = 1, 2, . . . , t. Let 1 ≤ i ≤ t. Then, after multiplying by qi =
|A|
p
ki
i

, we get qiai = 0 and, since the order of ai does not divide qi, we necessar-

ily have ai = 0. Thus a1 = a2 = · · · = at = 0 and from Proposition 1.2.2 the
claim follows. This establishes (1.33).
Let 1 ≤ i ≤ t. Since Ai only contains elements of order a power of pi,

from Corollary 1.3.3 we deduce that |Ai| = prii for some integer ri ≥ 1. More-
over, since the sum (1.34) is direct, we have |A| = |A1| · |A2| · . . . · |At | =
pr11 p

r2
2 · · · prtt so that, by uniqueness of the prime factorization (1.32) of |A|,

we necessarily have ri = ki for all i = 1, 2, . . . , t, completing the proof. �

Definition 1.3.8 Let p be a prime number. A group G is termed a p-group pro-
vided that every element has order a power of p.

Sylow’s first theorem (see for instance Herstein [71]) states that if G is a
finite group and p a prime number such that |G| = pnm, where n,m ≥ 1 with
gcd(p,m) = 1 (thus n is the maximal power of p dividing the order of G), then
G contains a p-subgroup of order pn: this is called a p-Sylow subgroup of G.
Thus, from Theorem 1.3.7, an Abelian version of Sylow’s first theorem

follows.

Definition 1.3.9 Let p be a prime number. An Abelian p-group is called a p-
primary group (cf. Definition 1.2.6). Moreover, for i = 1, 2, . . . , t, the sub-
group Ai in (1.33) is termed the pi-primary component of A.

The following relates and refines the statements of Theorem 1.3.1 and The-
orem 1.3.7: we use the notation therein.

Corollary 1.3.10 (Structure theorem for finite Abelian groups) Let A be a
finite Abelian group. Then there exist unique positive integers hi and mi j, i =
1, 2, . . . , t and j = 1, 2, . . . , hi, satisfying hi ≤ ki and

mi1 ≥ mi2 ≥ · · · ≥ mihi (1.35)

for all i = 1, 2, . . . , t, such that the following holds:

A ∼=
t⊕
i=1

hi⊕
j=1

Zp
mi j
i

(1.36)
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1.3 Structure theory of finite Abelian groups: the theorems 23

Ai ∼=
hi⊕
j=1

Zp
mi j
i

(1.37)

for i = 1, 2, . . . , t, and

Zr j
∼=
⊕
1≤i≤t:
hi≥ j

Zp
mi j
i

(1.38)

for j = 1, 2, . . . , k. In particular,
∑hi

j=1 mi j = ki for i = 1, 2, . . . , t and∏
1≤i≤t:
hi≥ j

p
mi j

i = r j (1.39)

for all j = 1, 2, . . . , k.

Proof. We shall present two proofs of this fundamental result: we can exchange
the order of the applications of Theorem 1.3.1 and Theorem 1.3.7.

First proof. We apply Theorem 1.3.1 to each p-primary component Ai in (1.33):
thus we can find 1 ≤ hi ≤ ki and mi1 ≥ mi2 ≥ · · · ≥ mihi such that (1.37) and
therefore (1.36) hold. Uniqueness follows from uniqueness in Theorem 1.3.1
and uniqueness of the prime factorization of |A|. Let now 1 ≤ j ≤ k. Then
(1.35) implies that

∏
1≤i≤t:
hi≥ j

p
mi j

i divides
∏

1≤i≤t:
hi≥ j−1

p
mi, j−1

i so that, by Proposition

1.2.5 and uniqueness in Theorem 1.3.1, we deduce (1.39) and (1.38).

Second proof. Consider the invariant factors r j, j = 1, 2, . . . , t, in Theorem
1.3.1.(iii). Let r1 = pm11

1 pm21
2 · · · pmt1

t denote the prime factorization of r1 (so
that mi1 > 0 for i = 1, 2, . . . , t). Let 1 ≤ j ≤ k. Since r j|r j−1, . . . , r2|r1, we
can write r j = p

m1 j

1 p
m2 j

2 · · · pmt j
t with mi, j−1 ≥ mi j ≥ 0 for i = 1, 2, . . . , t. Let

us denote by hi the largest j such that mi j > 0 (equivalently, mihi > 0 and
mi,hi+1 = 0). This way, r j =

∏
1≤i≤t:
hi≥ j

p
mi j

i is the prime factorization of r j and

(1.39) follows. Applying Theorem 1.3.7 to eachZr j , j = 1, 2, . . . , t, we deduce
(1.38). Finally, from the direct sum decomposition in Theorem 1.3.1.(iii), we
deduce (1.36) and, by definition of Ai, (1.37). �

Corollary 1.3.11 A finite Abelian group is indecomposable if and only if it is
a p-primary cyclic group for some prime p.

Proof. The “if” part is Proposition 1.2.10. Conversely, if A is indecomposable,
then in (1.36) we must have t = 1 and h1 = 1. �
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24 Finite Abelian groups

Definition 1.3.12 The positive integersmi j, i = 1, 2, . . . , t, j = 1, 2, . . . , hi, in
Corollary 1.3.10 are called the elementary divisors of A.

In Corollary 1.3.10 we have shown that the invariant factors determine
uniquely the elementary divisors, and vice versa. More precisely, given the
prime factorization (1.32), from (1.39) we have a correspondence

(r j )
k
j=1 ↔

(
(hi)

t
i=1, (mi j ) 1≤i≤t

1≤ j≤hi

)
.

Our next task is to compute the number of nonisomorphic Abelian groups of
a given order n ∈ N. For this purpose we introduce the following definitions.

Definition 1.3.13 Let n ∈ N. A partition of n is a sequence

λ = (λ1, λ2, · · · , λh)
of positive integers such that

λ1 ≥ λ2 ≥ · · · ≥ λh and λ1 + λ2 + · · · + λh = n.

We then write λ � n.
We denote by p(n) = |{λ : λ � n}| the number of partitions of n.
The map p : N → N is called the partition function.

Let now A and B be two finite Abelian groups. Then A ∼= B if and only if,
denoting by (rAj )

kA
j=1 and (rBj )

kB
j=1 the corresponding invariant factors, then kA =

kB and rAj = rBj for all j = 1, 2, . . . , kA: we express this last condition by saying,
with a slight abuse of language, that A and B have the same invariant factors.
Equivalently, A and B are isomorphic if and only if |A| = |B| and, denoting
by (mA

i j ) 1≤i≤t
1≤ j≤hAi

and (mB
i j ) 1≤i≤t

1≤ j≤hBi
the corresponding elementary divisors, we have

hAi = hBi andm
A
i j = mB

i j for all i = 1, 2, . . . , t and j = 1, 2, . . . , hAi . Again, with
a slight abuse of language, this last condition may be expressed by saying that
A and B have the same elementary divisors.

Proposition 1.3.14 Let n ≥ 2 and denote by n = pk11 p
k2
2 · · · pktt its prime factor-

ization. Then the number of nonisomorphic Abelian groups of order n is

p(k1)p(k2) · · · p(kt ).
Proof. Let A be an Abelian group of order n and denote by (mA

i j ) 1≤i≤t
1≤ j≤hAi

the

corresponding elementary divisors. Then for each i = 1, 2, . . . , t we have the
partition μi = (mi1,mi2, . . . ,mihi ) � ki. Since, by the above observations, the
elementary divisors uniquely determine A (of the given order n) up to isomor-
phism, this ends the proof. �
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1.3 Structure theory of finite Abelian groups: the theorems 25

Remark 1.3.15 Theorem 1.3.1, Theorem 1.3.7, and Corollary 1.3.10 provide
three different decompositions of a finite Abelian group. In Theorem 1.3.1
and Corollary 1.3.10, the structure of the decompositions is unique (that is,
the invariant factors and the elementary divisors, respectively, are uniquely
determined). On the one hand, the associated subgroups (namely the Zr j ,
j = 1, 2, . . . , k, and the Zp

mi j
i
, i = 1, 2, . . . , t, j = 1, 2, . . . , hi, respectively)

are not uniquely determined. This aspect will be discussed in Section 1.8 (see
Corollary 1.8.4). On the other hand, the subgroups in the decomposition in
Theorem 1.3.7 are uniquely determined.

We now give a characterization of the decomposition (1.36) in Corollary
1.3.10. First recall that, by Proposition 1.2.10, every p-primary cyclic group
Zpmi j is indecomposable.

Proposition 1.3.16 With the notation from Corollary 1.3.10, let A =⊕q
μ=1 Bμ

be a decomposition of A as a direct sum of indecomposable subgroups. Then
q =∑t

i=1 hi and there exists a bijection

μ : {(i, j) : 1 ≤ i ≤ t, 1 ≤ j ≤ hi} −→ {1, 2, . . . , q}
such that

Zp
mi j
i

∼= Bμ(i, j) (1.40)

for i = 1, 2, . . . , t and j = 1, 2, . . . , hi.

Proof. By Corollary 1.3.11, each Bμ is a p-primary cyclic group. Let 1 ≤
i ≤ t. Then, in the notation of Theorem 1.3.7, we can find distinct indices
1 ≤ μ(i, 1), μ(i, 2), . . . , μ(i, ki) ≤ q such that

Ai = Bμ(i,1) ⊕ Bμ(i,2) ⊕ · · · ⊕ Bμ(i,ki )

and Bμ(i,1),Bμ(i,2), . . . ,Bμ(i,ki ) are all the pi-groups among the Bμs. Up to per-
muting the indices, if necessary, we may assume that

|Bμ(i,1)| ≥ |Bμ(i,2)| ≥ · · · ≥ |Bμ(i,ki )|
so that, necessarily, |Bμ(i, j−1)| divides |Bμ(i, j)| for j = 2, 3, . . . , ki. By applying
the uniqueness assertion in Theorem 1.3.1, we deduce (1.40) (in particular, ki =
hi for all i = 1, 2, . . . , t). The remaining part of the statement is now clear. �

Proposition 1.3.17 Let A be a finite Abelian group. Then, in the notation of
Theorem 1.3.7, the following conditions are equivalent:

(a) A is cyclic;
(b) A contains exactly one subgroup of order pi for every i = 1, 2, . . . , t;

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.002
https://www.cambridge.org/core


26 Finite Abelian groups

(c) Ai is cyclic for every i = 1, 2, . . . , t.

Proof. The implication (a)⇒ (b) follows immediately from Proposition 1.2.12.
Suppose that there exists 1 ≤ i ≤ t such that Ai is not cyclic. Then, in (1.37)

(and with the notation therein) we necessarily have hi ≥ 2 so that Ai contains a
subgroup B isomorphic toZp

mi1
i

⊕ Zp
mi2
i
. By virtue of Cauchy’s theorem (Corol-

lary 1.3.3) applied to each direct component, B and therefore A contain two
distinct subgroups of order pi. This shows the implication (b)⇒ (c).

Suppose (c). Let ai ∈ Ai be a generator of Ai for every i = 1, 2, . . . , t.
Then, by Proposition 1.2.15, the element a = a1a2 · · · at has order o(a) =
o(a1)o(a2) · · · o(at ) = |A1| · |A2| · . . . · |At | = |A| (the last equality follows
from (1.33) and (1.15)). This shows that A = 〈a〉 is cyclic, and the implication
(c)⇒ (a) follows as well. �

Remark 1.3.18 The decomposition of a finite Abelian group as a direct sum
of cyclic groups presented in (1.36) is the finer, while the one in Theorem
1.3.1.(iii) is the coarser.

1.4 Generalities on endomorphisms and automorphisms
of finite Abelian groups

In the next sections we present a complete description of the automorphisms of
finite Abelian groups in order to:

� clarify the structure theorem (cf. Remark 1.3.15);
� show examples for potential applications of Theorem 11.7.1.

We start with some basic general results.
Let A be a finite Abelian group. A map α : A→ A such that

α(a+ b) = α(a)+ α(b)

for all a, b ∈ A is called an endomorphism of A. We denote by End(A) the set
of all endomorphisms of A.
Note that if α ∈ End(A) then α(0) = 0 and α(−a) = −α(a) for all a ∈ A.

Moreover, End(A) is a unital ring: for α, β ∈ End(A) we define their sum α + β

and their product αβ by setting

(α + β )(a) = α(a)+ β(a)

and, respectively,

(αβ )(a) = α(β(a))
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1.4 Endomorphisms and automorphisms of finite Abelian groups 27

for all a ∈ A; the zero endomorphism 0 = 0End(A) ∈ End(A) and the identity
map 1 = IdA ∈ End(A) defined by

0(a) = 0A

and

1(a) = a

for all a ∈ A, are the zero and unital element of End(A), respectively.
Let α ∈ End(A). We denote by Ker(α) = {a ∈ A : α(a) = 0} the kernel of

α. It is immediate that Ker(α) is a subgroup of A and that Ker(α) = {0} if and
only if α is a bijective map.
Suppose now that α is bijective. Then the inverse map α−1 is also an endo-

morphism: indeed, if a, b ∈ A

α[α−1(a+ b)] = a+ b = α[α−1(a)]+ α[α−1(b)] = α[α−1(a)+ α−1(b)]

so that, by bijectivity, we have α−1(a+ b) = α−1(a)+ α−1(b).
A bijective endomorphism of A is called an automorphism of A. It follows

from the previous observation that the set

Aut(A) = {α ∈ End(A) : Ker(α) = {0}}
of all automorphisms of A is the group of units of End(A).

Lemma 1.4.1 Let A be a finite Abelian group and m ∈ N. Then the map
αm : A→ A defined by αm(a) = ma for all a ∈ A, is an endomorphism of A.
Moreover, αm is an automorphism if and only if gcd(m, |A|) = 1.

Proof. The fact that αm ∈ End(A) follows immediately from the fact that A is
Abelian. Let now d = gcd(m, |A|). If d > 1 and p is a prime dividing d, by
Cauchy’s theorem (Corollary 1.3.3) we can find a ∈ A such that o(a) = p. As a
consequence, αm(a) = ma = m

p (pa) = m
p 0 = 0 so that αm cannot be injective,

that is, αm /∈ Aut(A). Conversely, if d = 1, then by Lagrange’s theorem, A does
not contain elements of order q for every integer q ≥ 2 dividing m. As a conse-
quence αm(a) = ma �= 0 for all a ∈ A \ {0}, equivalently, Ker(α) = {0}, so that
αm ∈ Aut(A). �

Let R1 and R2 be two unital rings. We equip their Cartesian product R1 × R2

with a structure of a unital ring by setting

(r1, r2)+ (r′1 + r′2) = (r1 + r′1, r2 + r′2) and (r1, r2)(r
′
1, r

′
2) = (r1r

′
1, r2r

′
2)

for all r1, r′1 ∈ R1 and r2, r′2 ∈ R2. It is clear that the elements (0, 0) and (1, 1)
are the zero and unit elements of R1 × R2. Moreover if (r1, r2) ∈ R1 × R2 we
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28 Finite Abelian groups

have −(r1, r2) = (−r1,−r2) and (r1, r2) is a unit if and only if both r1 and r2
are and, if this is the case, (r1, r2)−1 = (r−1

1 , r−1
2 ). In other words, denoting by

U (R) the group of units of any unital ring R, we have

U (R1 × R2) = U (R1)× U (R2). (1.41)

Theorem 1.4.2 ([72]) Let A and B be two finite Abelian groups. Suppose that
gcd(|A|, |B|) = 1. Then the map� : End(A)× End(B) → End(A⊕ B) defined
by

[�(α, β )](a+ b) = α(a)+ β(b)

for all α ∈ End(A), β ∈ End(B), a ∈ A, and b ∈ B, is a unital ring isomor-
phism. In particular,

Aut(A⊕ B) ∼= Aut(A)× Aut(B). (1.42)

Proof. It is easy to check that �(α, β ) ∈ End(A⊕ B). Let us show that � is a
ring homomorphism. For α1, α2 ∈ End(A), β1, β2 ∈ End(B), a ∈ A, and b ∈ B
we have

[�(α1, β1)+�(α2, β2)](a+ b) = [�(α1, β1)](a+ b)+ [�(α2, β2)](a+ b)

= (α1(a)+ β1(b))+ (α2(a)+ β2(b))

= (α1(a)+ α2(a))+ (β1(b)+ β2(b))

= [α1 + α2](a)+ [β1 + β2](b)

= [�(α1 + α2, β1 + β2)](a+ b)

= [�((α1, β1)+ (α2, β2))](a+ b)

and

[�(α1, β1)�(α2, β2)](a+ b) = �(α1, β1)[(�(α2, β2))(a+ b)]

= �(α1, β1)(α2(a)+ β2(b))

= α1(α2(a))+ β1(β2(b))

= [�(α1α2, β1β2)](a+ b)

= [�((α1, β1)(α2β2))](a+ b)

so that �((α1, β1)+ (α2, β2)) = �(α1, β1)+�(α2, β2) and �((α1, β1)
(α2β2)) = �(α1, β1)�(α2β2).
Moreover, it is straightforward that

�(1, 1) = �(IdA, IdB) = IdA⊕B = 1. (1.43)

This shows that � is a unital ring homomorphism.
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Let us now show that Ker(�) = {(0, 0)}. Indeed, if α ∈ End(A) and β ∈
End(B) satisfy �(α, β ) = 0, then α(a) = α(a)+ β(0) = �(α, β )(a, 0) = 0
for all a ∈ A (respectively β(b) = α(0)+ β(b) = �(α, β )(0, b) = 0 for all
b ∈ B) so that, necessarily, α = 0 (respectively β = 0). This shows injectivity
of �.
Let us show that� is surjective. Let ω ∈ End(A⊕ B). Denoting by πA : A×

B→ A and πB : A× B→ B the canonical projections (these are clearly group
homomorphisms), we define a homomorphism γ : B→ A by setting

γ (b) = πA(ω(0, b))

for all b ∈ B. Now, if n = |A| we have, for all b ∈ B,

0 = nγ (b) = γ (nb).

Since by hypothesis gcd(n, |B|) = 1, the map βn : B→ B, defined by βn(b) =
nb for all b ∈ N, is an isomorphism by Lemma 1.4.1. We deduce that γ = 0,
that is,

πA(ω(0, b)) = 0 (1.44)

for all b ∈ B. Exchanging the roles of A and B, we have

πB(ω(a, 0)) = 0 (1.45)

for all a ∈ A. Consider the endomorphisms α = αω ∈ End(A) and β = βω ∈
End(B) defined by

α(a) = πA(ω(a, 0))

β(b) = πB(ω(0, b))
(1.46)

for all a ∈ A and b ∈ B. Then, since πA + πB = IdA⊕B, we have, for all a ∈ A
and b ∈ B

ω(a, b) = ω(a, 0)+ ω(0, b)

= [πA + πB](ω(a, 0))+ [πA + πB](ω(0, b))

= πA(ω(a, 0))+ πB(ω(a, 0))

+ πA(ω(0, b))+ πB(ω(0, b))

(by (1.45) and (1.44)) = πA(ω(a, 0))+ πB(ω(0, b))

(by (1.46)) = α(a)+ β(b)

= [�(α, β )](a, b).

In other words,

ω = �(α, β )

and therefore � is surjective.
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30 Finite Abelian groups

Since � is unital, it establishes a group isomorphism between the corre-
sponding groups of units, so that, keeping in mind (1.41), equation (1.42)
follows. �

1.5 Endomorphisms and automorphisms of finite cyclic groups

We turn to the study of the endomorphisms of a finite cyclic group. We keep in
mind Notation 1.1.17 and (1.3), and recall that U (Z/nZ) ⊆ Z/nZ denotes the
(multiplicative) group of units of Z/nZ.

Lemma 1.5.1 For n ≥ 1 we have U (Z/nZ) = {m ∈ Z/nZ : gcd(n,m) = 1}.

Proof. Indeed let m ∈ Z/nZ and set d = gcd(n,m). If d > 1 then, setting s =
m/d ∈ N and t = n/d ∈ N, we have t �= 0 and

m · t = mt = mn/d = ns = 0

thus showing thatm is a zero-divisor and therefore is not invertible. On the other
hand, if d = 1 by virtue of the Bézout identity (cf. (1.2)), we can find a, b ∈ Z
such that an+ bm = 1 so that

b · m = bm = 1− an = 1− 0 = 1.

This shows that m is invertible (with inverse m−1 = b). �

Proposition 1.5.2 For n ≥ 1 we have End(Zn) ∼= Z/nZ.

Proof. For m ∈ Z/nZ define ψm ∈ End(Zn) by setting ψm(k) = km = mk for
all k ∈ Zn. We claim that the map � : Z/nZ → End(Zn) defined by �(m) =
ψm is a unital ring isomorphism. Let 0 ≤ k,m,m′ ≤ n− 1.

We have [ψmψm′ ](k) = ψm(m′k) = mm′k = ψmm′ (k) = ψmm′ (k) thus show-
ing that�(mm′) = �(m)�(m′). Moreover, it is clear that�(1) = ψ1 = IdZn =
1, so that � is a unital ring homomorphism.
Suppose that �(m) = �(m′). Then m = ψm(1) = �(m)(1) = �(m′)(1) =

ψm′ (1) = m′, showing that � is injective.
Finally, let ψ ∈ End(Zn) and set m = ψ (1). Then we have

ψ (k) = ψ (k1) = ψ (1+ 1+ · · · + 1︸ ︷︷ ︸
k times

) = kψ (1) = km = km = ψm(k).

In other words, ψ = ψm = �(m). This shows that � is also surjective, com-
pleting the proof. �
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Corollary 1.5.3 For n ≥ 1 we have Aut(Zn) ∼= U (Z/nZ). In particular,
Aut(Zn) is Abelian and

|Aut(Zn)| = ϕ(n), (1.47)

where ϕ is Euler’s totient function (cf. Definition 1.1.18).

Proof. The first statement follows from the fact that the map � in the proof of
Proposition 1.5.2 is a unital ring isomorphism and therefore establishes a group
isomorphism between the corresponding groups of units. Moreover, since the
ring Z/nZ is commutative, we have that U (Z/nZ) is Abelian. Finally, (1.47) is
an immediate consequence of Lemma 1.5.1. �

Exercise 1.5.4 Let m ≥ 1 and n ≥ 2 such that gcd(m, n) = 1 and let p be a
prime number such that p � m.

(1) Prove the following (Euler’s identity)

mϕ(n) ≡ 1 mod n;
(2) deduce the following (Fermat’s identity)

mp−1 ≡ 1 mod p.

Recall that Theorem 1.1.21 may be expressed in the form: if p is a prime
then U (Z/pZ) is cyclic of order p− 1.

Exercise 1.5.5 Deduce Fermat’s identity in Exercise 1.5.4 directly from The-
orem 1.1.21.

In the remaining part of this section, we analyze more closely the structure
of the Abelian group U (Z/nZ) ∼= Aut(Zn) focusing on its decomposition as a
direct sum of cyclic groups (cf. Section 1.3). Actually, as these are multiplica-
tive groups, we use multiplicative notation (cf. Notation 1.1.17) and decompose
into direct products.

Proposition 1.5.6 Let n = pk11 p
k2
2 · · · pktt be the prime factorization of an inte-

ger n ≥ 2. Then

U (Z/nZ) ∼= Aut(Zn)
∼= Aut(Z

p
k1
1
)× Aut(Z

p
k2
2
)× · · · × Aut(Zpktt

)

∼= U (Z/pk11 Z)× U (Z/pk22 Z)× · · · × U (Z/pktt Z).

Proof. The first isomorphism follows from Corollary 1.5.3. The second from
(1.42) and the Chinese remainder theorem III (Theorem 1.2.7). The last one
follows again from Corollary 1.5.3. �
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32 Finite Abelian groups

We now determine the structure of U (Z/pkZ) ∼= Aut(Zpk ) for p prime and
k ≥ 1. This requires some nontrivial calculations in number theory; our treat-
ment is inspired by the monographs by Nathanson [118], Ireland and Rosen
[79], and Rotman [132]. We first observe that

|U (Z/pkZ)| = ϕ(pk ) = pk − pk−1 = (p− 1)pk−1. (1.48)

Indeed, the first equality follows from Corollary 1.5.3, while the second is a
consequence of the fact that an integer 1 ≤ n ≤ pk is divisible by p if and only
if there exists 1 ≤ h ≤ pk−1 such that n = ph.

Theorem 1.5.7 We have: U (Z/2Z) = {1}, U (Z/4Z) = 〈−1〉 ∼= C2 and, for
k ≥ 3,

U (Z/2kZ) = 〈−1〉 × 〈5〉 ∼= C2 ×C2k−2 . (1.49)

Proof. The first two assertions are trivial. Suppose that k ≥ 3. We observe that
(1.48) now becomes

|U (Z/2kZ)| = 2k − 2k−1 = 2k−1. (1.50)

In particular the order of 5, as an element of (the Abelian multiplicative
group) U (Z/2kZ), is o(5) = 2r for some 1 ≤ r ≤ k − 1.

Claim 1: For k ≥ 3 we have 52
k−3 ≡ 1+ 2k−1 mod 2k.

We proceed by induction on k. For k = 3 this is easy: indeed we have 51 =
5 ≡ 1+ 4 mod 8.

Assume the congruence holds for some k ≥ 3 and let us prove it for k + 1.
Observe that there exists h ∈ Z such that

52
k−3 = 1+ 2k−1 + h2k. (1.51)

We have

52
(k+1)−3 = 52

k−2

=
(
52

k−3
)2

(by (1.51)) = (1+ 2k−1 + h2k
)2

= 1+ 2k + h2k+1 + 22k−2 + (h+ h2)22k

≡ 1+ 2k mod 2k+1,

where the last congruence follows from the fact that, recalling that k ≥ 3,
h2k+1 + 2k−32k+1 + (h+ h2)2k−12k+1 ≡ 0 mod 2k+1. The proof of the claim
is completed.
It follows from Claim 1 that r ≥ k − 2 since 1+ 2k−1 �≡ 1 mod 2k.
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Moreover, the order of −1, as an element of (the multiplicative group)
U (Z/2kZ), is clearly o(−1) = 2.

Claim 2: 〈5〉 ∩ 〈−1〉 = {1}.
Indeed, suppose by contradiction that−1 ∈ 〈5〉. Then we can find a positive

integer s such that −1 = 5
s
, equivalently, 5s ≡ −1 mod 2k and therefore, a

fortiori, 5s ≡ −1mod 4. But this is impossible, since 5 ≡ 1mod 4 yields 5s ≡ 1
mod 4. The claim follows.
Recalling (1.50), we have

2k−1 = |U (Z/2kZ)| ≥ |〈−1〉 × 〈5〉| = |〈−1〉| · |〈5〉| = 2 · 2r ≥ 2 · 2k−2 = 2k−1

so that r = k − 2, that is, 〈5〉 ∼= C2k−2 , and (1.49) follows. �

Theorem 1.5.8 Let p �= 2 be a prime and k ≥ 1. Then we have

U (Z/pkZ) ∼= Cpk−pk−1 . (1.52)

Proof. First of all, we note that for k = 1 the statement reduces to that of The-
orem 1.1.21. Thus, we may assume k ≥ 2.
Let p− 1 = pk11 p

k2
2 · · · pktt denote the prime factorization of p− 1 and

observe that pi �= p for all i = 1, 2, . . . , t. Since U (Z/pkZ) is Abelian and
|U (Z/pkZ)| = (p− 1)pk−1 (by (1.48)), we can apply Theorem 1.3.7 and write
U (Z/pkZ) = G1 × G2 where |G1| = p− 1 and |G2| = pk−1.

Claim 1: G1
∼= Cp−1.

Consider the map � : Z/pkZ → Z/pZ defined by setting �(m) = m̃ where
m = m+ pkZ and m̃ = m+ pZ, m ∈ Z. We remark that � is well defined
because if m ≡ n mod pk then m ≡ n mod p, equivalently, m̃ ⊇ m, for all
m, n ∈ Z, so that the partition of Z induced by the congruence mod pk is finer
than the one induced by the congruence mod p. In particular, � is surjective.
Let m, n ∈ Z. Then we have

�(m · n) = �(mn) = m̃n = m̃ · ñ = �(m)�(n)

so that the restriction φ of � to U (Z/pkZ) yields a group homomorphism of
U (Z/pkZ) onto U (Z/pZ).
Now, by Theorem 1.1.21, U (Z/pZ) ∼= Cp−1, and |G2| = pk−1. Thus every

element g2 ∈ G2 has order o(g2) = ph for some 0 ≤ h ≤ k − 1. Its image under
� has order o(�(g2)) = ph

′
for some 0 ≤ h′ ≤ h but since gcd(p, p− 1) = 1,

necessarily h′ = 0, that is, g2 ∈ Ker(�). This shows that G2 ⊆ Ker(�). Since

pk−1(p− 1) = |U (Z/pkZ)| = |Ker(�)| · |U (Z/pZ)| = |Ker(�)|(p− 1),
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we have that |Ker(�)| = pk−1 and therefore G2 = Ker(�). Then

G1
∼= G1 × G2

G2

∼= U (Z/pkZ)

Ker(�)
∼= Cp−1,

and the claim follows. Notice that we have also proved that G2 = {m ∈
Z/pkZ : m ≡ 1 mod p}.

Claim 2: G2
∼= Cpk−1 .

We first prove, by induction on h ∈ N, the following identities

(1+ p)p
h ≡ 1 mod ph+1 (1.53)

and

(1+ p)p
h �≡ 1 mod ph+2. (1.54)

For h = 0 this is clear: (1.53) becomes 1+ p ≡ 1 mod p and (1.54) becomes
1+ p �≡ 1 mod p2. Assume the result for some h ≥ 0 and let us prove it for
h+ 1. Now, (1.53) implies that (1+ p)p

h = 1+ rph+1 for some r ∈ Z, while
(1.54) implies that p � r. Therefore

(1+ p)p
h+1 =

[
(1+ p)p

h
]p

= [1+ rph+1
]p

=
p∑
j=0

(
p

j

)
r j pjh+ j

= 1+
(
p

1

)
rph+1 +

⎛⎝(p
2

)
r2p2h+2 +

p∑
j=3

(
p

j

)
r j pjh+ j

⎞⎠
= 1+ rph+2 + sph+3

where s =∑p
j=2

(p
j

)
r j p( j−1)h+ j−3 ∈ N since, for all h ≥ 0, p|(p2), so that

ph+3|(p2)p2h+2, and ph+3|pjh+ j for all j ≥ 3.

We deduce that (1+ p)p
h+1 ≡ 1 mod ph+2 and, since p � r by (1.54), (1+

p)p
h+1 �≡ 1 mod ph+3. This proves the induction.
Taking h = k − 1 in (1.53) and h = k − 2 in (1.54), we deduce that the ele-

ment 1+p ∈ U (Z/pkZ) has multiplicative order o(1+p) = pk−1 and therefore
it generates a cyclic group of order pk−1. Thus, the second claim follows as
well.
Finally, from the two claims it follows that U (Z/pkZ) = G1 × G2

∼= Cp−1 ×
Cpk−1 and it is cyclic (of order pk − pk−1) by Proposition 1.2.15 (or Proposition
1.2.5). �
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Corollary 1.5.9 (Gauss) Let n ≥ 2. Then U (Z/nZ) is cyclic if and only if one
of the following cases holds: (i) n = 2, (ii) n = 4, (iii) n = pk, (iv) n = 2pk,
where, in (iii) and (iv), p is an odd prime and k ≥ 1.

Proof. Consider the factorization (1.16). Suppose first that t = 1. If p1 = 2,
then, by Theorem 1.5.7, U (Z/nZ) is cyclic if and only if k1 = 1 or k1 = 2 (note
that for the “only if” part we should also invoke Proposition 1.2.17). This covers
cases (i) and (ii). On the other hand, if p1 > 2, then (iii) follows immediately
from Theorem 1.5.8.
Suppose now that n is not a power of a prime, so that t ≥ 2. If there exist

1 ≤ i < j ≤ t such that pi and p j are both odd, then, from Theorem 1.5.8, we
deduce that U (Z/nZ) contains a subgroup isomorphic toC

p
ki
i −p

ki−1
i

×C
p
kj
j −p

k j−1

j

,

where both pkii − pki−1
i and pkjj − p

kj−1
j are even. As a consequence, U (Z/nZ)

contains a subgroup isomorphic toC2 ⊕C2, which is not cyclic (cf. Proposition
1.2.17). Since a subgroup of a cyclic group is also cyclic, this preventsU (Z/nZ)
from being cyclic.
It only remains the case when n is even (so that p1 = 2) and t = 2. If k1 >

1, then, also keeping in mind Theorem 1.5.7, U (Z/nZ) contains a subgroup
isomorphic toC2 ⊕C

p
k2
2 −pk2−1

2
. Since pk22 − pk2−1

2 is even, by the argument above

we deduce that U (Z/nZ) cannot be cyclic. Finally, if k1 = 1, so that n = 2pk22 ,
we have U (Z/nZ) ∼= C

p
k2
2 −pk2−1

2
. This covers the case (iv) and completes our

analysis. �

In the case where U (Z/nZ) is cyclic (cf. Corollary 1.5.9), a generator of
U (Z/nZ) is called a primitive root mod n.

1.6 The endomorphism ring of a finite Abelian p-group

We now examine the structure of the endomorphism ring of a finite (not nec-
essarily cyclic) Abelian group A. Observe that, by virtue of Theorem 1.3.7 and
Theorem 1.4.2, it suffices to reduce to the case when A is a p-group. We thus
suppose that

A =
h⊕
j=1

Zpm j (1.55)

where p is prime and

1 ≤ m1 ≤ m2 ≤ · · · ≤ mh (1.56)

(note that, in contrast with (1.35), in (1.56) we have reversed the order of the
mjs). We closely follow the arguments in [72].
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36 Finite Abelian groups

We first introduce some specific notation. If R is a unital commutative ring,
we denote byMh(R) the set of all h× hmatrices with coefficients in R. We now
recall some basic facts of matrix theory; we refer to the monographs by Horn
and Johnson [75] and by Lancaster and Tismenetsky [91] as a general reference
for further details (although these books treat complex matrices, the results
that we use can be easily adapted for Mh(R); see also the book by Malcev
[114]). Let B = (bi, j )hi, j=1 ∈ Mh(R). We denote by adj(B) the adjugate of B (in
[91], following an older terminology, the term “adjoint” is used instead), that
is, the matrix whose (i, j)-entry is equal to (−1)i+ jB j,i, where Bj,i is the ( j, i)-
th minor (of order h− 1) of B, that is, the determinant of the matrix obtained
by deleting row j and column i from B. Since these determinants are expressed
as polynomials in the coefficients, we have that adj(B) ∈ Mh(R) for all B ∈
Mh(R). Moreover, adj(B) satisfies the fundamental identity

B · adj(B) = adj(B) · B = I · det(B). (1.57)

As a consequence, B is invertible inMh(R) if and only if det(B) is an invertible
element in R and, if this is the case, one has

B−1 = det(B)−1adj(B).

In particular, if B is invertible, adj(B) is the unique matrix satisfying (1.57).
Moreover, if R is a field, then B is invertible if and only if det(B) �= 0.
Continuing with our purpose of setting notation, an element of Zh (respec-

tively A) will be represented by a column vector n = (n j )hj=1 (respectively n =
(n j )hj=1), where n j ∈ Z (respectively n j ∈ Z/pmjZ) for j = 1, 2, . . . , h. Note
that we use the same notation for the different congruence classes mod pmj ,
j = 1, 2, . . . , h. Also, for j = 1, 2, . . . , h, we set δ j = (δi, j )hi=1 ∈ Zh (respec-
tively a j = (δi, j )hi=1 ∈ A, where δi, j ∈ Zpmi ). This way, we have n =∑h

j=1 n jδ j
and n =∑h

j=1 n ja j for all n ∈ Zh. Moreover,

A = 〈a1〉 ⊕ 〈a2〉 ⊕ · · · ⊕ 〈ah〉. (1.58)

Given a matrix B = (bi, j )hi, j=1 ∈ Mh(Z) and n ∈ Zh, the usual product Bn

is given by Bn =∑h
i, j=1 bi, jn jδi. In other words, setting b j = (bi, j )hi=1 =∑h

i=1 bi, jδi ∈ Zh, we have

Bδ j = b j =
h∑
i=1

bi, jδi, (1.59)

for all j = 1, 2, . . . , h.
Moreover, for all j = 1, 2, . . . , h, we denote by π j : Z → Z/pmjZ the stan-

dard quotient map, that is π j(n j ) = n j for all n j ∈ Z, and by π : Zh → A the
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1.6 The endomorphism ring of a finite Abelian p-group 37

map defined by

π (n) = π (
h∑
j=1

n jδ j ) =
h∑
j=1

n ja j = n,

for all n ∈ Zh. Note that π is a group homomorphism.
We now introduce a subring of Mh(Z) that plays a fundamental role in the

description of End(A). We set

R = R(p;m1,m2, . . . ,mh)

= {B = (bi, j )
h
i, j=1 ∈ Mh(Z) : pmi−mj |bi, j, for all 1 ≤ j < i ≤ h}. (1.60)

The fact that R is a subring ofMh(Z) will be proved below.
For instance, if h = 4, m1 = 1, m2 = 3, m3 = 4 and m4 = 7 then

R(p; 1, 3, 4, 7)=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

c1,1 c1,2 c1,3 c1,4
p2c2,1 c2,2 c2,3 c2,4
p3c3,1 pc3,2 c3,3 c3,4
p6c4,1 p4c4,2 p3c4,3 c4,4

⎞⎟⎟⎠: ci, j ∈ Z, i, j= 1, 2, 3, 4

⎫⎪⎪⎬⎪⎪⎭.
Consider the diagonal matrix

P =

⎛⎜⎜⎜⎜⎜⎝
pm1 0 · · · 0 0
0 pm2 · · · 0 0
...

...
. . .

...
...

0 0 · · · pmh−1 0
0 0 · · · 0 pmh

⎞⎟⎟⎟⎟⎟⎠ .

Proposition 1.6.1

(i) A matrix B ∈ Mh(Z) belongs to R if and only if it can be represented
in the form

B = PCP−1 (1.61)

for some C ∈ Mh(Z);
(ii) R is a unital ring;
(iii) adj(B) ∈ R for all invertible B ∈ R.

Proof. (i) Let C = (ci, j )hi, j=1 ∈ Mh(Z) then

PCP−1 = (pmi−mjci, j )
h
i, j=1 (1.62)
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38 Finite Abelian groups

clearly belongs toR. Conversely, suppose that B = (bi, j )hi, j=1 ∈ R and
consider the matrixC = (ci, j )hi, j=1 ∈ Mh(Z) defined by

ci, j = pmj−mibi, j =
{
bi, j/pmi−mj if i > j

pmj−mibi, j if i ≤ j.

From the right hand side above (1.56) and (1.60), it follows that, indeed,
ci, j ∈ Z for all 1 ≤ i, j ≤ h. Moreover, we deduce from (1.62) that C
satisfies (1.61).

(ii) LetB1,B2 ∈ R. Then, by (i), there existC1,C2 ∈ Mh(Z) such thatB1 =
PC1P−1 and B2 = PC2P−1. It follows that B1 + B2 = P(C1 +C2)P−1 ∈
R and B1B2 = PC1C2P−1 ∈ R. Moreover, it is clear from the defini-
tions that the identity matrix I ∈ R.

(iii) Let B ∈ R be invertible. Then, by (i), there exists C ∈ Mh(Z) such
that (1.61) holds: we deduce that det(B) = det(C) �= 0. Setting B̃ =
Padj(C)P−1 we have

B̃B = Padj(C)CP−1 = det(B)I = PCadj(C)P−1 = BB̃

and, by uniqueness of the adjugate satisfying (1.57) for invert-
ible elements, we deduce that B̃ = adj(B). It follows from (i) that
adj(B) ∈ R. �

We are now in position to describe End(A) as a quotient of the ringR.

Theorem 1.6.2 The map � : R → End(A) defined by setting

�(B)n = π (Bn) (1.63)

for all n ∈ Zh and B ∈ R, is well defined and is a surjective unital ring homo-
morphism. Moreover,

Ker(�) = {(bi, j )hi, j=1 ∈ R : pmi |bi, j for all i, j = 1, 2, . . . , h} (1.64)

so that End(A) ∼= R/Ker(�).

Proof. Let B ∈ R. First of all, we verify that�(B) is well defined. Suppose that
n,n′ ∈ Zh satisfy n = n′, that is, n j ≡ n′j mod pmj , equivalently pmj |(n j − n′j ),
for all j = 1, 2, . . . , h. Let also B = (bi, j )hi, j=1 ∈ R. Then we have

π (Bn)− π (Bn′) = π (B(n− n′)) = π (
h∑
i=1

h∑
j=1

bi, j(n j − n′j )δi) = 0

since, if i > j,

bi, j(n j − n′j ) =
bi, j
pmi−mj

· nj − n′j
pmj

· pmi
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1.6 The endomorphism ring of a finite Abelian p-group 39

where bi, j
pmi−m j

∈ Z by (1.60), and
n j−n′j
pm j ∈ Z by our assumptions, while, if i ≤ j,

then bi, j(n j − n′j ) is divisible by p
mj and therefore by pmi , since mi ≤ mj. Thus

�(B) is well defined.
The fact that�(B) ∈ End(A) follows easily from the linearity of the maps π

and n �→ Bn.
In order to show that � is surjective, let M ∈ End(A). Then we can find

B = (bi, j )hi, j=1 ∈ Mh(Z) such thatM(a j ) =
∑h

i=1 bi, jai, j = 1, 2, . . . , h. Since

M(0) = 0 and pmja j = 0, we get (sinceM is a homomorphism)

0 = M(pmja j ) = pmjM(a j ) = pmj

h∑
i=1

bi, jai =
h∑
i=1

pmjbi, jai

which forces pmjbi, j ≡ 0 mod pmi for all i, j = 1, 2, . . . , h (cf. Proposition
1.2.2). In particular, pmi−mj |bi, j for all 1 ≤ j < i ≤ h, so that B ∈ R.

As a consequence, given n ∈ Z we have

M(n) = M(
h∑
j=1

n ja j ) =
h∑
j=1

n jM(a j ) =
h∑

i, j=1

n jbi, jai

= π (
h∑

i, j=1

n jbi, jδi) = π (Bn) = �(B)(n).

In other words, �(B) = M and surjectivity follows.
We now show that� is a unital ring homomorphism and determine its kernel.
It is clear that �(I) = IdA, the identity endomorphism of A and �(0) = 0A,

the zero endomorphism of A.
Let now B = (bi, j )hi, j=1,B1,B2 ∈ R, and n1, n2, . . . , nh ∈ Z. Then, we have

�(B1 + B2)n = π ((B1 + B2)n) = π (B1n+ B2n) = π (B1n)+ π (B2n)

= �(B1)n+�(B2)n,

showing that �(B1 + B2) = �(B1)+�(B2). Similarly,

�(B1)�(B2)n = �(B1)π (B2n) = π (B1B2n) = �(B1B2)n,

showing that �(B1B2) = �(B1)�(B2).
Finally,

B ∈ Ker(�) ⇔ �(B)a j = 0 for all j = 1, 2, . . . , h

⇔ π (Bδ j ) = 0 for all j = 1, 2, . . . , h

⇔ πi(bi, j ) = 0 for all i, j = 1, 2, . . . , h

⇔ pmi
i |bi, j for all i, j = 1, 2, . . . , h,

and (1.64) follows. �
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40 Finite Abelian groups

Corollary 1.6.3 In (1.58) we have

�(B)a j ∈ 〈a j〉
for j = 1, 2, . . . , h, if and only if pmi |bi, j for i �= j. Moreover, if this is the case,
then there exists a diagonal matrix B′ ∈ R such that �(B′) = �(B).

Proof. We have

�(B)a j = π (Bδ j )

(by (1.59)) =
h∑
i=1

π (bi, j )ai

and therefore

�(B)a j ∈ 〈a j〉 ⇔ bi, j ≡ 0 mod pmi for i �= j

⇔ pmi |bi, j for i �= j.

The last statement follows from (1.64). �

1.7 The automorphisms of a finite Abelian p-group

Let p be a prime number and h ≥ 1 be an integer. Recall that we denote by Fp

the finite field Z/pZ and by n ∈ Fp the congruence class of n ∈ Z mod p. We
denote by GL(h,Fp) the group of all invertible matrices inMh(Fp). We need to
introduce this group in order to characterize the invertible elements in End(A),
where A is a p-group as in (1.55).
Let now B = (bi, j )hi, j=1 ∈ Mh(Z). We set

B = (bi, j )
h
i, j=1 ∈ Mh(Fp). (1.65)

As we remarked above, B is invertible inMh(Fp) if and only if detB �= 0. Since
det(B) = det(B), we have that B ∈ GL(h,Fp) if and only if p � det(B). More-
over, if this is the case, B is also invertible inR (and inMh(Z)).
With the same notation from the previous section we have:

Theorem 1.7.1 Let B ∈ R and set M = �(B) ∈ End(A). Then M is invertible
(i.e. M ∈ Aut(A)) if and only if B ∈ GL(h,Fp).

Proof. Suppose first that B is invertible, so that p does not divide det(B). Then
we can find q ∈ Z such that

q · det(B) ≡ 1 mod pmj for all j = 1, 2, . . . , h.
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1.7 The automorphisms of a finite Abelian p-group 41

Indeed, gcd(det(B), pmh ) = 1 so that det(B) has an inverse qmod pmh , which is
also an inverse mod pmj for all other js (recall that mh ≥ mj). Let us set

C = q · adj(B).
By Proposition 1.6.1.(iii), we have C ∈ R. Moreover, �(C)�(B) = �(CB) =
�((q · det(B))I) = IdA ∈ End(A) and, similarly,�(B)�(C) = IdA, so thatM =
ψ (B) is invertible, with inverse �(C).
Conversely, suppose thatM = ψ (B) is invertible. Recalling that� is surjec-

tive, we can find C ∈ R such that �(C) is the inverse of M. It follows that
�(I) = IdA = �(B)�(C) = �(BC), equivalently, �(BC − I) = 0 (the trivial
endomorphism of A), so that, by (1.64), p divides all coefficients of BC − I,
and therefore

B ·C = BC = I ∈ Mh(Fp).

It follows that B ∈ GL(h,Fp). �

We now need some basic notions on group actions that will be recalled with
more details in Section 10.4.
Denote by V the set of all h-tuples (A1,A2, . . . ,Ah) such that

� A1,A2, . . . ,Ah are subgroups of A
� Aj

∼= Zpm j , j = 1, 2, . . . , h
� A = A1 ⊕ A2 ⊕ · · · ⊕ Ah.

In other words, V is the set of all invariant factors decompositions of A (see
Theorem 1.3.1 and (1.55)). Then the group Aut(A) acts on V and this action is
clearly transitive. We want to identify the stabilizer of a fixed decomposition.

Corollary 1.7.2 The stabilizer of the decomposition (1.58) is given by the set
of all �(B), where

B =

⎛⎜⎜⎜⎝
b1 0 0 0
0 b2 0 0
...

. . . 0
0 0 · · · bh

⎞⎟⎟⎟⎠
is diagonal with bi ∈ U (Z/pmiZ), i = 1, 2, . . . , h. In particular, its cardinality
is equal to

(p− 1)h
h∏
i=1

pmi−1.
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42 Finite Abelian groups

Proof. It is an immediate consequence of Corollary 1.6.3, Corollary 1.5.3, and
(1.48). �

1.8 The cardinality of Aut(A)

In this section we determine the cardinality of Aut(A), where A is a p-group
as in (1.55). To this end, keeping in mind (1.56), we introduce the following
numbers:

t j = max{ j ≤ t ≤ h : mt = mj}

and

si = min{1 ≤ s ≤ i : ms = mi}

for all i, j = 1, 2, . . . , h. Note that t j ≥ j and si ≤ i for all i, j = 1, 2, . . . , h;
in particular, th = h and s1 = 1.

Lemma 1.8.1 For all i, j = 1, 2, . . . , h we have

mi > mj ⇔ i > t j ⇔ j < si

and

mi ≤ mj ⇔ i ≤ t j ⇔ j ≥ si.

Proof. The proof is an immediate consequence of the fact that m1 ≤ m2 ≤
· · · ≤ mh, and it is left as an exercise. �

Corollary 1.8.2 Let B = (bi, j )hi, j=1 ∈ R and 1 ≤ i, j ≤ h. Suppose that i > t j
(equivalently, j < si). Then, with the notation as in (1.65), bi, j = 0.

Proof. If i > t j (equivalently, j < si), then mi > mj and, as B ∈ R, we have
pmi−mj |bi, j. �

Theorem 1.8.3

|Aut(A)| =
h∏

k=1

(ptk − pk−1)
sh∏
j=1

pmj (h−t j )
h∏
i=1

p(mi−1)(h−si+1).

Proof. Let B ∈ R and suppose that �(B) ∈ End(A) is invertible (i.e. �(B) ∈
Aut(A)). Then, by virtue of Theorem 1.7.1, B ∈ GL(h,Fp) and, by Corollary
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1.8.2, B = (bi, j )hi, j=1 = (ci, j )hi, j=1 is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1,1 c1,2 · · · c1,h
c2,1 c2,2 · · · c2,h
...

...
...

...
ct1,1 ct1,2 · · · ct1,h
0 ct1+1,2 · · · ct1+1,h
...

...
...

...
0 ct2,2 · · · ct2,h
0 0 · · · ct2+1,h
...

...
. . .

...
0 0 · · · cth,h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
c1,s1 c1,2 · · · · · · · · · · · · c1,h
0 · · · 0 c2,s2 · · · · · · c2,h
...

...
...

...
...

. . .
...

0 0 · · · 0 ch,sh · · · ch,h

⎞⎟⎟⎟⎠.

(1.66)
Note that the two matrices above have the same 0 entries: by Corollary 1.8.2

and Lemma 1.8.1, ci, j = 0 if i > t j, equivalently, if j < si.
Using the left hand side in the above equality, we have the following count-

ing: the first columnmay be chosen in pt1 − 1 distinct ways (the−1 because we
have to discard the 0-column), the second one in pt2 − pways (the−p because
we have to discard the pmultiples of the first column, since the two have to be
independent).
Continuing this way, setting

G = {C ∈ GL(h,Fp) : C = B,B ∈ R, �(B) ∈ Aut(A)},
we have that

|G| =
h∏

k=1

(ptk − pk−1). (1.67)

Let us now fix C = B ∈ G as in (1.66), and set

MC = {�(B) : B ∈ R,B = C} ⊂ Aut(A).

We claim that

|MC| =
sh∏
j=1

pmj (h−t j )
h∏
i=1

p(mi−1)(h−si+1) (1.68)

(in particular, n = |MC| is independent of C ∈ G).
For each 1 ≤ j ≤ h there are exactly h− t j zeroes below the entry ct j, j (cf.

the left hand side of (1.66)) and the ith one (corresponding to the (i, j)-entry:
note that i > t j ≥ j, equivalently, mi > mj) gives pmj distinct possibilities for
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the (i, j)-th entry of B ∈ R (each yielding a different �(B)): by (1.60) and
(1.64) it must be an element of pmi−mjZ/pmiZ ∼= Z/pmjZ. The last isomorphism
follows from the elementary congruence: for x, y ∈ Z, xpmi−mj ≡ ypmi−mj mod
pmi if and only if x ≡ y mod pmj .
This yields the first factor in the right hand side of (1.68). Note also that

t j = h⇔ mj = mh ⇔ j ≥ sh.
On the other hand, for each 1 ≤ i ≤ h there are exactly h− si + 1 terms on

the right of and including ci,si (cf. the right hand side of (1.66)) and the jth one
(corresponding to the (i, j)-entry: note that j ≥ si, equivalently,mi ≤ mj) gives
rise to pmi−1 distinct possibilities for the (i, j)-th entry of B ∈ R: it must be
equal to ci, j+ an element of pZ/pmiZ ∼= Z/pmi−1Z (again by virtue of (1.64)).
This yields the second factor in the right hand side of (1.68) proving the claim.
Since

|Aut(A)| =
∑
C∈G

|MC| = |G| · n,

the statement follows from (1.67) and (1.68). �

We now count the number of invariant factors decompositions of A (recall
the notation preceding Corollary 1.7.2).

Corollary 1.8.4

|V| = ph(h−1)/2
h∏

k=1

(
tk−k∑
�=0

p�
)
·
sh∏
j=1

pmj (h−t j ) ·
h∏
i=1

p(mi−1)(h−si ).

Proof. Divide the cardinality of Aut(A) in Theorem 1.8.3 by the cardinality of
the stabilizer in Corollary 1.7.2. �

Example 1.8.5 Suppose that m1 = m2 = · · · = mh = m. Then Aut(A) is
group-isomorphic to GL(h,Z/Zpm ) (here, according with our notation, Z/Zpm

is no more a field if m ≥ 2, but just a ring). Indeed, in this case, R ≡ Mh(Z)
and, by (1.64), we have End(A) ∼= Mh(Z/Zpm ). Now t j = h for j = 1, 2, . . . , h
and si = 1 for i = 1, 2, . . . , h, so that, by Theorem 1.8.3, we have

|Aut(Zpm ⊕ Zpm ⊕ · · · ⊕ Zpm︸ ︷︷ ︸
h times

)| = p(m−1)h2 ·
h∏

k=1

(ph − pk−1).

Two particular cases are relevant. For h = 1, we find

|Aut(Zpm )| = pm−1(p− 1) = pm − pm−1
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and this agrees with the results in Theorem 1.5.7 and Theorem 1.5.8 (but this
follows also from the fact that ϕ(pm) = pm − pm−1, cf. Corollary 1.5.3). If, in
addition, one has m1 = m2 = · · · = mh = 1 we get

Aut(Zp ⊕ Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
h times

) ∼= GL(h,Fp)

and

|Aut(Zp ⊕ Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
h times

)| = |GL(h,Fp)| =
h∏

k=1

(ph − pk−1),

which coincides with (1.67), since tk = h for all k = 1, 2, . . . , h.
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2

The Fourier transform on finite Abelian groups

This chapter is a fairly complete exposition of the basic character theory and the
Fourier transform on finite Abelian groups. Our presentation is inspired by our
monograph [29], and the books by Terras [159] and Nathanson [118]; Section
2.6 contains a recent result of Terence Tao [157]. The results established here
will be used and generalized in almost every subsequent chapter.

2.1 Some notation

In this section, we fix some basic notation and results of “harmonic analysis” on
finite sets. Further notation and results will be developed in Section 8.7. These
two sections constitute the core of the preliminaries in finite harmonic analysis.
Let X be a finite set and denote by L(X ) = { f : X → C} the vector space of

all complex-valued functions defined on X . Clearly, dimL(X ) = |X |, where | · |
denotes cardinality.
For x ∈ X we denote by δx the Dirac function centered at x, that is, the ele-

ment δx ∈ L(X ) defined by

δx(y) =
{
1 if y = x

0 if y �= x

for all y ∈ X .
The set {δx : x ∈ X} is a natural basis for L(X ) and if f ∈ L(X ) then f =∑
x∈X f (x)δx.
The space L(X ) is endowed with the scalar product defined by setting

〈 f1, f2〉 =
∑
x∈X

f1(x) f2(x)

46
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2.1 Some notation 47

for f1, f2 ∈ L(X ), and we denote by ‖ f‖ = √〈 f , f 〉| the norm of f ∈ L(X ).
Note that the basis {δx : x ∈ X} is orthonormal with respect to 〈·, ·〉. Some-
times we shall write 〈·, ·〉L(X ) (respectively ‖ · ‖L(X )) to emphasize the space
where the scalar product (the norm) is defined, if other spaces are also
considered.
For a subset Y ⊆ X , we regard L(Y ) as a subspace of L(X ) and we denote by

1Y =∑y∈Y δy ∈ L(X ) the characteristic function of Y . In particular, if Y = X
we simply write 1 (the constant function with value 1) instead of 1X .

ForY1,Y2, . . . ,Ym ⊆ X we write X = Y1
∐
Y2
∐ · · ·∐Ym to indicate that the

Yjs constitute a partition of X , that is X = Y1 ∪ Y2 ∪ · · · ∪ Ym and Yi ∩ Yj = ∅
whenever i �= j. In other words, the symbol

∐
denotes a disjoint union. In

particular, if we write Y
∐
Y ′ we implicitly assume that Y ∩ Y ′ = ∅. Note that

if X = Y1
∐
Y2
∐ · · ·∐Ym then L(X ) ∼= L(Y1)⊕ L(Y2)⊕ · · · ⊕ L(Ym).

If A : L(X ) → L(X ) is a linear operator, setting

a(x, y) = [Aδy](x) (2.1)

for all x, y ∈ X , we have that

[A f ](x) =
∑
y∈X

a(x, y) f (y) (2.2)

for all x ∈ X and f ∈ L(X ), and we say that the matrix a = (a(x, y))x,y∈X ,
indexed by X , represents the operator A. We denote by End(L(X )) the com-
plex vector space of all linear operators A : L(X ) → L(X ).
With our notation, the identity operator I ∈ End(L(X )) is represented by the

identity matrix, which may be expressed as I = (δx(y))x,y∈X .
If A1,A2 ∈ End(L(X )) are represented by the matrices a1 and a2, respec-

tively, then the composition A = A1 ◦ A2 ∈ End(L(X )) is represented by the
corresponding product of matrices a = a1 · a2 that is

a(x, y) =
∑
z∈X

a1(x, z)a2(z, y).

For k ∈ N we denote by ak = (a(k)(x, y))x,y∈X the product of k copies of a,

namely, a(0) = I, the identity matrix, and, for k ≥ 1,

a(k)(x, y) =
∑
z∈X

a(k−1)(x, z)a(z, y).

We remark that (2.2) can also be interpreted as the product of the matrix a
with the column vector f = ( f (x))x∈X .

Given a matrix a and a column (respectively a row) vector f , we denote by
aT and by f T the transposed matrix (i.e. aT (x, y) = a(y, x) for all x, y ∈ X) and
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48 The Fourier transform on finite Abelian groups

the row (respectively column) transposed vector. This way, we also denote by
f TA the function given by

[ f TA](y) =
∑
x∈X

f (x)a(x, y). (2.3)

If X is a set of cardinality |X | = n and k ≤ n, then a k-subset of X is a subset
A ⊆ X such that |A| = k.
If v1, v2, . . . , vm are vectors in a vector space V , then 〈v1, v2, . . . , vm〉 will

denote their linear span.
We end with the most elementary tool of finite harmonic analysis. It will be

used and rediscovered many times (see Proposition 8.1.4, Theorem 9.1.7, and
Example 10.4.3).

Proposition 2.1.1 Let X be a finite set and setW0 = { f ∈ L(X ) : f is constant}
and W1 = { f ∈ L(X ) :

∑
x∈X f (x) = 0}. Then we have the following orthogo-

nal decomposition:

L(X ) =W0 ⊕W1. (2.4)

Proof. Let f ∈ L(X ). Setting f0(x) = 1
|X |
∑

y∈X f (y) for all x ∈ X we have f0 ∈
W0 and f1 = f − f0 ∈W1, so that L(X ) =W0 +W1. Moreover, it is immediate
to check thatW0 ⊥W1, so that (2.4) is an orthogonal direct sum. �

2.2 Characters of finite cyclic groups

Let n ≥ 2 and denote, as usual, by Zn = {0, 1, . . . , n−1} the cyclic group of
order n, written additively.
Recall (cf. Section 2.1) that L(Zn) denotes the complex vector space of all

functions f : Zn → C. Note that if f ∈ L(Zn), then the function F : Z → C
defined byF (x) = f (x) for all x ∈ Z is n-periodic (namelyF (x+ n) = F (x) for
all x ∈ Z) and the map f �→ F establishes a bijective correspondence between
the elements in L(Zn) and the n-periodic complex functions on Z.

In the following, by abuse of language, we shall identify f and F and use
the same notation for the corresponding arguments: in particular, for x ∈ Z the
(a priori improperly defined) expressions f (x) and F (x) stand for f (x) = F (x).
More generally, we shall use the same notation for an element x ∈ Z and its
image in Zn (in other words, we shall omit the bar-symbol “ ” in the notation
for x ∈ Zn) and we shall use the bar-symbol to denote conjugation of com-
plex numbers. In particular, we shall use the symbols

∑n−1
y=0 to denote the sum∑

y∈Zn over all elements of Zn, and we regard the Dirac functions δx, x ∈ Zn,
as elements in L(Zn).
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2.2 Characters of finite cyclic groups 49

Let us set

ω = exp
2π i

n
= cos

2π

n
+ i sin

2π

n
∈ C.

We recall that ω is an n-th primitive root of 1 and that the n-th complex roots of
the unit are ωk, k = 0, 1, . . . , n− 1. Note that ωz = ωz+n for all z ∈ Z so that
(cf. the comments above) the map z �→ ωz defines an element of L(Zn). More
generally, for x ∈ Zn, we denote by χx ∈ L(Zn) the function z �→ ωzx.

Definition 2.2.1 The functions χx ∈ L(Zn) are called the characters of Zn.

Note that χx(y) = χy(x) ∈ T = {z ∈ C : |z| = 1}, χy(−x) = χy(x) for all
x, y ∈ Zn, and χ0 = 1, the constant function.

The basic identity for the characters is

χz(x+ y) = χz(x)χz(y)

for all x, y, z ∈ Zn and, in the following lemma, we prove that, in fact, it is a
“characteristic” property of characters.

Lemma 2.2.2 If φ : Zn → T satisfies φ(x+ y) = φ(x)φ(y) for all x, y ∈ Zn,
then φ = χz for some z ∈ Zn.

Proof. First note that since φ(0) = φ(0+ 0) = φ(0)φ(0), we necessarily have
φ(0) = 1. As a consequence, 1 = φ(0) = φ(1+ 1+ · · · + 1︸ ︷︷ ︸

n times

) = φ(1)n and we

deduce that φ(1) is an n-th root of 1. Therefore there exists z ∈ Zn such that
φ(1) = ωz. This gives φ(x) = φ(1)x = ωzx = χz(x) for all x ∈ Zn. �

Lemma 2.2.3 (Orthogonality relations for characters of Zn) Let χ and ψ

be two characters of Zn. Then

〈χ,ψ〉 = nδχ,ψ . (2.5)

Proof. Let x1, x2 ∈ Zn be such that χ = χx1 and ψ = χx2 . Let us set z = ωx1−x2

and observe that χx1 (y)χx2 (y) = ωy(x1−x2 ) = zy for all y ∈ Zn so that

〈χ,ψ〉 = 〈χx1 , χx2〉 =
n−1∑
y=0

χx1 (y)χx2 (y) =
n−1∑
y=0

zy. (2.6)

Suppose first that χ �= ψ , i.e. x1 �= x2. Then z is a nontrivial root of the unity
(i.e. zn − 1 = 0 and z− 1 �= 0) and from the identity

zn − 1 = (z− 1)(1+ z+ · · · + zn−1) = (z− 1)
n−1∑
y=0

zy

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.003
https://www.cambridge.org/core


50 The Fourier transform on finite Abelian groups

we deduce that
∑n−1

y=0 z
y = 0 and the quantity (2.6) vanishes. On the other

hand, if χ = ψ , that is x1 = x2, then z = ωx1−x2 = 1 and the quantity (2.6)
equals n. �

Note that if χ = χx1 and ψ = χx2 , then (2.5) may be expressed as

〈χx1 , χx2〉 = nδx1,x2 ≡ nδ0(x1 − x2). (2.7)

From the lemma and the fact that χx(y) = χy(x) for all x, y ∈ Zn we immedi-
ately deduce the following dual orthogonality relations for characters of Zn:∑

x∈Zn
χx(y1)χx(y2) = nδ0(y1 − y2) (2.8)

for all y1, y2 ∈ Zn.

2.3 Characters of finite Abelian groups

Let A be a finite Abelian group, written additively.

Definition 2.3.1 A character of A is a map χ : A→ T such that

χ (x+ y) = χ (x)χ (y)

for all x, y ∈ A.
The set Â of all characters ofA is an Abelian groupwith respect to the product

Â× Â � (χ,ψ ) �→ χ · ψ ∈ Â defined by (χ · ψ )(x) = χ (x)ψ (x), for all x ∈ A.
It is called the dual of A.

Remark 2.3.2 Note that ifA = Zn, then Definition 2.3.1 coincides with Defini-
tion 2.2.1 and Ẑn = {χx : x ∈ Zn} is isomorphic to Zn. Indeed, since for all x ∈
Zn we have (χ1)x = χx, then Ẑn is the cyclic group (necessarily of order n) gen-
erated by χ1 (alternatively, as χx+y(z) = χz(x+ y) = χz(x)χz(y) = χx(z)χy(z)
for all x, y, z ∈ Zn, the map x �→ χx yields a surjective (and therefore bijective)
group homomorphism Zn → Ẑn).

Proposition 2.3.3 Let A be a finite Abelian group and let

A = Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmk (2.9)

be a decomposition of A as direct sum of cyclic groups (see, for instance The-
orem 1.3.1 or Corollary 1.3.10). Set ω j = exp 2π i

m j
, j = 1, 2, . . . , k, and, for

y = (y1, y2, . . . , yk ) ∈ A, define χy : A→ T by setting

χy(x) = ω
x1y1
1 ω

x2y2
2 · · ·ωxkyk

k (2.10)
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2.3 Characters of finite Abelian groups 51

for all x = (x1, x2, . . . , xk ) ∈ A. Then χy is a character of A, every character of
A is of this form, and distinct y yield distinct characters. In particular, |Â| = |A|.
Proof. The first assertion, namely that (2.10) defines a character of A, is
straightforward:

χy(x+ x′) = ω
(x1+x′1 )y1
1 ω

(x2+x′2 )y2
2 · · ·ω(xk+x′k )yk

k

= ω
x1y1
1 ω

x2y2
2 · · ·ωxkyk

k · ωx′1y1
1 ω

x′2y2
2 · · ·ωx′kyk

k

= χy(x)χy(x
′)

for all y = (y1, y2, . . . , yk ), x = (x1, x2, . . . , xk ), and x′ = (x′1, x
′
2, . . . , x

′
k ) ∈ A.

Let us show that every character of A is of the form (2.10). Let χ : A→ T
be a character of A. We first observe that, for all j = 1, 2, . . . , k, the restriction
χ |Zm j of χ to the subgroup Zmj ≤ A is a character of Zmj so that, by Lemma
2.2.2, there exists y j ∈ Zmj such that χ |Zm j = χy j . As a consequence, setting
y = (y1, y2, . . . , yk ) ∈ A, we have

χ (x) = χ (x1, x2, . . . , xk )

= χ |Zm1 (x1)χ |Zm2 (x2) · · ·χ |Zmk (xk )
= χy1 (x1)χy2 (x2) · · ·χyk (xk )
= ω

x1y1
1 ω

x2y2
2 · · ·ωxkyk

k

= χy(x)

for all x = (x1, x2, . . . , xk ) ∈ A. This shows that Â = {χy : y ∈ A}. �
Note that with the notation above we may write

χy(x) =
k∏
j=1

χy j (x j ) (2.11)

for all x = (x1, x2, . . . , xk ) and y = (y1, y2, . . . , yk ) ∈ A.

Corollary 2.3.4 Let A be a finite Abelian group. Then the dual group Â is iso-
morphic to A.

Proof. With the notation in Proposition 2.3.3, it is straightforward to check that
χy+y′ = χy · χy′ for all y, y′ ∈ A (cf. the particular case whereA = Zn in Remark
2.3.2) so that the map y �→ χy yields a surjective (and therefore bijective, since
|A| = |Â|) group homomorphism from A onto Â. �
Proposition 2.3.5 (Orthogonality relations for characters of A) Let χ,ψ ∈
Â and x, y ∈ A. Then we have the orthogonality relations

〈χ,ψ〉 = |A|δχ,ψ (2.12)
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52 The Fourier transform on finite Abelian groups

and the dual orthogonality relations∑
χ∈Â

χ (x)χ (y) = |A|δx,y ≡ |A|δ0(x− y). (2.13)

Proof. By virtue of Proposition 2.3.3 and the notation therein, we can find
x = (x1, x2, . . . , xk ) and y = (y1, y2, . . . , yk ) ∈ A such thatχ = χx andψ = χy.
Using the notation in (2.11) we then have

〈χ,ψ〉 = 〈χx, χy〉 =
∑
z∈A

χx(z)χy(z)

=
∑
z∈A

k∏
j=1

χx j (z j )χy j (z j )

=
k∏
j=1

∑
z j∈Zm j

χx j (z j )χy j (z j )

=
k∏
j=1

〈χx j , χy j 〉

(by Lemma 2.2.3) =
k∏
j=1

mjδx j,y j

= |A|δx,y = |A|δχ,ψ . �

We remark that the isomorphism in Corollary 2.3.4 (given by (2.11)) depends
on the choice of the decomposition of A and therefore on the generators for the
corresponding cyclic subgroups, that is, it depends on the coordinates. There
is, however, an intrinsic isomorphism between A and the dual of Â, called the

bidual of A and denoted by ̂̂A, given by

A � a �→ ψa ∈ ̂̂A, (2.14)

where ψa(χ ) = χ (a) for all χ ∈ Â.

Exercise 2.3.6 Prove that the map (2.14) is a group isomorphism.

This duality is similar to the (possibly more familiar) one coming from linear
algebra. Recall that if V is a finite dimensional vector space over a field F, the
dual ofV is the vector spaceV ∗ consisting of allF-linear maps f : V → F. Then
if {v1, v2, . . . , vd} ⊂ V (d = dimFV ) is a basis forV and {v∗1 , v∗2 , . . . , v∗d} ⊂ V ∗

is the dual basis (defined by v∗i (v j ) = δi, j for all i, j = 1, 2, . . . , d), then the
map vi �→ v∗i linearly extends to a (unique) vector space isomorphism ϕ : V →
V ∗. Note that ϕ depends on the choice of basis {v1, v2, . . . , vd}. However,
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2.4 The Fourier transform 53

denoting by V ∗∗ = (V ∗)∗ the bidual of V , the map V � v �→ ψv ∈ V ∗∗ defined
byψv (v∗) = v∗(v ) for all v∗ ∈ V ∗ yields a canonical vector space isomorphism
between V and V ∗∗.

Returning back to group theory, the isomorphism A→ ̂̂A extends to locally
compact Abelian groups: this is called Pontrjagin duality. As an example, if

T = {z ∈ C : |z| = 1} denotes the unit circle, then T̂ ∼= Z and ̂̂T ∼= T (this is the
setting of classical Fourier series, see, for instance, the monographs on abstract
harmonic analysis by Rudin [134], Katznelson [85], and Loomis [98]).

2.4 The Fourier transform

Let A be a finite Abelian group. We recall (cf. Section 2.1) that L(A), the com-
plex vector space of all functions f : A→ C, is equipped with an inner product
〈·, ·〉L(A) (for short 〈·, ·〉) defined by

〈 f1, f2〉 =
∑
x∈A

f1(x) f2(x)

for all f1, f2 ∈ L(A). We also denote by ‖ · ‖L(A) (for short ‖ · ‖) the associated
norm.
Note the dim(L(A)) = |A| and therefore, by virtue of the orthogonality rela-

tions for characters (Proposition 2.3.5), the set {χx : x ∈ A} is an orthogonal
basis for L(A).

Definition 2.4.1 The Fourier transform of a function f ∈ L(A) is the function
f̂ ∈ L(Â) defined by

f̂ (χ ) = 〈 f , χ〉 =
∑
y∈A

f (y)χ (y) (2.15)

for all χ ∈ Â. Then f̂ (χ ) is called the Fourier coefficient of f with respect to χ .
Moreover, we shall denote by F f = 1√|A| f̂ the normalized Fourier transform
of f ∈ L(A).
When A = Zn (the cyclic group of order n), and f ∈ L(Zn) we shall call 1

n f̂
the Discrete Fourier transform (briefly, DFT ) of f .

The following two theorems express, in a functional form, the fact that the
χs constitute an orthogonal basis of the space L(A).

Theorem 2.4.2 (Fourier inversion formula) For every f ∈ L(A) we have

f = 1

|A|
∑
χ∈Â

f̂ (χ )χ. (2.16)
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54 The Fourier transform on finite Abelian groups

Proof. Let f ∈ L(A) and x ∈ A. Then

1

|A|
∑
χ∈Â

f̂ (χ )χ (x) = 1

|A|
∑
χ∈Â

∑
y∈A

f (y)χ (y)χ (x) =

= 1

|A|
∑
y∈A

f (y)
∑
χ∈Â

χ (y)χ (x) =

(by (2.13)) = 1

|A|
∑
y∈A

f (y)|A|δ0(y− x) = f (x). �

Theorem 2.4.3 (Plancherel and Parseval formulas) For f , g ∈ L(A) we
have (Plancherel formula)

‖ f̂‖L(Â) =
√
|A|‖ f‖L(A)

and (Parseval formula)

〈 f̂ , ĝ〉L(Â) = |A|〈 f , g〉L(A).
Proof. We first prove the Parseval formula:

〈 f̂ , ĝ〉L(Â) =
∑
χ∈Â

f̂ (χ )̂g(χ )

=
∑
χ∈Â

⎛⎝∑
y1∈A

f (y1)χ (y1)

⎞⎠⎛⎝∑
y2∈A

g(y2)χ (y2)

⎞⎠
=
∑
y1∈A

∑
y2∈A

f (y1)g(y2)
∑
χ∈Â

χ (y1)χ (y2) =

(by (2.13)) = |A|
∑
y∈A

f (y)g(y) = |A|〈 f , g〉L(A).

The Plancherel formula is immediately deduced from the Parseval formula
by taking g= f . �

Exercise 2.4.4 Show that δ̂x(χ ) = χ (x) for all x ∈ A and χ ∈ Â.

For f1, f2 ∈ L(A) we define their convolution as the function f1 ∗ f2 ∈ L(A)
given by

( f1 ∗ f2)(x) =
∑
y∈A

f1(x− y) f2(y)

for all x ∈ A.
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Definition 2.4.5 An algebra over a field F is a vector spaceA over F endowed
with a product such thatA is a ring with respect to the sum and the product and
the following associative laws, for the product and multiplication by a scalar,
hold:

α(AB) = (αA)B = A(αB)

for all α ∈ F and A,B ∈ A.
An algebra A is commutative (or Abelian) if it is commutative as a ring,

namely if AB = BA for all A,B ∈ A; it is unital if it has a unit, that is, there
exists an element I ∈ A such that AI = IA = A for all A ∈ A.

Given two algebras A1 and A2 over the field F, a bijective linear map
� : A1 → A2 such that �(ab) = �(a)�(b) for all a, b ∈ A1 is called an iso-
morphism. If such an isomorphism � exists, one says that the algebras A1 and
A2 are isomorphic, and we write A1

∼= A2.

In the following proposition we present the main properties of the convolu-
tion product in L(A).

Proposition 2.4.6 For all f , f1, f2, f3 ∈ L(A) one has

(i) f1 ∗ f2 = f2 ∗ f1 (commutativity)
(ii) ( f1 ∗ f2) ∗ f3 = f1 ∗ ( f2 ∗ f3) (associativity)
(iii) ( f1 + f2) ∗ f3 = f1 ∗ f3 + f2 ∗ f3 (distributivity)
(iv) f̂1 ∗ f2 = f̂1 · f̂2
(v) δ0 ∗ f = f ∗ δ0 = f .

In particular, L(A) is a commutative algebra over C with unit I = δ0.

Proof. We prove only (iv), namely that the Fourier transform of the convolution
of two functions equals the pointwise product of their Fourier transforms. Let
f1, f2 ∈ L(A) and χ ∈ Â. Then we have

f̂1 ∗ f2(χ ) =
∑
x∈A

( f1 ∗ f2)(x)χ (x)

=
∑
x∈A

∑
t∈A

f1(x− t ) f2(t )χ (x− t )χ (t )

= f̂1(χ ) f̂2(χ ).

The other identities are left as an exercise. �

The translation operator Tx ∈ End(L(A)), x ∈ A, is defined by:

(Tx f )(y) = f (y− x)

for all x, y ∈ A and f ∈ L(A).
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56 The Fourier transform on finite Abelian groups

Exercise 2.4.7 Show that Tx f = f ∗ δx and T̂x f (χ ) = χ (x) f̂ (χ ) for all f ∈
L(A), x ∈ A, and χ ∈ Â.

LetR ∈ End(L(A)).We say thatR isA-invariant if it commutes with all trans-
lations, namely

RTx = TxR

for all x ∈ A. Also we say that R is a convolution operator provided there exists
h ∈ L(A) such that R f = f ∗ h for all f ∈ L(A): the function h is then called
the (convolution) kernel of R and we write R = Rh.

Exercise 2.4.8

(1) Show that every convolution operator is A-invariant.
(2) Show that

� Rh1 + Rh2 = Rh1+h2 ;
� Rαh = αRh;
� Rh1Rh2 = Rh1∗h2
for all h1, h2, h ∈ L(A) and α ∈ C.

(3) Deduce thatR = {Rh : h ∈ L(A)} is a commutative algebra isomorphic
to L(A).

R is called the algebra of convolution operators on A.

Lemma 2.4.9 The linear operator R associated with the matrix (r(x, y))x,y∈A
is A-invariant if and only if

r(x− z, y− z) = r(x, y) (2.17)

for all x, y, z ∈ A.

Proof. The linear operator R is A-invariant if and only if, for all x, z ∈ A and
f ∈ L(A) one has [Tz(R f )](x) = [R(Tz f )](x), that is,∑

u∈A
r(x− z, u) f (u) =

∑
u∈A

r(x, u) f (u− z),

equivalently, ∑
u∈A

r(x− z, u− z) f (u− z) =
∑
u∈A

r(x, u) f (u− z).

Since the δt , t ∈ A, constitute a basis for L(A), taking f = δy−z for all y ∈ A,
the last equality is in turn equivalent to (2.17). �

Theorem 2.4.10 The following conditions are equivalent for R ∈ End(L(A)):

(a) R is A-invariant;
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(b) R is a convolution operator;
(c) every χ ∈ Â is an eigenvector of R.

Proof. (a)⇒ (b): by Lemma 2.4.9, A-invariance yields r(x, y) = r(x− y, 0) for
all x, y ∈ A, so that if we define h ∈ L(A) by setting

h(x) = r(x, 0) (2.18)

for all x ∈ A, we then have r(x, y) = h(x− y) and therefore

(R f )(x) =
∑
y∈A

h(x− y) f (y) = (h ∗ f )(x)

and R = Rh is a convolution operator.
(b)⇒ (c): let h ∈ L(A) and χ ∈ Â. Suppose that R = Rh. Then

[Rχ ](y) =
∑
t∈A

χ (y− t )h(t ) = χ (y)
∑
t∈A

χ (t )h(t ) = ĥ(χ )χ (y). (2.19)

This shows that every χ ∈ Â is an eigenvector of R with eigenvalue ĥ(χ ).
Suppose now that every χ ∈ Â is an eigenvector of Rwith eigenvalue λ(χ ) ∈

C. Observe that

[Txχ ](y) = χ (y− x) = χ (x)χ (y) (2.20)

for all x, y ∈ A and χ ∈ Â. For χ ∈ Â and x ∈ A we have

[RTx](χ ) = R(χ (x)χ ) (by (2.20))

= χ (x)λ(χ )χ

(by (2.20)) = λ(χ )Tx(χ )

= Tx(λ(χ )χ )

= [TxR](χ ).

By linearity of R and Tx, and by the Fourier inversion theorem, this shows
that [RTx]( f ) = [TxR]( f ) for all f ∈ L(A), and (c)⇒ (a) follows as well. �

From the proof of the previous theorem (cf. equation (2.19)) we extract the
following.

Corollary 2.4.11 Let h ∈ L(A). Then Rh(χ ) = ĥ(χ )χ for every χ ∈ Â. In par-
ticular, Rh is diagonalizable, its eigenvectors are the characters of A, and its
spectrum is given by σ (Rh) = {̂h(χ ) : χ ∈ Â}. �

Corollary 2.4.12 (Trace formula) Let h ∈ L(A). Then

Tr(Rh) =
∑
χ∈Â

ĥ(χ ) = |A|h(0).
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Proof. The first equality follows from the previous corollary since Tr(Rh) =∑
λ∈σ (Rh ) λ. The second equality follows from the Fourier inversion formula,

keeping in mind that χ (0) = 1 for all χ ∈ Â. �

Exercise 2.4.13 Consider the normalized Fourier transform (cf. Definition
2.4.1), that is, the map F : L(A) → L(A) defined by

[F f ](x) = 1√|A| f̂ (χx) =
1√|A|
∑
y∈A

f (y)χx(y) (2.21)

for all f ∈ L(A) and x ∈ A (χx as in Proposition 2.3.3).

(1) Show that F ∈ End(L(A)) and that it is an isometric bijection.
(2) Show that F−1 is given by [F−1 f ](x) = 1√|A| f̂ (χ−x) for all f ∈ L(A)

and x ∈ A.

Definition 2.4.14 Let f ∈ L(A). We define f− ∈ L(A) by setting f−(a) =
f (−a) for all a ∈ A. Then f is called even (respectively odd) if f = f− (respec-
tively f = − f−). Similarly, for ϕ ∈ L(Â) we set ϕ−(χ ) = ϕ(χ ) and we say that
ϕ is even if ϕ = ϕ−.

Exercise 2.4.15 Let h ∈ L(A).

(1) Show that ĥ− = (̂h)−. Deduce that h is even if and only if ĥ is even;

(2) show that ĥ = (̂h)−;
(3) deduce that the following conditions are equivalent:

(a) h is real valued and even;
(b) ĥ is real valued and even;

(4) show that σ (Rh) ⊂ R ⇔ h = (h)−.

Exercise 2.4.16 Let n ≥ 1. A matrix of the form⎛⎜⎜⎜⎜⎜⎝
a0 a1 a2 · · · · · · an−1

an−1 a0 a1 · · · · · · an−2

an−2 an−1 a0 · · · · · · an−3
...

...
... · · · · · · ...

a1 a2 a3 · · · · · · a0

⎞⎟⎟⎟⎟⎟⎠
with a0, a1, . . . , an−1 ∈ C is said to be circulant. Denote by Cn the set of all
n× n circulant matrices.

(1) Let R, S ∈ Cn and α, β ∈ C. Show that RS = SR and that RS, (αR+
βS) ∈ Cn. Deduce that Cn is a commutative algebra with unit.

(2) Show that R ∈ Cn if and only if its adjoint R∗ ∈ Cn, so that Cn is closed
under adjunction.
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(3) Let B = {δ0, δ1, . . . , δn−1} ⊂ L(Zn) so that f =
∑n−1

x=0 f (x)δx for every
f ∈ L(Zn). Show that R ∈ End(L(Zn)) is a convolution operator if and
only if the matrix representing it is circulant.
Hint. If h ∈ L(Zn) is the kernel of R, then R = Rh is represented, with
respect to B, by the (circulant) matrix (h(y− x))x,y∈Zn .

Deduce that Cn is isomorphic to L(Zn) as algebras.
(4) Let ω = exp( 2iπn ) ∈ T and set

Fn = 1√
n

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 · · · · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

... · · · ...
1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.22)

Observe that Fn ∈ Mn(C) is symmetric so that its adjoint F∗
n is equal to

its conjugate Fn. Show also that the orthogonality relations in Lemma
2.2.3 are equivalent to saying that Fn is a unitary matrix.

(5) Prove that a matrix R ∈ Mn(C) is in Cn if and only if FnRF∗
n is diago-

nal. The map Cn � R �→ FnRF∗
n ∈ �n, where�n ⊆ Mn(C) denotes the

subalgebra of all diagonal matrices, is called the discrete Fourier trans-
form, briefly DFT, on Cn.

2.5 Poisson’s formulas and the uncertainty principle

In this section, following the monographs by Nathanson [118] and Terras [159],
we treat the finite analogue of two basic properties of the classical Fourier
transform.
Let A be a finite Abelian group, B a subgroup of A, and consider the quotient

group A/B.
For f ∈ L(A/B) we define f̃ ∈ L(A) by setting f̃ (a) = f (a+ B), for all a ∈

A. In other words, f̃ = f ◦ π , where π : A→ A/B is the canonical quotient
map. f̃ is called the inflation of f to A.
Note that the correspondence f �→ f̃ yields an algebra isomorphism between

L(A/B) and the subalgebra of L(A) consisting of all functions that are constant
on the B-cosets. Moreover, if ψ ∈ Â/B, then ψ̃ ∈ Â: indeed ψ̃ = ψ ◦ π is a
composition of group homomorphisms.

Exercise 2.5.1 Let χ ∈ Â. Show that there exists ψ ∈ Â/B such that χ = ψ̃ if
and only if χ |B ≡ 1B.
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Theorem 2.5.2 (Poisson summation formulas) Let f ∈ L(A) and let S ⊆ A
be a system of representatives of the B-cosets in A. Then

1

|B|
∑
b∈B

f (b) = 1

|A|
∑

ψ∈Â/B
f̂ (ψ̃ ) (2.23)

and

∑
c∈S

∣∣∣∣∣∑
b∈B

f (c+ b)

∣∣∣∣∣
2

= |B|
|A|

∑
ψ∈Â/B

| f̂ (ψ̃ )|2. (2.24)

Proof. Define f � ∈ L(A) by setting

f �(a) =
∑
b∈B

f (a+ b)

for all a ∈ A. Clearly, f � is constant on the B-cosets in A. Moreover, for each
χ ∈ Â,

f̂ �(χ ) =
∑
a∈A

f �(a)χ (a)

=
∑
a∈A

∑
b∈B

f (a+ b)χ (a)

(setting c = a+ b) =
∑
c∈A

∑
b∈B

f (c)χ (c− b)

=
[∑
b∈B

χ (b)

]
· f̂ (χ )

(by (2.12) applied to χ |B ∈ B̂) =
{
|B| f̂ (χ ) if χ |B = 1B
0 otherwise.

As a consequence, taking into account Exercise 2.5.1, f̂ �(χ ) equals |B| f̂ (ψ̃ ) if
χ = ψ̃ for some ψ ∈ Â/B, and vanishes otherwise.
Then, the Fourier inversion formula (cf. Theorem 2.4.2) applied to f � gives

f � = |B|
|A|

∑
ψ∈Â/B

f̂ (ψ̃ )ψ̃

that is,

1

|B|
∑
b∈B

f (b+ a) = 1

|A|
∑

ψ∈Â/B
f̂ (ψ̃ )ψ̃ (a)
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for all a ∈ A. In particular, when a = 0 we get (2.23). Moreover, applying the
Plancherel formula (cf. Theorem 2.4.3) to the function f �, we get

‖ f �‖2L(A) =
1

|A| ‖ f̂
�‖2

L(Â)
= |B|2

|A|
∑

ψ∈Â/B
| f̂ (ψ̃ )|2.

Since

‖ f �‖2L(A) =
∑
a∈A

| f �(a)|2

=
∑
c∈S

∑
b∈B

| f �(c+ b)|2

(since f � is constant on B-cosets) =
∑
c∈S

|B| · | f �(c)|2

= |B|
∑
c∈S

∣∣∣∣∣∑
b∈B

f (c+ b)

∣∣∣∣∣
2

,

(2.24) follows. �

For f ∈ L(A) we set

supp( f ) = {a ∈ A : f (a) �= 0} ⊆ A,

‖ f‖∞ = max{| f (a)| : a ∈ A}
and

supp( f̂ ) = {χ ∈ Â : f̂ (χ ) �= 0} ⊆ Â.

Lemma 2.5.3 Let f ∈ L(A). Then

‖ f‖2L(A) ≤ ‖ f‖2∞ · |supp( f )|.
Proof. This is a straightforward calculation:

‖ f‖2L(A) =
∑
a∈A

| f (a)|2 =
∑

a∈supp( f )
| f (a)|2

≤
∑

a∈supp( f )
‖ f‖2∞ = ‖ f‖2∞ · |supp( f )|. �

Theorem 2.5.4 (Uncertainty principle) Let f ∈ L(A) and suppose that f �=
0. Then

|supp( f )| · |supp( f̂ )| ≥ |A|. (2.25)
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Proof. From the Fourier inversion formula (Theorem 2.4.2) and the fact
‖χ‖∞ ≤ 1 for all χ ∈ Â, we deduce that for every a ∈ A,

| f (a)| = 1

|A|

∣∣∣∣∣∣
∑
χ∈Â

f̂ (χ )χ (a)

∣∣∣∣∣∣
≤ 1

|A|
∑
χ∈Â

| f̂ (χ )|

= 1

|A|
∑

χ∈supp( f̂ )
| f̂ (χ )|.

Taking the max over a ∈ A and squaring, we get

‖ f‖2∞ ≤ 1

|A|2

⎛⎝ ∑
χ∈supp( f̂ )

| f̂ (χ )|
⎞⎠2

= 1

|A|2

⎛⎝∑
χ∈Â

1supp( f̂ )(χ ) · | f̂ (χ )|
⎞⎠2

(by the Cauchy-Schwarz inequality) ≤ 1

|A|2 |supp( f̂ )| ·
∑
χ∈Â

| f̂ (χ )|2

= 1

|A|2 |supp( f̂ )| · ‖ f̂‖
2
L(Â)

(by the Plancherel formula) = 1

|A| |supp( f̂ )| · ‖ f‖
2
L(A)

(by Lemma 2.5.3) ≤ 1

|A| ‖ f‖
2
∞ · |supp( f )| · |supp( f̂ )|.

Since f �= 0 we have ‖ f‖∞ > 0 and therefore, comparing the first and the last
terms in the above formula, we get the desired inequality. �
Remark 2.5.5 If we take f = δ0 (the Dirac function at the identity element
of A), then |supp(δ0)| = 1, while δ̂0(χ ) = χ (0) = 1 for all χ ∈ Â so that
|supp(δ̂0)| = |A|. In this case, |supp(δ̂0)| · |supp(δ0)| = |A| showing that the
lower bound in (2.25) is optimal.

2.6 Tao’s uncertainty principle for cyclic groups

In this section we prove an uncertainty principle, due to Tao [157], which
improves on the inequality (2.25) when the finite Abelian group A is cyclic
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2.6 Tao’s uncertainty principle for cyclic groups 63

of prime order. We first present some general preliminary material on number
theory together with some specific tools developed in [157]. Recall that Z[x]
denotes the ring of polynomials with integer coefficients.

Proposition 2.6.1 (Eisenstein’s criterion) Let q(x) = a0 + a1x+ · · · + anxn

∈ Z[x]. Suppose that there exists a prime p such that

(i) p divides a0, a1, . . . , an−1;
(ii) p does not divide an;
(iii) p2 does not divide a0.

Then the polynomial q is irreducible over Z.

Proof. By contradiction, suppose that

q(x) = (b0 + b1x+ · · · + bn−kxn−k )(c0 + c1x+ · · · + ckx
k )

with 1 ≤ k < n and b0, b1, · · · , bn−k, c0, c1, . . . , ck ∈ Z. Then we have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a0 = b0c0

a1 = b0c1 + b1c0

a2 = b0c2 + b1c1 + b2c0

· · · · · ·
an = bn−kak.

Since a0 is divisible by p but not by p2, only one of the integers b0, c0 is
divisible by p. Suppose that b0 is divisible by p and c0 is not. Since a1 is divisible
by p, this forces b1 to be divisible by p. Continuing this way, we deduce that
b2, b3, . . . are divisible by p until we arrive to

an−k = b0cn−k + b1cn−k−1 + · · · + bn−k−1c1 + bn−kc0,

which forces bn−k to be divisible by p. But this contradicts the second assump-
tion, because an = bn−kck. �
Example 2.6.2 Let p be a prime number. Then, the polynomial q(x) = 1+ x+
x2 + · · · + xp−2 + xp−1 is irreducible over Z. Indeed, we have

q(x+ 1) = (x+ 1)p − 1

(x+ 1)− 1
=
(

p

p− 1

)
+
(

p

p− 2

)
x+ · · · +

(
p

1

)
xp−2 + xp−1.

Since
(p
k

) = p!

k!(p− k)!
, k = 1, 2, . . . , p− 1, is an integer divisible by p and( p

p−1

) = p is not divisible by p2, by virtue of Eisenstein’s criterion we deduce
that q(x+ 1) (and therefore q(x)) is irreducible over Z.
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Definition 2.6.3 A polynomial q(x) ∈ Z[x] is called primitive if its coefficients
are relatively prime and its leading coefficients is positive.

Clearly, any q(x) ∈ Z[x] may be represented in the form q(x) = ±cq1(x),
where c ∈ N, called the content of q(x), is the greatest common divisor of its
coefficients and q1(x) is primitive. Also, any f (x) ∈ Q[x] may be represented
in the form f (x) = c

d q(x), where q(x) ∈ Z[x] is primitive and c, d ∈ Z.

Proposition 2.6.4 (Gauss lemma) The product of two primitive polynomials
is primitive.

Proof. By contradiction, suppose that q1(x) = a0 + a1x+ · · · + an−1xn−1 +
anxn and q2(x) = b0 + b1x+ · · · + bm−1xm−1 + bmxm are primitive poly-
nomials, but their product q1(x)q2(x) = c0 + c1x+ · · · + cn+m−1xn+m−1 +
cn+mxn+m is not. This means that there exists a prime p that divides all the
coefficients c0, c1, c2, . . . , cn+m−1, cn+m. By the primitivity of q1(x) and q2(x),
we can find i (respectively j) the minimal index such that ai (respectively b j)
is not divisible by p. Then, in the expression

ci+ j = aib j + (ai−1b j+1 + · · · + a0b j+i + ai+1b j−1 + · · · + ai+ jb0)

all the summands are divisible by p except aib j. Thus p does not divide ci+ j,
and this is a contradiction. �

Corollary 2.6.5 A polynomial q(x) ∈ Z[x] which is irreducible over Z is also
irreducible over Q.

Proof. Let q(x) ∈ Z[x] and suppose that it is reducible over Q, say q(x) =
f1(x) f2(x), where both f1(x) and f2(x) belong to Q[x] and are nontrivial
(deg f1, deg f2 < deg q). For i = 1, 2, we can write

fi(x) = ai
bi
qi(x),

where qi(x) is a primitive polynomial and ai, bi ∈ Z are relatively prime. Then

q(x) = a1a2
b1b2

[q1(x)q2(x)]. (2.26)

Since both q(x) and q1(x)q2(x) are integer valued, a1a2[q1(x)q2(x)] must be
divisible by b1b2. Let b1 = pm1

1 pm2
2 · · · pmt

t be the prime factorization of b1.
Consider the prime power pm1

1 . It cannot divide all coefficients of q1(x)q2(x)
because, by Gauss lemma, this polynomial is primitive. Also, it cannot divide
a1 because this is relatively prime with b1. Therefore it must divide a2.
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Repeating the same argument with the other prime factors of b1 we deduce
that b1 divides a2. Similarly, b2 divides a1. Thus, we can find c1, c2 ∈ Z such
that

a1 = c1b2 and a2 = c2b1.

Then (2.26) becomes

q(x) = c1c2q1(x)q2(x).

This shows that q(x) is (also) reducible over Z. �

Corollary 2.6.6 Let p(x), q(x) ∈ Z[x] and suppose that p(x) is primitive and
divides q(x) over Q. Then p(x) divides q(x) over Z.

Proof. Let f (x) ∈ Q[x] such that q(x) = p(x) f (x). Also write f (x) = a
br(x)

with r(x) a primitive polynomial and a, b ∈ Z relatively prime. Thus

q(x) = a

b
p(x)r(x),

where the polynomials q(x) and p(x)r(x) both have integer coefficients. By
Gauss lemma, p(x)r(x) is primitive and this forces b = ±1, concluding the
proof. �

Definition 2.6.7 A complex number α is called algebraic provided it is a root
of some polynomial q(x) ∈ Z[x], that is, q(α) = 0. Aminimal polynomial of an
algebraic number α is a primitive polynomial of least degree q(x) ∈ Z[x] such
that q(α) = 0.

Clearly, a minimal polynomial is irreducible over Z (and therefore over Q by
Corollary 2.6.5). In Proposition 2.6.8 we shall establish its uniqueness. For the
next proposition, we need the notion of a principal ideal. Roughly speaking, a
principal ideal in a commutative unital ring R is a subset of the form I = fR
for some f ∈ R, called a generator of I: we refer to Section 6.1 for a more
comprehensive treatment of this and of other related notions.

Proposition 2.6.8 Let α ∈ C be an algebraic number and let p(x) ∈ Z[x] be
a minimal polynomial of α. Consider the ideal I = {q(x) ∈ Z[x] : q(α) = 0}.
Then I is principal and generated by p(x). In particular, p(x) is the unique
primitive irreducible polynomial in I .

Proof. Consider the ideal Ĩ = { f (x) ∈ Q[x] : f (α) = 0} in Q[x]. Since every
ideal in Q[x] is principal (see Exercise 6.1.6), Ĩ is generated by some element
f0(x) of least degree. By eliminating the denominators and changing signs of
all coefficients, if necessary, we may suppose that f0(x) belongs to Z[x] and is
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primitive. Let q(x) ∈ I ⊆ Ĩ . Then we can find f (x) ∈ Q[x] such that q(x) =
f (x) f0(x). Since f0(x) is primitive, from Corollary 2.6.6 we deduce that f0(x)
divides q(x) in Z[x]. Moreover, if q(x) = p(x), we deduce that f0(x) = p(x), by
minimality of the degree of p(x). This shows that I is principal, generated by
p(x). �

Example 2.6.9 Let p be a prime. Consider the algebraic number ω = exp( 2π ip )

and the polynomial q(x) = xp−1
x−1 = 1+ x+ x2 + · · · + xp−1. Then q(x) is irre-

ducible (cf. Example 2.6.2) and q(ω) = 0. Then, by Proposition 2.6.8, q(x) is
the minimal polynomial of ω and every f (x) ∈ Z[x] such that f (ω) = 0 is a
multiple of q(x) in Z[x].

Proposition 2.6.10 Let P(x1, x2, . . . , xn) be a polynomial in the variables
x1, x2, . . . , xn with integer coefficients. Suppose that, for some i �= j,

P(x1, x2, . . . , xn)|xi=x j ≡ 0.

Then there exists a polynomial Q(x1, x2, . . . , xn) with integer coefficients such
that P(x1, x2, . . . , xn) = (xi − x j )Q(x1, x2, . . . , xn).

Proof. For the sake of simplicity, suppose that i = 1 and j = 2 so that
P(x1, x1, . . . , xn) ≡ 0. Let us denote by P1(x1, x2, . . . , xn) (respectively
P2(x1, x2, . . . , xn)) the sum of the monomials of P(x1, x2, . . . , xn) with positive
(respectively negative) coefficients so that

P(x1, x2, . . . , xn) = P1(x1, x2, . . . , xn)+ P2(x1, x2, . . . , xn).

Note that

P1(x1, x1, . . . , xn) = −P2(x1, x1, . . . , xn),

since P(x1, x1, . . . , xn) ≡ 0. This implies that there exists a bijection between
the monomials in P1(x1, x1, . . . , xn) and those in P2(x1, x1, . . . , xn). More pre-
cisely, let us fix m > 0 and k, k3, . . . , kn ≥ 0; then the monomial mxk1x

k3
3 · · · xknn

appears in P1(x1, x1, . . . , xn) if and only if −mxk1xk33 · · · xknn appears in
P2(x1, x1, . . . , xn). Suppose this is the case. Then we can find m0,m1, . . . ,mk

and n0, n1, . . . , nk non-negative integers such that the sum of the monomials
of P(x1, x2, . . . , xn) whose variables xi have degree ki for i = 1, 2 . . . , n and
k1 + k2 = k is

k∑
�=0

m�x
k−�
1 x�2x

k3
3 · · · xknn −

k∑
�=0

n�x
k−�
1 x�2x

k3
3 · · · xknn (2.27)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.003
https://www.cambridge.org/core


2.6 Tao’s uncertainty principle for cyclic groups 67

and

m0 + m1 + · · · + mk = n0 + n1 + · · · + nk = m (2.28)

but also such that

m� �= 0 ⇒ n� = 0 n� �= 0 ⇒ m� = 0

(because, otherwise, there would be a cancellation). By virtue of (2.28) with
every monomial xk−�

1 x�2x
k3
3 · · · xknn such thatm� �= 0 we can (arbitrarily but bijec-

tively) associate a monomial xk−h1 xh2x
k3
3 · · · xknn with mh �= 0 and h �= �. Now, for

h > � we have the identity

xk−�
1 x�2 − xk−h1 xh2 = x�2x

k−h
1 (xh−�

1 − xh−�
2 )

= x�2x
k−h
1 (x1 − x2)(x

h−�−1
1 + xh−�−2

1 x2 + · · · + xh−�−1
2 ).

Exchanging h with � we get the analogous identity for h < �. This shows that
(2.27) is divisible by x1 − x2.
Repeating the argument for each monomial mxk1x

k3
3 · · · xknn (with m > 0 and

k, k3, . . . , kn ≥ 0) appearing in P1(x1, x1, . . . , xn), we deduce that, in fact,
P(x1, x2, . . . , xn) is divisible by x1 − x2. �

Example 2.6.11 Consider the polynomial P(x1, x2) = x21 + x1x2 − 2x22.
We have P1(x1, x1) = 2x21 and P2(x1, x1) = −2x21, and m = 2. More-
over, m0 = m1 = 1 and m2 = 0, while n0 = n1 = 0 and n2 = 2. We have
P(x1, x2) = (x21 − x22)+ (x1x2 − x22) = (x1 − x2)(x1 + x2)+ (x1 − x2)x2 =
(x1 − x2)(x1 + 2x2), so that Q(x1, x2) = x1 + 2x2.

Lemma 2.6.12 Let p be a prime, n a positive integer, and P(x1, x2, . . . , xn)
a polynomial with integer coefficients. Suppose that ω1, ω2, . . . , ωn are (not
necessarily distinct) pth roots of unity such that P(ω1, ω2, . . . , ωn) = 0. Then
P(1, 1, . . . , 1) is divisible by p.

Proof. Setting ω = exp( 2π ip ) we can find integers 0 ≤ k j ≤ p− 1 such that

ω j = ωk j , for j = 1, 2, . . . , n.
Define the polynomials q(x), r(x) ∈ Z[x] by setting

P(xk1 , xk2 , . . . , xkn ) = (xp − 1)q(x)+ r(x)

where deg r < p. Then r(ω) = 0 and since deg r < p we deduce that r(x) is a
multiple of the minimal polynomial of ω, that is (cf. Example 2.6.9), r(x) =
m(1+ x+ x2 + · · · + xp−1) for some m ∈ Z. It follows that P(1, 1, . . . , 1) =
r(1) = mp. �
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Theorem 2.6.13 (Chebotarëv) Let p be a prime and 1 ≤ n ≤ p. Let
η1, η2, . . . , ηn (respectively ξ1, ξ2, . . . , ξn) be distinct elements in
{0, 1, . . . , p− 1}. Then the matrix

A =
(
exp

2π iηhξk
p

)n
h,k=1

is non-singular.

Proof. Set ωh = exp( 2π iηhp ) for h = 1, 2, . . . , n. Note that the ωhs are distinct

pth roots of unity and A =
(
ω

ξk
h

)n
1=h,k

. Define the polynomialD(x1, x2, . . . , xn)

(with integer coefficients) by setting

D(x1, x2, . . . , xn) = det
(
xξkh

)n
h,k=1

.

As the determinant is an alternating form, we have D(x1, x2, . . . , xn)|xh=xk ≡ 0
whenever 1 ≤ h �= k ≤ n, so that, by recursively applying Proposition 2.6.10,
we can find a polynomial Q(x1, x2, . . . , xn) with integer coefficients such that

D(x1, x2, . . . , xn) = Q(x1, x2, . . . , xn)
∏

1≤h<k≤n
(xk − xh). (2.29)

To prove the theorem, it is equivalent to show that Q(ω1, ω2, . . . , ωn) �= 0
(because the ωhs are all distinct) so that, by virtue of Lemma 2.6.12, it suf-
fices to show that p does not divide Q(1, 1, . . . , 1). For this, we need the next
three lemmas. Let us first introduce some useful notation.
Given an n-tuple k = (k1, k2, . . . , kn) of non-negative integers, we say that

the (monomial) differential operator

L = Lk =
(
x1

∂

∂x1

)k1 (
x2

∂

∂x2

)k2
· · ·
(
xn

∂

∂xn

)kn
(2.30)

is of type k and order o(k) = k1 + k2 + · · · + kn.

Lemma 2.6.14 Let L be a differential operator of type k and F (x1, x2, . . . , xn)
and G(x1, x2, . . . , xn) two polynomials. Then

L(FG) =
∑
(i,j)

Li(F ) · Lj(G) (2.31)

where the sum runs over all pairs (i, j) such that (componentwise) i+ j = k.
(and therefore o(i)+ o(j) = k).

Proof. We proceed by induction on the order k of L. If k = 0 then L is the
identity and the statement is trivial. Suppose we have shown the statement for
all differential operators of order ≤ k and let L be a differential operator of

order k + 1. Up to renaming the variables, wemay suppose that L =
(
x1

∂
∂x1

)
L′,
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where L′ has order k. By the Leibniz rule and the inductive hypothesis we then
have

L(FG) =
(
x1

∂

∂x1

)
L′(FG)

=
(
x1

∂

∂x1

)∑
(i,j)

Li(F ) · Lj(G)

=
∑
(i′,j)

Li′ (F ) · Lj(G)+
∑
(i,j′ )

Li(F ) · Lj′ (G)

where i′ = (i1 + 1, i2, . . . , in) and j′ = ( j1 + 1, j2, . . . , jn), and, clearly,
o(i′)+ o(j) = o(i)+ o(j′) = k + 1. �
Lemma 2.6.15 For 1 ≤ j ≤ n and 1 ≤ h ≤ j − 1 we have(

x j
∂

∂x j

)h
(x j − x1)(x j − x2) · · · (x j − x j−1)

=
h∑
t=1

ah,t x
t
j

∑
it

∏
1≤i≤ j−1
i�=i1,i2,...,it

(x j − xi) (2.32)

where
∑

it runs over all it = (i1, i2, . . . , it )with 1 ≤ i1 < i2 < . . . < it ≤ j − 1
and the ah,t = ah,t ( j)s are non-negative integers such that ah,h = h! In partic-
ular,(

x j
∂

∂x j

) j−1

(x j − x1)(x j − x2) · · · (x j − x j−1)

= ( j − 1)!x j−1
j

+ terms containing at least one factor (x j − xi)

with 1 ≤ i < j.

Proof. We proceed by induction on h = 1, 2, . . . , j − 1. For h = 1 we have(
x j

∂

∂x j

)
(x j − x1)(x j − x2) · · · (x j − x j−1)

= x j(x j − x2)(x j − x3) · · · (x j − x j−1)

+ (x j − x1)x j(x j − x3) · · · (x j − x j−1)

+ · · ·
+ (x j − x1)(x j − x2) · · · (x j − x j−3)x j(x j − x j−1)

+ (x j − x1)(x j − x2) · · · (x j − x j−2)x j

= x j

j−1∑
k=1

(x j − x1)(x j − x2) · · · ̂(x j − xk ) · · · (x j − x j−1),

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.003
https://www.cambridge.org/core


70 The Fourier transform on finite Abelian groups

where the factor ·̂ is omitted. Since
(
x j

∂
∂x j

)
x j = x j, keeping in mind the pre-

vious calculation, we have(
x j

∂

∂x j

)2

(x j − x1)(x j − x2) · · · (x j − x j−1)

=
(
x j

∂

∂x j

)
x j

j−1∑
k=1

(x j − x1) · · · ̂(x j − xk ) · · · (x j − x j−1)

= x j

j−1∑
k=1

(x j − x1) · · · ̂(x j − xk ) · · · (x j − x j−1)

+ 2x2j
∑

1≤k<k′≤ j−1

(x j − x1) · · · ̂(x j − xk ) · · · ̂(x j − xk′ ) · · · (x j − x j−1).

Suppose we have proved the formula (2.32) for h < j − 1. Then(
x j

∂

∂x j

)h+1

(x j − x1)(x j − x2) · · · (x j − x j−1)

=
(
x j

∂

∂x j

) h∑
t=1

ah,t x
t
j

∑
it

∏
1≤i≤ j−1
i�=i1,i2,...,it

(x j − xi)

=
h∑
t=1

ah,t tx
t
j

∑
it

∏
1≤i≤ j−1
i�=i1,i2,...,it

(x j − xi)

+
h∑
t=1

ah,t x
t+1
j

∑
it+1

(t + 1)
∏

1≤i≤ j−1
i�=i1,i2,...,it+1

(x j − xi)

=
h+1∑
t=1

ah+1,t x
t
j

∑
it

∏
1≤i≤ j−1
i�=i1,i2,...,it

(x j − xi),

where

ah+1,t =
{
ah,t t + ah,t−1t for t = 1, 2, . . . , h
ah,h(h+ 1) = (h+ 1)! for t = h+ 1. �

Lemma 2.6.16 Let L = L(0,1,...,n−1), that is,

L =
(
x1

∂

∂x1

)0 (
x2

∂

∂x2

)1

· · ·
(
xn

∂

∂xn

)n−1

.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.003
https://www.cambridge.org/core


2.6 Tao’s uncertainty principle for cyclic groups 71

Then if D(x1, x2, . . . , xn) and Q(x1, x2, . . . , xn) are as in (2.29), we have

[LD](1, 1, . . . , 1) =
n∏
j=1

( j − 1)!Q(1, 1, . . . , 1). (2.33)

Proof. By virtue of Lemma 2.6.14 and Lemma 2.6.15 we have

[LD](x1, x2, . . . , xn) =
n∏
j=1

( j − 1)!x j−1
j Q(x1, x2, . . . , xn)

+ terms containing at least one factor (x j − xi)

with 1 ≤ i < j. In particular, taking xi = 1 for i = 1, 2, . . . , n we deduce
(2.33).

�

End of the proof of Theorem 2.6.13 For L as in Lemma 2.6.16 we have (where
Sn denotes the symmetric group of degree n)

[LD](x1, x2, . . . , xn) = L
∑
σ∈Sn

ε(σ )xξσ (1)1 xξσ (2)2 · · · xξσ (n)n

=
∑
σ∈Sn

ε(σ )ξ 0σ (1)x
ξσ (1)
1 ξ 1σ (2)x

ξσ (2)
2 · · · ξ n−1

σ (n)x
ξσ (n)
n

since (
x j

∂

∂x j

) j−1

x
ξσ ( j)
j = ξ

j−1
σ ( j)x

ξσ ( j)
j

for all j = 1, 2, . . . , n. Thus

[LD](1, 1, . . . , 1) =
∑
σ∈Sn

ε(σ )ξ 0σ (1)ξ
1
σ (2) · · · ξ n−1

σ (n)

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
ξ1 ξ2 · · · ξn

ξ 21 ξ 22 · · · ξ 2n
...

...
. . .

...
ξ n−1
1 ξ n−1

2 · · · ξ n−1
n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i< j≤n

(ξ j − ξi)

is the Vandermonde determinant (see, e.g. [91]). Since ξ j �= ξi for 1 ≤ i <
j ≤ n, we deduce that [LD](1, 1, . . . , 1) is not divisible by p. Since also∏n

j=1( j − 1)! is not divisible by p (because n ≤ p), from (2.33) we deduce
that Q(1, 1, . . . , 1) is not divisible by p either. By virtue of Lemma 2.6.12, this
completes the proof of Theorem 2.6.13. �
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72 The Fourier transform on finite Abelian groups

Given a non-empty subset A ⊆ Zp and a function f ∈ L(A), in the following
we shall denote by f its extension f : Zp → C defined by setting f (z) = 0 for
all z ∈ Zp \ A. For simplicity, we regard the DFT as a map L(Zp) → L(Zp). In
other words, for f ∈ L(Zp) and x ∈ Zp,

f̂ (x) = 1

p

∑
y∈Zp

f (y)ω−xy;

see also Exercise 2.4.13.

Corollary 2.6.17 Let p be a prime. Let A,B ⊆ Zp such that |A| = |B|. Then
the linear map T = TA,B : L(A) → L(B) defined by T f = f̂ |B is invertible.
Proof. Set A = {ξ1, ξ2, . . . , ξn} and B = {η1, η2, . . . , ηn} and consider the basis
of L(A) (respectively, of L(B)) consisting of the Dirac functions δξ j , with j =
1, 2, . . . , n (respectively, δηk , with k = 1, 2, . . . , n), and let ω = exp(2π i/p).
Then we have

[Tδξk ](ηh) = δ̂ξk (ηh) =
∑
x∈Zp

δξk (x)ω
−xηh = ω−ηhξk .

By virtue of Theorem 2.6.13 we have det
(
[Tδξk ](ηh)

)n
h,k=1 �= 0, showing that

T is indeed invertible. �

We are now in a position to state and prove the main result of this section.

Theorem 2.6.18 (Tao) Let p be a prime number and f ∈ L(Zp) non-zero. Then

|supp( f )| + |supp( f̂ )| ≥ p+ 1.

Conversely, if ∅ �= A,A′ ⊆ Zp are two subsets such that |A| + |A′| = p+ 1,
then there exists f ∈ L(Zp) such that supp( f ) = A and supp( f̂ ) = A′.

Proof. Suppose, by contradiction, that, setting supp( f ) = A and supp( f̂ ) = C,
one has |A| + |C| ≤ p. Then we can find a subset B ⊆ Zp such that |B| = |A|
andC ∩ B = ∅. We deduce that T f = f̂ |B is identically zero. Since f �≡ 0, this
contradicts injectivity of T (Corollary 2.6.17).
Conversely, let ∅ �= A,A′ ⊆ Zp be two subsets such that |A| + |A′| = p+ 1.

Let B ⊆ Zp such that |B| = |A| and B ∩ A′ reduces to a single element, say ξ .
Note that (Zp \ B) ∪ {ξ} ⊇ A′ so that, by taking cardinalities, |A′| = p+ 1−
|A| = p− |B| + 1 = |(Zp \ B) ∪ {ξ}| ≥ |A′|, which yields

(Zp \ B) ∪ {ξ} = A′. (2.34)

Consider the map T = TA,B : L(A) → L(B). By Corollary 2.6.17, we can find
g ∈ L(A) such that Tg= δξ |B so that ĝvanishes on B \ {ξ} but ĝ(ξ ) �= 0. Setting
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f = g ∈ L(Zp) we clearly have supp( f ) ⊆ A and supp( f̂ ) ⊆ (Zp \ B) ∪ {ξ}.
Let us show that indeed supp( f ) = A and, moreover, supp( f̂ ) = A′. By the first
part of the theorem we have

p+ 1 ≤ |supp( f )| + |supp( f̂ ) ≤ |A| + |Zp \ B| + 1

= |A| + (p− |B|)+ 1 = p+ 1

so that all inequalities above are indeed equalities. In particular, supp( f ) =
A and supp( f̂ ) = (Zp \ B) ∪ {ξ} = A′, where the last equality follows from
(2.34). �
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3

Dirichlet’s theorem on primes in arithmetic
progressions

In this chapter, we give an exposition on the celebrated Dirichlet theorem on
primes in arithmetic progressions. It states that, if r and m are relatively prime
positive integers, then the arithmetic progression r, r + m, r + 2m, . . . , r +
km, . . . contains infinitely many primes. For instance, there are infinitely many
prime numbers of the form 1+ 4k, k ∈ N. There are several proofs of this
theorem: some of them are based on algebraic number theory (see the mono-
graph byWeyl [166]), others on analytic number theory (see the monograph by
Serre [144]), but also elementary proofs are available (see the paper by Selberg
[143]). By an elementary proof we mean a proof that does not use sophisticated
methods of complex variables, algebraic geometry, or cohomology theory, but
it may be technically very difficult.
Here, the character theory of finite Abelian groups is an essential ingredient,

in particular, in order to define Dirichlet L-functions, which constitute one of
the central objects in number theory. We have chosen to follow the exposition
in the beautiful book by Stein and Shakarchi [150]. The authors have managed
to reduce the proof to the use of very elementary analysis. We have also taken
some material from the book by Knapp [88]. Other proofs may be found in the
monographs by Apostol [13], Ireland and Rosen [79], and Nathanson [118].

3.1 Analytic preliminaries

In this section, we establish some elementary results on real and complex series.
As in our main source [150], we avoid the use of complex analysis: just ele-
mentary properties of real and complex series will be used (up to and including
existence of the radius of convergence for real and complex power series, ele-
mentary properties of uniform convergence, and differentiability of real power
series). In several points we closely follow the exposition in [88].

74
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From the well known expansion log(1+ t ) =∑∞
k=1

(−1)k+1

k tk for t ∈ (−1, 1]
we deduce that

log
1

1− t
= − log(1− t ) =

∞∑
k=1

tk

k

for t ∈ [−1, 1). We then define

log
1

1− z
=

∞∑
k=1

zk

k
(3.1)

for all z ∈ C, |z| < 1. With exp we denote the usual complex exponential:
exp(x+ iy) = exeiy = ex(cos y+ i sin y) for all x, y ∈ R. Also, �z denotes the
real part of z ∈ C.

Proposition 3.1.1

(i) |z| < 1 if and only if � 1
1−z > 1

2 .
(ii) exp(log 1

1−z ) = 1
1−z for all |z| < 1.

(iii) log 1
1−z = z+ R(z) where the error term R(z) satisfies |R(z)| < |z|2 if

|z| < 1
2 .

(iv) | log 1
1−z | ≤ 3

2 |z| if |z| < 1
2 .

Proof. (i) Setting w = 1
1−z we have z = w−1

w
and

|z| < 1 ⇔ |w − 1| < |w| ⇔ �w >
1

2
.

(ii) Consider the polar expression of z given by z = ρeiθ with ρ ≥ 0 and
θ ∈ R. We then have to show that

(1− ρeiθ ) exp

( ∞∑
k=1

ρkeikθ

k

)
= 1. (3.2)

For ρ = 0 it is trivially satisfied. By differentiating with respect to the
real variable ρ, we get

d

dρ

[
(1− ρeiθ ) exp(

∞∑
k=1

ρkeikθ

k
)

]

=
[
−eiθ + (1− ρeiθ )eiθ

∞∑
k=1

(ρeiθ )k−1

]
exp

(
log

1

1− z

)
which vanishes since

∑∞
k=0(ρe

iθ )k = 1
1−ρeiθ . Therefore, the left hand

side of (3.2) is constant along each line θ = cost and it is equal to its
value for ρ = 0. Thus (3.2) follows.
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(iii)

|R(z)| =
∣∣∣∣log 1

1− z
− z

∣∣∣∣ =
∣∣∣∣∣
∞∑
k=2

zk

k

∣∣∣∣∣
≤

∞∑
k=2

|z|k
k

≤ |z|2
2

∞∑
k=0

|z|k

(for |z| < 1
2 ) <

|z|2
2

∞∑
k=0

1

2k
= |z|2.

(iv) ∣∣∣∣log 1

1− z

∣∣∣∣ ≤ ∞∑
k=1

|z|k
k

≤ |z|
[
1+

∞∑
k=2

|z|k−1

2

]

(for |z| < 1
2 ) < |z|

[
1+

∞∑
k=2

1

2k

]

= 3

2
|z|. �

Definition 3.1.2 Let (zn)n∈N be a sequence of complex numbers. The asso-
ciated infinite product, denoted

∏∞
n=1 zn, is the limit of the partial products

z1z2 · · · zn as n tends to infinity, in formulæ,

∞∏
n=1

zn = lim
n→+∞

n∏
k=1

zk.

The product is said to convergewhen the limit exists and is not zero. Otherwise,
the product is said to diverge.

The following is one of the basic results in the theory of infinite products.

Proposition 3.1.3 Let (zn)n∈N be a sequence of complex numbers and suppose
that |zn| < 1 for all n ∈ N. Then the infinite product

∏∞
n=1

1
1−|zn| converges if

and only if the series
∑∞

n=1 |zn| converges. Moreover, if this is the case, the
infinite product

∏∞
n=1

1
1−zn also converges and one has

∞∏
n=1

1

1− zn
= exp

( ∞∑
n=1

log
1

1− zn

)
. (3.3)
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Proof. The only if part follows from the elementary inequalities

1+
n∑

k=1

|zk| ≤
n∏

k=1

(1+ |zk|) ≤
n∏

k=1

1

1− |zk| .

Suppose now that
∑∞

n=1 |zn| < +∞. Then limn→+∞ |zn| = 0 and, without loss
of generality, we may assume that |zn| < 1

2 . From Proposition 3.1.1.(ii) we get

n∏
k=1

1

1− |zk| =
n∏

k=1

exp

(
log

1

1− |zk|
)

= exp

(
n∑

k=1

log
1

1− |zk|

)
and Proposition 3.1.1.(iv) yields∣∣∣∣log 1

1− |zk|
∣∣∣∣ ≤ 3

2
|zk|

for all k ∈ N. From our assumptions we then deduce that
∑∞

k=1 log
1

1−|zk| con-
verges absolutely. We conclude by invoking the continuity of exp. The proof
of the convergence of

∏∞
n=1

1
1−zn is analogous. Moreover, this limit is nonzero

and equals limn→+∞ exp(
∑n

k=1 log
1

1−zk ). �

In what follows, we will often use Abel’s formula of summation by parts:
if (zn)n∈N and (wn)n∈N are complex sequences, then setting Z0 = 0 and Zk =∑k

i=1 zi, for k ≥ 1, one has

n∑
k=m

zkwk =
n−1∑
k=m

Zk(wk − wk+1)+ Znwn − Zm−1wm (3.4)

for all 1 ≤ m ≤ n. The proof is just an easy exercise.

Definition 3.1.4 Let (an)n∈N be a sequence of complex numbers. The associ-
ated Dirichlet series is the series given by

∞∑
n=1

an
ns

where s is a complex variable and ns = exp(s log n) for all n ≥ 1.

Let A ⊂ C and ( fn)n∈N a sequence of complex functions. One says that the
series

∑∞
n=1 fn(z) isM-test convergent on A if there exists a sequence (Mn)n∈N

of positive real numbers such that
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� | fn(z)| ≤ Mn for all z ∈ A and n ≥ 1;
�

∑∞
n=1Mn < +∞.

Clearly, M-test convergence on A implies both uniform and absolute conver-
gence on A. In the following we regard a Dirichlet series as a series of complex
functions.

Proposition 3.1.5 Let (an)n∈N be a sequence of complex numbers. If the Dirich-
let series

∑∞
n=1

an
ns is convergent for s = s0 then it is uniformly convergent on

each compact subset contained in {s ∈ C : �s > �s0} and it is absolutely con-
vergent at each s ∈ C such that �s > �s0 + 1.

Proof. According with the notation in (3.4), set

zn = an
ns0

, Zn =
n∑

k=1

zk, and wn(s) = 1

ns−s0

for all n ≥ 1. Then
∑∞

n=1 znwn(s) coincides with the Dirichlet series. Moreover
the following holds:

(i) The sequence (Zn)n∈N converges (by hypothesis); in particular, it is
bounded: ∃H > 0 such that |Zn| ≤ H for all n ≥ 1.

(ii) limn→+∞ wn(s) = 0 uniformly on each set {s ∈ C : �s ≥ μ} with μ >

�s0. Indeed, for �s ≥ μ > �s0 we have
|ns−s0 | = n�(s−s0 ) ≥ nμ−�s0

so that
∣∣ 1
ns−s0

∣∣ ≤ 1
nμ−�s0 which tends to 0 as n→ +∞.

(iii) The series
∑∞

n=1 |wn(s)− wn+1(s)| isM-test convergent on every com-
pact set A ⊆ {s ∈ C : �s > �s0}. Indeed, if |s− s0| ≤ δ and �s−
�s0 ≥ η > 0, we have∣∣∣∣ 1

ns−s0
− 1

(n+ 1)s−s0

∣∣∣∣ = ∣∣∣∣∫ n+1

n

s− s0
ts−s0+1

dt

∣∣∣∣
≤ sup

n≤t≤n+1

∣∣∣∣ s− s0
ts−s0+1

∣∣∣∣
= sup

n≤t≤n+1

|s− s0|
t�(s−s0 )+1

= |s− s0|
n�(s−s0 )+1

≤ δ

nη+1
.
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Then we can apply Cauchy’s criterion for uniform convergence:∣∣∣∣∣
n∑

k=m

ak
ks

∣∣∣∣∣ =
∣∣∣∣∣
n∑

k=m
zkwk(s)

∣∣∣∣∣
(by (3.4)) ≤

n∑
k=m

|Zk| · |wk(s)− wk+1(s)|

+ |Zn| · |wn(s)| + |Zm−1| · |wm(s)|

(by (i), (ii), and (iii)) ≤
n∑

k=m

Hδ

kη+1
+ H

nμ−�s0 +
H

mμ−�s0 .

Thus, for each ε > 0 there exists N ∈ N such that
∣∣∑n

k=m
ak
ks

∣∣ < ε for all n ≥
m ≥ N and s ∈ A, and uniform convergence is proved.

Finally, if �s > �s0 + 1 then, setting η′ = �s−�s0 − 1 > 0, we have∣∣∣an
ns

∣∣∣ = ∣∣∣ an
ns0

∣∣∣ · ∣∣∣∣ 1

ns−s0

∣∣∣∣ = ∣∣∣ anns0 ∣∣∣ · 1

n�s−�s0 =
∣∣∣ an
ns0

∣∣∣ 1

n1+η′

for all n ≥ 1, so that boundedness of the sequence
(∣∣ an
ns0

∣∣)
n≥1 yields absolute

convergence of the Dirichlet series. �

Remark 3.1.6 By a celebrated theorem of Weierstass (see [3, 133, 115]) if a
series of analytic functions converges uniformly on each compact subset of
a set A ⊂ C, then the sum is analytic on A. Then Proposition 3.1.5 ensures
that if a Dirichlet series converges at s0 ∈ C then it is analytic on the region
{s ∈ C : �s > �s0}. We will not use this important fact.

Proposition 3.1.7 Let (an)n∈N be a sequence of complex numbers. If the Dirich-
let series

∑∞
n=1

an
ns is absolutely convergent at s = s0, then it is M-test conver-

gent on {s ∈ C : �s ≥ �s0}.
Proof. Just note that∣∣∣an

ns

∣∣∣ = ∣∣∣ an
ns0

∣∣∣ · ∣∣∣∣ 1

ns−s0

∣∣∣∣ ≤ ∣∣∣ anns0 ∣∣∣ · 1

n�s−�s0 ≤
∣∣∣ an
ns0

∣∣∣
for all n ≥ 1. �

A sequence (an)n∈N of complex numbers is called strictly multiplicative if

a1 = 1 and anm = anam for all n,m ≥ 1. (3.5)

We are now in position to state and prove one of the central results of this
chapter. We use analytic methods to prove a number theoretical result from the
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80 Dirichlet’s theorem on primes in arithmetic progressions

algebraic property (3.5). Its consequence, Euler product formula (3.11), is a
landmark in number theory.

Theorem 3.1.8 Let (an)n∈N be a strictly multiplicative sequence of complex
numbers. Suppose that the associated Dirichlet series converges at s ∈ C and
that |ap| < p�s for each prime p. Then, for such an s, the Dirichlet series has
the product expansion

∞∑
n=1

an
ns

=
∏

p prime

1

1− app−s
.

Proof. First of all, the infinite product in the right hand side converges by Propo-
sition 3.1.3 applied to the sequence ( apps )p prime. For n,m ≥ 1 we set

Pn = {p prime : p ≤ n}, Sn =
n∑

k=1

ak
ks

, S =
∞∑
k=1

ak
ks

,

�n,m =
∏
p∈Pn

(
m∑
h=0

aph

phs

)
=
∏
p∈Pn

(
1+ ap

ps
+ ap2

p2s
+ · · · + apm

pms

)
,

�n =
∏
p∈Pn

1

1− app−s
, and � =

∏
p prime

1

1− app−s
.

Note that we have to prove that S = �. Then, since (ap)k = apk (by strict mul-
tiplicativity), the formula for the sum of a geometric series and an easy combi-
natorial argument yield

�n −�n,m =
∏
p∈Pn

( ∞∑
h=0

aph

phs

)
−
∏
p∈Pn

(
m∑
h=0

aph

phs

)

=
∏
p∈Pn

(
m∑
h=0

aph

phs
+

∞∑
h=m+1

aph

phs

)
−
∏
p∈Pn

(
m∑
h=0

aph

phs

)

=
∑
A⊆Pn:
A�=∅

⎡⎣ ∏
p∈Pn\A

(
m∑
h=0

aph

phs

)
·
∏
p∈A

( ∞∑
h=m+1

aph

phs

)⎤⎦ .

(3.6)

For n;m ≥ 1 we also set

Qn,m = {k = ph11 p
h2
2 · · · phtt : pi prime, p1, p2, . . . , pt ≤ n; h1, h2, . . . , ht ≤ m}.
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Clearly, 1 ∈ Qn,m. Since the sequence (an)n∈N is strictly multiplicative, if k =
ph11 p

h2
2 · · · phtt then

ak = (ap1 )
h1 (ap2 )

h2 · · · (apt )ht and
ak
ks

= ah1p1
ph1s1

ah2p2
ph2s2

· · · a
ht
pt

phtst
.

Then

�n,m =
∏
p∈Pn

(
m∑
h=0

aph

phs

)
=
∑
k∈Qn,m

ak
ks

(3.7)

because in evaluating the product we get all possible factorizations of integers
in Qn,m.

Let ε > 0. By the convergence assumption, we can find an integer nε such
that, for all n > nε,

|Sn − S| < ε and |�n −�| < ε. (3.8)

Fix n > nε. Then, by virtue of (3.6), for m sufficiently large we have

|�n −�n,m| ≤
∑
A⊆Pn:
A�=∅

⎡⎣ ∏
p∈Pn\A

(
m∑
h=0

|aph |
|phs|

)
·
∏
p∈A

( ∞∑
h=m+1

|aph |
|phs|

)⎤⎦

≤ 2|Pn|
( ∞∑
k=1

|ak|
|ks|

)|Pn| ∞∑
k=m+1

|ak|
|ks|

< ε

(3.9)

because n is fixed,
∑∞

k=1
|ak|
|ks| converges, A �= ∅, and, for any p ∈ A,

∞∑
h=m+1

|aph |
|phs| ≤

∞∑
k=m+1

|ak|
|ks|

which tends to 0 as m→ +∞ (for the last inequality, just note that certainly
pm+1 ≥ m+ 1).
Moreover, if in addition m ≥ log2 n, we clearly have Qn,m ⊇ {1, 2, . . . , n}.

As a consequence, (3.7) and (3.8) imply that

|�n,m − Sn| ≤

∣∣∣∣∣∣∣
∑

k∈Qn,m:
k>n

ak
ks

∣∣∣∣∣∣∣ ≤
∞∑

k=n+1

|ak|
|ks| ≤ ε. (3.10)

Finally, from (3.8), (3.9), and (3.10), we deduce that

|S−�| ≤ |S− Sn| + |Sn −�n,m| + |�n,m −�n| + |�n −�| ≤ 4ε.

As ε was arbitrary, this ends the proof. �
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82 Dirichlet’s theorem on primes in arithmetic progressions

If an = 1 for all n ∈ N, then the sequence is strictly multiplicative and the
associated Dirichlet series is the celebrated Riemann zeta function

ζ (s) =
∑
n=1

1

ns
.

From the equality | 1ns | = 1
n�s we deduce that this series converges absolutely at

each s ∈ C with �s > 1. From Theorem 3.1.8 we deduce, as a particular case,
the Euler product formula

ζ (s) =
∏

p prime

1

1− p−s
(3.11)

for all s ∈ C with �s > 1.

Remark 3.1.9

(i) Examining the proof of Theorem 3.1.8 in the case of the Riemann zeta
function, that is, considering the expressions

1

ns
= 1

psh11 psh22 · · · pshtt
and

1

1− p−s
=

∞∑
h=0

1

psh
,

the identity

∞∑
n=1

1

ns
=
∏

p prime

1

1− p−s

may be seen as an analytic formulation of the fundamental theorem of
arithmetic (see Exercise 1.1.9).

(ii) Actually, the Riemann zeta function has ameromorphic continuation on
the whole C with exactly one simple pole at s = 1 with residue 1. For
this and other properties and applications of the Riemann zeta function
we refer to [151].

We end this section by analyzing two remarkable asymptotic estimates for
partial sums of particular values of the Riemann zeta function.

Proposition 3.1.10

(i) There exists γ > 0 (the so-called Euler-Mascheroni constant) such that,
for all n ≥ 1,

n∑
k=1

1

k
= log n+ γ +O(

1

n
).
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(ii) There exists σ ∈ R such that, for all n ≥ 1,

n∑
k=1

1√
k
= 2

√
n+ σ +O(

1√
n
).

Proof. (i) Set

γk = 1

k
−
∫ k+1

k

1

x
dx.

Since 1
k+1 < 1

x < 1
k for k < x < k + 1, we get

1

k + 1
<

∫ k+1

k

1

x
dx <

1

k

so that

0 < γk <
1

k
− 1

k + 1
. (3.12)

It follows that the series
∑∞

k=1 γk is convergent and has positive terms.
Let us define γ as the sum of such a series.
Let n ≥ 1. From (3.12) we get

∞∑
k=n+1

γk = lim
m→∞

m∑
k=n+1

γk ≤ lim
m→∞

m∑
k=n+1

(
1

k
− 1

k + 1

)
= lim

m→∞

(
1

n+ 1
− 1

m+ 1

)
= 1

n+ 1
<

1

n
.

Finally, from

γ −
∞∑

k=n+1

γk =
n∑

k=1

1

k
−

n∑
k=1

∫ k+1

k

1

x
dx

=
n∑

k=1

1

k
−
∫ n+1

1

1

x
dx

=
n∑

k=1

1

k
− log(n+ 1)

we deduce (using 1
n ≥ log(1+ 1

n ) = log(n+ 1)− log n > 0) that

|
n∑

k=1

1

k
− γ − log n| = | log(1+ 1

n
)−

∞∑
k=n+1

γk| ≤ 2

n
.
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84 Dirichlet’s theorem on primes in arithmetic progressions

(ii) We set

ηk = 1√
k
−
∫ k+1

k

1√
x
dx.

Arguing as in the proof of (i), but replacing x and k by
√
x and

√
k,

respectively, we get

0 < ηk <
1√
k
− 1√

k + 1

which replaces (3.12). We deduce that the series
∑∞

k=1 ηk converges so
that, denoting by η the sum of such a series,

∑∞
k=n+1 ηk ≤ 1√

n
and

η −
∞∑

k=n+1

ηk =
n∑

k=1

1√
k
− 2

√
n+ 1+ 2.

Finally, setting σ = η − 2, we get

|
n∑

k=1

1√
k
− σ − 2

√
n| = |2

(√
n+ 1−√

n
)
−

∞∑
k=n+1

ηk| ≤ 3√
n
,

where the last inequality follows from
√
n+ 1−√

n ≤ 1√
n
. �

We will also use the following elementary inequality: for s > 1

ζ (s) ≤ 1+
∞∑
n=2

∫ n

n−1

1

ts
dt = 1+

∫ +∞

1

1

ts
ds = 1+ 1

s− 1
, (3.13)

where the inequality follows from 1
ns ≤ 1

ts , for n− 1 ≤ t ≤ n.

3.2 Preliminaries on multiplicative characters

In this section we consider the multiplicative characters of the ring Z/mZ, that
is, the characters of the multiplicative Abelian group U (Z/mZ) (see Section
1.4), where m is a positive integer. If ψ ∈ ̂U (Z/mZ) we extend it to the whole
Z/mZ by settingψ (x) = 0 if x ∈ Z/mZ is not invertible and then we think of it
as an m-periodic function defined on Z. More precisely, if ψ ∈ ̂U (Z/mZ), the
associatedDirichlet character χ = χψ is the function χ : Z → T ∪ {0} defined
by setting

χ (n) =
{
ψ (n) if gcd(n,m) = 1

0 otherwise,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.004
https://www.cambridge.org/core


3.2 Preliminaries on multiplicative characters 85

for all n ∈ Z, where, as usual, n ∈ Z/mZ denotes the class n+ mZ. Clearly,
χ (1) = ψ (1) = 1 and χ (nk) = χ (n)χ (k) for all k, n ∈ Z; thus a Dirichlet char-
acter is strictlymultiplicative (see (3.5)). The principal Dirichlet charactermod
m, denoted by χ0, is the extension of the trivial character, that is,

χ0(n) =
{
1 if gcd(n,m) = 1

0 otherwise,

for all n ∈ Z. We denote by DC(m) the set of all Dirichlet characters mod m.
From Corollary 1.5.3 and Corollary 2.3.4 we deduce that |DC(m)| = ϕ(m). If
0 ≤ n < m and gcd(n,m) = 1, we define a variant�n of the Dirac function, by
setting,

�n(k) =
{
1 if k ≡ n mod m

0 otherwise,
(3.14)

for all k ∈ Z. In other words,�n is the characteristic function of the class nmod
m. Clearly, for the Abelian multiplicative group U (Z/mZ) a Fourier analysis
(as described in Section 2.4) is still valid: we may translate it in terms of the
Dirichlet characters, as follows.

Proposition 3.2.1 If gcd(n,m) = 1, then, for all k ∈ Z,

�n(k) = 1

ϕ(m)

∑
χ∈DC(m)

χ (n)χ (k).

Proof. The Fourier transform of �n (assuming 0 < n ≤ m− 1) yields

�̂n(χ ) =
m−1∑
h=0

�n(h)χ (h) = χ (n),

for all χ ∈ DC(m). Then we may apply the Fourier inversion formula
(2.16). �

We now describe some specific technical results on the Dirichlet characters.
We begin with a cancellation property.

Lemma 3.2.2 Let χ ∈ DC(m). If χ �= χ0, then∣∣∣∣∣
n∑

k=1

χ (k)

∣∣∣∣∣ < m

for all n ∈ N.
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Proof. Indeed, the orthogonality relations for characters (Proposition 2.3.5)
yield

(h+1)m∑
k=hm+1

χ (k) =
(h+1)m∑
k=hm+1

χ (k)χ0(k) = 0,

for all h ∈ N. Therefore, if n = qm+ r, with 0 ≤ r < m, we have

n∑
k=1

χ (k) =
q−1∑
h=0

(h+1)m∑
k=hm+1

χ (k)+
qm+r∑

k=qm+1

χ (k) =
r∑

k=1

χ (k)

so that ∣∣∣∣∣
n∑

k=1

χ (k)

∣∣∣∣∣ ≤
r∑

k=1

|χ (k)| ≤ r < m.

�

Lemma 3.2.3 For all χ ∈ DC(m), χ �= χ0, and for all positive integers h < n,
we have the following asymptotic estimates:

n∑
k=h

χ (k)√
k

= O(
1√
h
); (3.15)

n∑
k=h

χ (k)

k
= O(

1

h
). (3.16)

Proof. First of all, by applying the mean value theorem to the function f (x) =
1√
x
we get

1√
k + 1

− 1√
k
= [(k + 1)− k] f ′(ξ ) = − 1

2ξ 3/2

for some ξ ∈ [k, k + 1] so that

0 ≤ 1√
k
− 1√

k + 1
≤ 1

2k
√
k
. (3.17)

Using (3.4) with zn = χ (n), wn = 1√
n
, and Zn =

∑n
k=1 χ (k), we have

n∑
k=h

χ (k)√
k

=
n−1∑
k=h

Zk

(
1√
k
− 1√

k + 1

)
+ Zn√

n
− Zh−1√

h
.

But, by Lemma 3.2.2, |Zk| ≤ m, so that (3.17) yields∣∣∣∣∣
n−1∑
k=h

Zk

(
1√
k
− 1√

k + 1

)∣∣∣∣∣≤ m

2

∞∑
k=h

1

k3/2
≤ m

2

∫ +∞

h−1

1

x3/2
dx = m√

h− 1
≤ 2m√

h
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for h ≥ 2, which, together with the trivial estimate
∣∣∣ Zn√n − Zh−1√

h

∣∣∣ ≤ 2m√
h
, proves

(3.15). The proof of (3.16) is similar, but now one uses the inequality (for h ≥ 2)

n−1∑
k=h

(
1

k
− 1

k + 1

)
≤

∞∑
k=h

1

k2
≤
∫ +∞

h−1

1

x2
dx = 1

h− 1
≤ 2

h
.

�

Definition 3.2.4 A Dirichlet character χ ∈ DC(m) is called real if χ (n) ∈ R
(so that χ (n) ∈ {−1, 0, 1}) for all n ∈ Z.

Lemma 3.2.5 If χ ∈ DC(m) is real, then, for all n ∈ N, we have

∑
k∈N:
k|n

χ (k) ≥
{
0 for all n ∈ N

1 if n is a square.

Proof. If n = ph, p prime, then the divisors of n are 1, p, . . . , ph−1, ph so that∑
k∈N:
k|n

χ (k) = χ (1)+ χ (p)+ · · · + χ (ph−1)+ χ (ph)

= χ (1)+ χ (p)+ · · · + χ (p)h−1 + χ (p)h

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h+ 1 if χ (p) = 1

1 if χ (p) = −1 and h is even

0 if χ (p) = −1 and h is odd

1 if χ (p) = 0.

Note also that χ (p) = 0 if and only if p|m. If n = ph11 p
h2
2 · · · phtt is the prime

factorization of n as the product of distinct primes, then∑
k∈N:
k|n

χ (k) =
t∏
j=1

[
χ (1)+ χ (pj )+ χ (pj )

2 + · · · + χ (p j )
h j
]

so that the sum in the left hand side vanishes if and only if χ (pj ) = −1 and h j
is odd for at least one j ∈ {1, 2, . . . , t}, otherwise the sum is ≥ 1. �

For the last result of this section, we make use of a simple technique devel-
oped by Dirichlet (but for another problem in number theory, the so-called divi-
sor problem; see [150]). For f : N × N → C and h ∈ N we set

Sh =
∑
n,k∈N:
nk≤h

f (n, k).
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We can write this sum in the following useful ways:

Sh =
h∑

�=1

∑
n,k∈N:
nk=�

f (n, k) (summation along hyperbolas)

=
h∑

n=1

h/n∑
k=1

f (n, k) (vertical summation)

=
h∑

k=1

h/k∑
n=1

f (n, k) (horizontal summation).

Proposition 3.2.6 Let χ ∈ DC(m), χ �= χ0, and suppose that χ is real. Set

f (n, k) = χ (k)√
nk

for all n, k ≥ 1 and

Sh =
∑
n,k∈N:
nk≤h

f (n, k)

for all h ≥ 1. Then there exists a constant c > 0 such that, for all h ≥ 1,

Sh ≥ c log h.

Proof. Using summation along hyperbolas, we get

Sh =
h∑

�=1

∑
n,k∈N:
nk=�

χ (k)√
nk

=
h∑

�=1

1√
�

∑
k∈N:
k|�

χ (k)

(by Lemma 3.2.5 and � = t2) ≥
√
h∑

t=1

1

t

(by Proposition 3.1.10.(i)) ≥ c log h,

for some c > 0 sufficiently small. �
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3.3 Dirichlet L-functions

Definition 3.3.1 Let m ∈ N and χ ∈ DC(m). The associated Dirichlet
L-function is the complex function L(·, χ ) defined by setting

L(s, χ ) =
∞∑
n=1

χ (n)

ns

for all s ∈ C where the series converges.

Since |χ (n)| ≤ 1 for all n ∈ N, the function L(s, χ ) is defined for all s ∈ C
with �s > 1, because for these values the series is absolutely convergent:∣∣∣∣χ (n)ns

∣∣∣∣ ≤ 1

n�s
.

We limit ourselves to give the most elementary properties of L-functions, fol-
lowing again our main reference [150]. More extensive treatments may be
found in [13, 81]. For instance, L(s, χ ) may be extended to an analytic (respec-
tively, meromorphic with just a simple pole at s = 1) to the whole C, if χ �= χ0

(respectively, χ = χ0).
From Theorem 3.1.8, since any χ ∈ DC(m) is strictly multiplicative, we

deduce that

L(s, χ ) =
∏

p prime

1

1− χ (p)p−s
(Dirichlet formula)

for all s ∈ Cwith�s > 1. In the case χ = 1, Dirichlet formula reduces to Euler
product formula (see (3.11)).

Proposition 3.3.2 Let m = ph11 p
h2
2 · · · phtt be the factorization of m into powers

of distinct primes, then

L(s, χ0) =
t∏
j=1

(1− p−sj ) · ζ (s),

for all s ∈ C with �s > 1.

Proof. Indeed, by Dirichlet formula,

L(s, χ0) =
∏

p prime:
p�m

1

1− p−s

since

χ0(p) =
{
1 if p � m

0 if p|m. �
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Following [150], we now focus our study to the case s ∈ R, that is, we ana-
lyze L(·, χ ) mainly as a function of a real variable. This leads to a more ele-
mentary and simpler proof and more specific statements. However, note that,
in general, L(s, χ ) ∈ C, even if s ∈ R.

Proposition 3.3.3 Let χ ∈ DC(m), χ �= χ0. Then

(i) L(s, χ ) converges for s > 0 and the convergence is uniform on each
compact subset of (0,+∞);

(ii) the map s �→ L(s, χ ) is C1(0,+∞);
(iii) for s→ +∞

L(s, χ ) = 1+O(2−s) and L′(s, χ ) = O(2−s).

Proof. (i) Set zk = χ (k) and wk = 1
ks in the summation by parts formula

(3.4). Then, Lemma 3.2.2 yields |Zn| ≤ m for all n ∈ N and therefore,
by (3.4), for 0 < h ≤ n and s > 0,∣∣∣∣∣

n∑
k=h

χ (k)

ks

∣∣∣∣∣ ≤
n−1∑
k=h

m

[
1

ks
− 1

(k + 1)s

]
+ m

hs
+ m

ns
= 2m

hs

which tends to 0 as h→ +∞. Then, by the Cauchy criterion, the series
defining L(s, χ ) converges at all s > 0 and, moreover, it converges uni-
formly on each compact set in (0,+∞), by Proposition 3.1.5.

(ii) First of all, note that if we set g(x) = x−s log x for x > 0, then g′(x) =
x−s−1(1− s log x) and, for x > 1,

|g′(x)| ≤ x−s−1(1+ s log x)

= x−s−1 + x−s−1 log xs

≤ 3x−1−s/2

since x−s ≤ x−s/2 and log xs = 2 log xs/2 ≤ 2xs/2, for x > 1 and s > 0.
By the mean value theorem, it follows that, for k ∈ N,∣∣∣∣ log kks − log(k + 1)

(k + 1)s

∣∣∣∣ ≤ max
[k,k+1]

g′(x) ≤ 3

k1+s/2
. (3.18)

Then, by differentiating the series defining L(s, χ ) we get

L′(s, χ ) =
∞∑
n=2

− log n

ns
χ (n).
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Setting zk = χ (k) and wk = log k
ks in (3.4) and using |Zk| ≤ m as in (i),

we get∣∣∣∣∣
n∑

k=h
− log k

ks
χ (k)

∣∣∣∣∣ ≤
n−1∑
k=h

m

∣∣∣∣ log(k + 1)

(k + 1)s
− log k

ks

∣∣∣∣+ m
log h

hs
+ m

log n

ns

(by (3.18)) ≤ 3m
n−1∑
k=h

1

k1+s/2
+ m

log h

hs
+ m

log n

ns

which tends to 0 uniformly in s ∈ [δ,+∞), δ > 0, as h < n tend to+∞.
In other words, uniform convergence of

∑∞
k=1

1
k1+s/2 in [δ,+∞), δ > 0,

together with the Cauchy criterion, ensures uniform convergence of the
series of L′(s, χ ).

(iii) Fix s0 > 1 and setC =∑∞
n=2

1
ns0 . Then for s ≥ s0 we have

|L(s, χ )− 1| ≤
∞∑
n=2

1

ns

= 2−s
∞∑
n=2

1

(n/2)s

≤ 2−s
∞∑
n=2

1

(n/2)s0

= 2s0C2−s = O(2−s).

Similarly,

∣∣L′(s, χ )∣∣ ≤ ∞∑
n=2

log n

ns
= 2−s

∞∑
n=2

log n

(n/2)s
= O(2−s). �

Remark 3.3.4 Actually, from Proposition 3.3.3.(i) and elementary complex
analysis, a stronger result than Proposition 3.3.3.(ii) follows, namely, that
L(s, χ ) is analytic on {s ∈ C : �s > 0}; see [88]. But, as mentioned at the
beginning of this section, this is not the strongest result: L(s, χ ) has an ana-
lytic continuation on the whole C, if χ �= χ0.

Corollary 3.3.5 For χ ∈ DC(m), χ �= χ0, the integral∫ +∞

s

L′(t, χ )
L(t, χ )

dt

is convergent for all s > 1.
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92 Dirichlet’s theorem on primes in arithmetic progressions

Proof. From Proposition 3.3.3.(iii) it follows that

L′(t, χ )
L(t, χ )

= O(2−t )

as t → +∞. Note also that L(t, χ ) �= 0 for t > 1, by Proposition 3.1.3 and
Dirichlet product formula. �

Proposition 3.3.6 For s > 1 and χ �= χ0, define the logarithm of L(s, χ ) by
setting

logL(s, χ ) = −
∫ +∞

s

L′(t, χ )
L(t, χ )

dt.

Then, for s > 1, we have

exp[log L(s, χ )] = L(s, χ ), (3.19)

logL(s, χ ) =
∑

p prime

log
1

1− χ (p)p−s
(3.20)

where the logarithm in the right hand side is defined by means of (3.1), and

∏
χ∈DC(m)

L(s, χ ) = exp

⎡⎣ϕ(m) ∑
p prime

∞∑
k=1

�1(pk )

kpks

⎤⎦ , (3.21)

where �1 is as in (3.14).

Proof. We have

d

ds
{L(s, χ ) exp[− log L(s, χ )]} = L′(s, χ ) exp[− logL(s, χ )]

− L(s, χ ) · L
′(s, χ )
L(s, χ )

exp[− log L(s, χ )]

= 0

and by Proposition 3.3.3.(iii),

lim
s→+∞L(s, χ ) exp[− logL(s, χ )] = 1.

Since the argument of the above limit is constant, (3.19) follows.
We now prove (3.20). First of all, we note that by Proposition 3.1.1.(iv) and

Proposition 3.1.3, the series at the right hand side is uniformly convergent on
each interval [δ,+∞), δ > 1, so that it is continuous in (1,+∞). Moreover,
for s > 1, the exponential of both sides of (3.20) is equal to L(s, χ ). Indeed, for
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the left hand side this follows from (3.19), while, for the right hand side,

exp

⎡⎣ ∑
p prime

log
1

1− χ (p)p−s

⎤⎦ =
∏

p prime

1

1− χ (p)p−s
= L(s, χ ),

where the first equality follows from (3.3) and the second from Dirichlet prod-
uct formula. Since exp has imaginary period equal to 2π , it follows that there
exists an integer valued function h such that

logL(s, χ ) =
∑
p prime

log
1

1− χ (p)p−s
+ 2π ih(s).

But h is continuous, because both sides of (3.20) are continuous, and therefore
it is constant. Since both sides of (3.20) tend to zero for s→ +∞, this constant
is equal to zero, and (3.20) is proved.
We now turn to the proof of (3.21). By (3.20) we have:

∏
χ∈DC(m)

L(s, χ ) = exp

⎡⎣ ∑
χ∈DC(m)

∑
p prime

log
1

1− χ (p)p−s

⎤⎦
= exp

⎡⎣ ∑
p prime

∑
χ∈DC(m)

log
1

1− χ (p)p−s

⎤⎦
(by (3.1)) = exp

⎡⎣ ∑
p prime

∑
χ∈DC(m)

∞∑
k=1

χ (pk )

kpks

⎤⎦
= exp

⎡⎣ ∑
p prime

∞∑
k=1

1

kpks
∑

χ∈DC(m)
χ (pk )

⎤⎦
(by Proposition 3.2.1) = exp

⎡⎣ϕ(m) ∑
p prime

∞∑
k=1

�1(pk )

kpks

⎤⎦ .

�

Corollary 3.3.7 For s > 1 the product in the left hand side of (3.21) is real and
satisfies ∏

χ∈DC(m)
L(s, χ ) ≥ 1. (3.22)

Proof. The argument of the exponential in the right hand side of (3.21) is real
and non-negative. �
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Lemma 3.3.8 With the assumptions and notation as in Proposition 3.2.6 we
have:

Sh = 2
√
hL(1, χ )+O(1).

Proof. We partition Ah = {(n, k) ∈ N × N : nk ≤ h}, the summation region in
the definition of Sh, into the regions

A(1)
h =

{
(n, k) ∈ N × N : 1 ≤ n ≤

√
h,
√
h < k ≤ h

n

}
and

A(2)
h =

{
(n, k) ∈ N × N : 1 ≤ k ≤

√
h, 1 ≤ n ≤ h

k

}
.

Correspondingly, Sh = S(1)h + S(2)h , where

S(1)h =
∑

(n,k)∈A(1)
h

χ (k)√
nk

=
∑
n≤√h

1√
n

⎛⎝ ∑
√
h<k≤ h

n

χ (k)√
k

⎞⎠
(the last equality follows from vertical summation) and

S(2)h =
∑

(n,k)∈A(2)
h

χ (k)√
nk

=
∑

1≤k≤√h

χ (k)√
k

⎛⎝∑
n≤ h

k

1√
n

⎞⎠
(the last equality follows from horizontal summation). Then

∣∣∣S(1)h

∣∣∣ ≤ ∑
n≤√h

1√
n

∣∣∣∣∣∣
∑

√
h<k≤ h

n

χ (k)√
k

∣∣∣∣∣∣
(by (3.15)) =

∑
n≤√h

1√
n
O
(

1
4
√
h

)
(by Proposition 3.1.10.(ii)) = O(1),

(3.23)

and, by Proposition 3.1.10.(ii),

S(2)h =
∑

1≤k≤√h

χ (k)√
k

[
2

√
h

k
+ σ +O

(√
k

h

)]

= 2
√
hL(1, χ )+O(1)

(3.24)
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where in the last equality we have used the following estimates:

2
√
h
∑

1≤k≤√h

χ (k)

k
= 2

√
hL(1, χ )− 2

√
h
∑
k>

√
h

χ (k)

k

(by (3.16)) = 2
√
hL(1, χ )+ 2

√
h O
(

1√
h

)
= 2

√
hL(1, χ )+O(1),

by (3.15)

σ
∑

1≤k≤√h

χ (k)√
k

= O(1),

and, finally, for some constantC > 0,∣∣∣∣∣∣
∑

1≤k≤√h

χ (k)√
k

O
(√

k

h

)∣∣∣∣∣∣ ≤ C√
h

∣∣∣∣∣∣
∑

1≤k≤√h
χ (k)

∣∣∣∣∣∣ = O(1).

From (3.23) and (3.24) the proof immediately follows. �

We are now in a position to state and prove the main technical result in the proof
of the Dirichlet Theorem. Most of the preliminary results will be used, directly
or indirectly, in its proof.

Theorem 3.3.9 (Dirichlet) Let χ ∈ DC(m) and suppose that χ �= χ0. Then

L(1, χ ) �= 0.

Proof. First of all, we establish two simple inequalities. If L(1, χ ) = 0 then
there existsC1 > 0 such that

|L(s, χ )| ≤ C1|s− 1| (3.25)

for 1 ≤ s ≤ 2 (this follows from the mean value theorem; recall also Proposi-
tion 3.3.3.(ii)), and there existsC2 > 0 such that

|L(s, χ0)| ≤ C2

|s− 1| (3.26)
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for 1 < s ≤ 2. Indeed, by Proposition 3.3.2 we have

|L(s, χ0)| ≤
t∏
j=1

|1− p−sj | · |ζ (s)|

(by (3.13)) ≤ C

(
1+ 1

s− 1

)
≤ C2

s− 1
,

where C = max1≤s≤2
∏t

j=1 |1− p−sj | and C2 = 2C. The rest of the proof is
divided into two cases.
First case: χ is complex, that is χ (n) ∈ C \ R for some n ∈ Z. Therefore, χ �=
χ . By contradiction, assume L(1, χ ) = 0. Then also L(1, χ ) = L(1, χ ) = 0.
But then, taking into account (3.22), (3.25), (3.26), and the notation therein,
we have, for 1 < s ≤ 2,

1 ≤
∏

χ ′∈DC(m)
L(s, χ ′) = L(s, χ )L(s, χ )L(s, χ0) ·

∏
χ ′∈DC(m):
χ ′ �=χ,χ,χ0

L(s, χ ′)

≤ C2
1 |s− 1|2 · C2

|s− 1| ·C3 = C1C2C3|s− 1|,

where C3 > 0 is a constant (cf. Proposition 3.3.3), a contradiction.
Second case χ �= χ0 is real valued, that is, χ (n) ∈ {−1, 0, 1} for all n ∈ Z. On
the one hand, by Proposition 3.2.6 and the notation therein, we have

Sh ≥ c log h

while, on the other hand, by Lemma 3.3.8, we have

Sh =
√
hL(1, χ )+O(1).

This clearly leads to a contradiction if L(1, χ ) = 0. �

3.4 Euler’s theorem

In this section we present a celebrated theorem of Euler.We begin with a further
technical result, which is a consequence of Theorem 3.3.9.

Theorem 3.4.1 Let χ ∈ DC(m). If χ �= χ0 then∑
p prime

χ (p)

ps
= O(1)

for s→ 1+.
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Proof. By virtue of (3.20), for s→ 1+ we have

logL(s, χ ) =
∑
p prime

log
1

1− χ (p)p−s

(by Proposition 3.1.1.(iii)) =
∑
p prime

χ (p)

ps
+O

⎛⎝ ∑
p prime

1

p2s

⎞⎠
=
∑
p prime

χ (p)

ps
+O(1).

On the other hand, since L′(t, χ ) and L(t, χ ) are continuous in (0,+∞) (Propo-
sition 3.3.3) and L(1, χ ) �= 0 (Theorem 3.3.9), by Corollary 3.3.5 and Propo-
sition 3.3.6 we have

logL(s, χ ) = −
∫ +∞

s

L′(t, χ )
L(t, χ )

dt = O(1)

for s→ 1+. �

We are now in a position to state and prove Euler’s theorem. We give two
proofs: the first one is Euler’s original proof and follows from some of the
results in the preceding sections; the second proof is due to Erdős and it is
more elementary but based on a clever trick ([60]; see also [5]).

Theorem 3.4.2 (Euler) ∑
p prime

1

p
= +∞.

Euler’s proof For s > 1 the zeta function ζ (s) is real valued and, by virtue of
Euler product formula (3.11), we have (here log is the usual real function)

log ζ (s) =
∑
p prime

log
1

1− p−s

(by Proposition 3.1.1.(iii)) =
∑
p prime

[
1

ps
+ R

(
1

ps

)]
.

Moreover, again from Proposition 3.1.1.(iii) we deduce that∣∣∣∣∣∣
∑
p prime

R

(
1

ps

)∣∣∣∣∣∣ ≤
∑
p prime

1

p2s
≤

∞∑
n=1

1

n2
= π2

6
.
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Therefore, ∑
p prime

1

ps
≥ log ζ (s)− π2

6

which tends to +∞ for s→ 1+, since ζ (s) =∑∞
n=1

1
ns tends to +∞ for

s→ 1+. �
Erdős’ proof By contradiction, assume that∑

p prime

1

p
< +∞.

Then there exists a partition P
∐
Q of the set of all primes such that P is finite

and ∑
p∈Q

1

p
<

1

2
. (3.27)

For n ∈ N, set

An = {k ∈ N : k ≤ n, k is divisible by at least one prime in Q}

Bn = {k ∈ N : k ≤ n, k is divisible only by primes in P}.
Clearly,

{1, 2, . . . , n} = An
∐

Bn. (3.28)

From (3.27) we get

|An| ≤
∑
p∈Q

n

p
<
n

2
(3.29)

because if p ∈ Q, then the multiples of p less than or equal to n are at most n/p.
We now estimate the cardinality of Bn.

We uniquely write each k ∈ Bn as the product of a square and a square-free
integer

k = s2krk,

in other words sk is the largest divisor of k such that s2k divides k. We first note
that there are at most 2|P| possible choices for rk (this is a product of all primes
in P each with exponent 0 or 1). Moreover, it is clear that sk ≤

√
k ≤ √

n so
that, altogether

|Bn| ≤ 2|P|
√
n. (3.30)
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Then for

n = 22|P|+4

we have 2|P| =
√
n
4 and therefore, by virtue of (3.28),

n = |An| + |Bn|
(by (3.29) and (3.30)) ≤ n

2
+ 2|P|

√
n

= n

2
+ n

4
= 3

4
n,

a contradiction. �

3.5 Dirichlet’s theorem

Theorem 3.5.1 (Dirichlet’s theorem on primes in arithmetic progressions)
Let m, r ∈ N and suppose that gcd(m, r) = 1. Then the arithmetic progression

r, r + m, r + 2m, r + 3m, . . . , r + km, . . .

contains infinitely many primes.

Proof. We show that

lim
s→1+

∑
p prime:

p≡r mod m

1

ps
= +∞, (3.31)

fromwhich it immediately follows that the set {p prime: p ≡ r mod m} is infi-
nite. (3.31) is clearly a generalization of Theorem 3.4.2, but it requires a lot
more work. The first step is the use of the discrete Fourier inversion formula in
Proposition 3.2.1 (with n = r and k = p): for s > 1 we have∑

p prime:
p≡r mod m

1

ps
=
∑
p prime

�r(p)

ps

= 1

ϕ(m)

∑
χ∈DC(m)

χ (r)
∑
p prime

χ (p)

ps

(since χ0(r) = 1) = 1

ϕ(m)

∑
p prime

χ0(p)

ps
+ 1

ϕ(m)

∑
χ∈DC(m)
χ �=χ0

χ (r)
∑
p prime

χ (p)

ps
.
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Now, on the one hand, by Euler’s theorem (Theorem 3.4.2) and the fact that
there are only finitely many primes p dividing m,∑

p prime

χ0(p)

ps
=
∑
p�m

1

ps
→ +∞

for s→ 1+. On the other hand, for χ �= χ0 Theorem 3.4.1 ensures that the
quantity

∑
p prime

χ (p)
ps is bounded for s→ 1+. �

Remark 3.5.2 One of the most important and difficult results in number theory
proved in recent years is the celebrated Green-Tao theorem [67], which states
that the set of prime numbers contains arbitrarily long arithmetic progressions.
This may be considered as a kind of “reciprocal” of Dirichlet’s theorem, which
ensures that certain arithmetic progressions contain infinitelymany primes. The
Green-Tao theorem, also, is a particular case of a celebrated conjecture, due to
Erdős, on arithmetic progressions, which states that if A is an infinite subset of
N such that

∑
n∈A 1/n = +∞, then A contains arbitrarily long arithmetic pro-

gressions. Other particular cases of Erdős’ conjecture are the celebrated theo-
rems of Roth [131] and Szemerédi [155, 156], which we do not state here but
for which we refer to the expository paper by Tao [158]. We only mention that
Erdős’ conjecture is still open and that a prize of 3000 USD is offered for its
proof or disproof.
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4

Spectral analysis of the DFT and
number theory

In this chapter, following [104] and the exposition in [15], we present the spec-
tral analysis of the normalized Fourier transform on Zn (cf. Exercise 2.4.13).
In the last two sections, as an application, we recover some classical results
in number theory due to Gauss and Schur, including the celebrated law of
quadratic reciprocity.

4.1 Preliminary results

We will use the notation and convention as in the beginning of Section 2.2.
This way, the normalized Fourier transform F : L(Zn) → L(Zn) is given by

[F f ](m) = 1√
n

n−1∑
k=0

f (k)ω−km

for all f ∈ L(Zn) and m ∈ Zn; see Definition 2.4.1.
Similarly, the corresponding inverse Fourier transform F−1 : L(Zn) →

L(Zn) is given by

[F−1 f ](m) = 1√
n

n−1∑
k=0

f (k)ωkm

for all f ∈ L(Zn) and m ∈ Zn. Note also that now Proposition 2.4.6.(iv)
becomes

F ( f1 ∗ f2) =
√
n F ( f1)F ( f2).

Recall (cf. Definition 2.4.14) that for f ∈ L(Zn) we denote by f− ∈ L(Zn)
the function defined by f−(x) = f (−x) for all x ∈ Zn.
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102 Spectral analysis of the DFT and number theory

Lemma 4.1.1 (i) F−1F = FF−1 = idL(Zn ).
(ii) F and F−1 are unitary operators.
(iii) F2 f = f− for all f ∈ L(Zn).
(iv) Fχm = √

nδm for all m ∈ Zn.
(v) Fδm = 1√

n
χ−m = 1√

n
χn−m.

Proof. (i) and (ii) are just a reformulation of the Fourier inversion formula (The-
orem 2.4.2) and the Plancherel formula (Theorem 2.4.3), respectively; they
can also be immediately deduced from the orthogonality relations (Proposition
2.3.5).
(iii) Let f ∈ L(Zn) and m ∈ Zn. Then

[F2 f ](m) = 1

n

n−1∑
h=0

(
n−1∑
k=0

f (k)ω−kh
)
ω−hm

=
n−1∑
k=0

f (k)
1

n

n−1∑
h=0

χ−k(h)χm(h)

(by (2.7)) =
n−1∑
k=0

f (k)δ0(−k − m)

= f (−m).
(iv) Let m, h ∈ Zn. Then

[Fχm](h) = 1√
n

n−1∑
k=0

χm(k)χh(k)

(by (2.7)) = 1√
n
nδ0(m− h)

= √
nδm(h).

(v) Let m, h ∈ Zn. Then

[Fδm](h) = 1√
n

n−1∑
k=0

δm(k)ω
−hk

= 1√
n
ω−mh

= 1√
n
χ−m(h). �

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.005
https://www.cambridge.org/core


4.1 Preliminary results 103

Proposition 4.1.2 Let m ∈ Zn.

(i) F4 = idL(Zn );
(ii) F2δm = δ−m ≡ δn−m;
(iii) F2χm = χ−m ≡ χn−m.

Proof. (i), (ii), and (iii) follow immediately from Lemma 4.1.1 after observing
that ( f−)− = f for all f ∈ L(Zn), (χm)− = χ−m, and (δm)− = δ−m. �

Theorem 4.1.3 The characteristic polynomial p(λ) ∈ C[λ] of F2 is given
by

p(λ) =
{
(λ− 1)

n+1
2 (λ+ 1)

n−1
2 if n is odd

(λ− 1)
n+2
2 (λ+ 1)

n−2
2 if n is even.

Proof. By virtue of Proposition 4.1.2.(ii), the matrix An ∈ Mn(C) representing
F2 in the basis {δ0, δ1, . . . , δn−1} is given by

An =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0

0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

For 1 ≤ k ≤ n− 1 define Bk ∈ Mk(C) by setting

Bk =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 0 · · · 0

1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then

det(λIn − An) = (λ− 1) det(λIn−1 − Bn−1) (4.1)
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104 Spectral analysis of the DFT and number theory

and

det(λIn−1 − Bn−1) =

⎛⎜⎜⎜⎜⎜⎝
λ 0 · · · 0 −1
0 λ · · · −1 0
...

...
. . .

...
...

0 −1 · · · λ 0
−1 0 · · · 0 λ

⎞⎟⎟⎟⎟⎟⎠

= λ

⎛⎜⎜⎜⎝
λ · · · −1 0
...

. . .
...

...
−1 · · · λ 0
0 · · · 0 λ

⎞⎟⎟⎟⎠+(−1)n−2

⎛⎜⎜⎜⎝
0 λ · · · −1
...

...
...

...
0 −1 · · · λ

−1 0 · · · 0

⎞⎟⎟⎟⎠
= λ2 det(λIn−3 − Bn−3)+ (−1)2n−5 det(λIn−3 − Bn−3)

= (λ2 − 1) det(λIn−3 − Bn−3)

so that, keeping in mind (4.1),

det(λIn − An) = (λ2 − 1)(λ− 1) det(λIn−3 − Bn−3)

= (λ2 − 1) det(λIn−2 − An−2).

Since

det(λI3 − A3) =
∣∣∣∣∣∣
λ− 1 0 0
0 λ −1
0 −1 λ

∣∣∣∣∣∣ = (λ− 1)(λ2 − 1) = (λ− 1)2(λ+ 1)

and

det(λI2 − A2) =
∣∣∣∣λ− 1 0

0 λ− 1

∣∣∣∣ = (λ− 1)2,

the statement follows by induction. �

By virtue of Proposition 4.1.2.(i), the minimal polynomial ofF divides λ4 −
1, and therefore its eigenvalues are among ±1,±i; see [91] for the relations
among eigenvalues and the minimal polynomial. Let us show that from the
trace TrF of F we can recover the geometric/algebraic multiplicity of these
eigenvalues.

Proposition 4.1.4 Suppose that Tr(F ) = α + iβ. Denote by m1 (respectively
m2, m3, m4) the multiplicity of 1 (respectively−1, i,−i). If n is odd (respectively
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4.1 Preliminary results 105

even), then the mi’s constitute the unique solution of the linear system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m1 − m2 = α

m3 − m4 = β

m1 + m2 = n+1
2 (respectively n+2

2 )

m3 + m4 = n−1
2 (respectively n−2

2 ).

Proof. By definition of the trace, we immediately have Tr(F ) = m1 − m2 +
i(m3 − m4): this explains the first two equations. Moreover, m1 + m2 (respec-
tively m3 + m4) is the multiplicity of 1 (respectively −1) as an eigenvalue of
F2. Thus the last two equations follow from Theorem 4.1.3. �

In what follows, for x ∈ R, we denote by [x] ∈ Z the greatest integer less
than or equal to x. Setting ν = [n/2]+ 1 we consider the functions

δ0 and δ j + δn− j for j = 1, 2, . . . , ν − 1 (4.2)

and

δk − δn−k for k = 1, 2, . . . , n− ν. (4.3)

For example, if n = 4 then ν = 3 and the functions in (4.2) are δ0, δ1 + δ3 ≡
δ1 + δ−1, and 2δ2 ≡ δ2 + δ−2 (note that these are even functions), while there
is only one in (4.3), namely δ1 − δ3 ≡ δ1 − δ−1 (note that this is, in turn, an odd
function).
If n = 5, then ν = 3 and the functions in (4.2) are δ0, δ1 + δ4 ≡ δ1 − δ−1, and

δ2 + δ3 ≡ δ2 + δ−2 (note that these are even functions), while those in (4.3) are
δ1 − δ4 ≡ δ1 − δ−1, and δ2 − δ3 ≡ δ2 − δ−2 (note that these are, in turn, odd
functions).
Note that, more generally, if n = 2h is even, then ν = h+ 1 and δν−1 +

δn−ν+1 = δh + δ−h = 2δh.
Moreover, we observe that ν − 1 = [n/2] ≤ n/2, and j ≤ n− j ⇔ j ≤ n/2

(respectively n− ν = n− 1− [n/2] < n/2, and k < n− k ⇔ k < n/2). It fol-
lows that the n functions in (4.2) and (4.3) are all distinct and nontrivial.
Let L+(Zn) ⊆ L(Zn) (respectively L−(Zn) ⊆ L(Zn)) denote the subspace of

complex valued even (respectively odd) functions on Zn.

Proposition 4.1.5 The functions in (4.2) are even, i.e. belong to L+(Zn), while
those in (4.3) are odd, i.e. belong to L−(Zn). Moreover, the functions in (4.2)
and (4.3) altogether form an orthogonal basis of the whole L(Zn). In particular,
we have the orthogonal decomposition

L(Zn) = L+(Zn)⊕ L−(Zn) (4.4)
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106 Spectral analysis of the DFT and number theory

and dimL+(Zn) = ν and dimL−(Zn) = n− ν. Moreover, (4.4) is the spectral
decomposition ofF2: L+(Zn) is the eigenspace corresponding to 1 and L−(Zn)
is the eigenspace corresponding to −1.

Proof. Since δs(−t ) = δ−s(t ) = δn−s(t ) for all s, t ∈ Zn, it is clear that the
functions in (4.2) (respectively (4.3)) are even (respectively odd). The mutual
orthogonality of functions in (4.2) (respectively (4.3)) is obvious since their
supports are disjoint. On the other hand, any function in (4.2) is orthogonal
to any function in (4.3) since either their supports are disjoint, or they have
the same support, say {s, t}, and then 〈δs + δt, δs − δt〉 = 〈δs, δs〉 − 〈δt, δt〉 = 0.
Finally, it is clear that n orthogonal functions constitute a basis of L(Zn). The
remaining statements are now clear; in particular, the last statement follows
from Lemma 4.1.1.(iii) or from Proposition 4.1.2.(ii). �

Lemma 4.1.6 Let f ∈ L(Zn) be an eigenvector of F . Then either f is even and
its associated eigenvalue is 1 or −1, or f is odd and its associated eigenvalue
is i or −i.
Proof. Let λ denote the eigenvalue associated with f , that is, F f = λ f . Then
F2 f = λ2 f . We now express f in the basis in Proposition 4.1.5, that is,

f = a0δ0 +
ν−1∑
j=1

a j(δ j + δn− j )+
n−ν∑
k=1

bk(δk − δn−k )

with a0, a1, . . . , aν−1, b1, b2, . . . , bn−ν ∈ C. Then, by Proposition 4.1.2.(ii) we
have

F2 f = a0δ0 +
ν−1∑
j=1

a j(δ j + δn− j )−
n−ν∑
k=1

bk(δk − δn−k )

so that the condition F2 f = λ2 f yields

a0δ0 +
ν−1∑
j=1

a j(δn− j + δ j )−
n−ν∑
k=1

bk(δk − δn−k )

= λ2a0δ0 +
ν−1∑
j=1

λ2a j(δ j + δn− j )+
n−ν∑
k=1

λ2bk(δk − δn−k ) (4.5)

that is,

(λ2 − 1)aj = 0 for j = 0, 1, . . . , ν − 1

(λ2 + 1)bk = 0 for k = 1, 2 . . . , n− ν.
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4.2 The decomposition into eigenspaces 107

It follows that if λ = ±i then a j = 0 for j = 1, 2, . . . , ν − 1, and therefore f
is odd, while if λ = ±1 then bk = 0 for k = 1, 2, . . . , n− ν, and therefore f is
even. �
Exercise 4.1.7 Let ν = [n/2]+ 1 as above. Let f ∈ L(Zn).
Show that if f is even, then

F f (m) = 1√
n
f (0)+ 2√

n

ν−2∑
k=1

f (k) cos
2kmπ

n

+
{

2√
n
f (ν − 1) cos 2(ν−1)mπ

n if n is odd
1√
n
f (ν − 1)(−1)m if n is even

(4.6)

for all m ∈ Zn, and F f = F−1 f .
Show that if f is odd, then

F f (m) = −2i√
n

n−ν∑
k=1

f (k) sin
2kmπ

n

for all m ∈ Zn, and F−1 f = −F f .

Exercise 4.1.8 (cf. [55])

(1) Suppose that F ∈ L(Zn) is even and define T ∈ End(L(Zn)) by setting

[T f ](x) = [ f ∗ F](x)+√
n[FF](x) f (x)

for all f ∈ L(Zn) and x ∈ Zn. Show that

TF = FT.

(2) Deduce from (1) that the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 · · · 0 0 1
1 2 cos 2π

n 1 0 · · · 0 0 0
0 1 2 cos 4π

n 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 2 cos 2(n−2)π

n 1
1 0 0 0 · · · 0 1 2 cos 2(n−1)π

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
commutes with the matrix (2.22) of the Fourier transform.

4.2 The decomposition into eigenspaces

This section and the next one are among the most important sections of the
book. We achieve a complete spectral theory of the DFT on Zn by showing a
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108 Spectral analysis of the DFT and number theory

decomposition into eigenspaces together with a careful computation of their
dimensions.
Let us now set

W1 = {Fg+ g : g ∈ L+(Zn)}
W2 = {Fg− g : g ∈ L+(Zn)}
W3 = {iFg− g : g ∈ L−(Zn)}
W4 = {iFg+ g : g ∈ L−(Zn)}.

Theorem 4.2.1 For the Fourier transform F the following holds:

� W1 is the eigenspace corresponding to 1
� W2 is the eigenspace corresponding to −1
� W3 is the eigenspace corresponding to i
� W4 is the eigenspace corresponding to −i
so that

L+(Zn) =W1 ⊕W2 and L−(Zn) =W3 ⊕W4

and therefore

L(Zn) =W1 ⊕W2 ⊕W3 ⊕W4

is the decomposition of L(Zn) into the eigenspaces of F .

Proof. First of all, we show that each Wj, j = 1, 2, 3, 4, is an eigenspace.
Indeed, if g ∈ L+(Zn) then, by virtue of Lemma 4.1.1.(iii),F2g= g, and there-
fore the functions f+ = Fg+ g ∈W1 and f− = Fg− g ∈W2 satisfy:

F f± = F (Fg± g)

= g± Fg
= ±(Fg± g)

= ± f±.

Similarly, if g ∈ L−(Zn) then, again by virtue of Lemma 4.1.1.(iii), F2g= −g,
so that the functions fi = iFg− g ∈W3 and f−i = iFg+ g ∈W4 satisfy:

F f±i = F (iFg∓ g)

= −ig∓ Fg
= ±i(iFg∓ g)

= ±i f±i.
For the converse, we use repeatedly Lemma 4.1.6. Thus, if F f = f , then f

is even and f = Fg+ g, with g= 1
2 f ∈ L+(Zn); if F f = − f , then f is still

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.005
https://www.cambridge.org/core


4.2 The decomposition into eigenspaces 109

even and f = Fg− gwith g= − 1
2 f ∈ L+(Zn); if F f = i f , then f is odd and

f = iFg− gwith g= − 1
2 f ∈ L−(Zn); finally, if F f = −i f , then f is odd and

f = iFg+ gwith g= 1
2 f ∈ L−(Zn).

Since F is unitary, L(Zn) can be expressed as the direct orthogonal sum of
its eigenspaces and the remaining statements are trivial. �

Exercise 4.2.2 LetW be a finite dimensional Hermitian space and T : W →W
a unitary operator. Suppose that T 4 = IW . Show that the eigenspaces of T 2 may
be used to construct the eigenspaces of T as in Theorem 4.2.1.

Exercise 4.2.3 LetW be a finite dimensional Hermitian space and T : W →W
a unitary operator. Suppose that Tn = IW for some positive integer n and let ω
be an n-th root of unity.

(1) Show that a vector w ∈W satisfies Tw = ωw if and only if there exists
v ∈W such that

w = Tn−1v + ωTn−2v + · · · + ωn−1v .

(2) Suppose that n = hk with 1 < h, k < n and set S = Th (so that Sk =
I). Show that w ∈W satisfies Tw = ωw if and only if w = Th−1v +
ωTh−2v + · · · + ωh−1v for some v ∈W such that Sv = ωhv .

We are now in a position to exhibit suitable bases for the spacesW1,W2,W3,
andW4 in Theorem 4.2.1. One of themain tools is the notion of a Chebyshëv set:
we refer to theAppendix for the corresponding definition and related properties.
Moreover, we work separately on each of the spacesW1,W2,W3, andW4, and
we summarize the results in Theorem 4.3.1. In particular, for each space we
consider four different cases, corresponding to the congruence modulo 4 of n.

Theorem 4.2.4 Let n = 4m+ r, with r ∈ {0, 1, 2, 3}. Then the functions
u0, u1, . . . , um ∈W1 defined by setting

u0 =
√
n(Fδ0 + δ0),

uj =
√
n

2
[F (δ j + δ− j )+ δ j + δ− j]

for j = 1, 2, . . . ,m− 1, and

um =

⎧⎪⎪⎨⎪⎪⎩
√
n(Fδ2m + δ2m) if n = 4m√
n
2 [F (δ2m + δ−2m)+ δ2m + δ−2m] if n = 4m+ 1√
n
2 [F (δm + δ−m)+ δm + δ−m] if n = 4m+ 2, 4m+ 3

are linearly independent.
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Proof. We divide the proof into the four cases corresponding to the possible
values of r.
n = 4m. It suffices to show that the restrictions of u0, u1, . . . , um to the set
{m,m+ 1, . . . , 2m} ⊆ Zn are linearly independent. Therefore, we consider the
(m+ 1)-dimensional vectors:

z j = (u j(m), u j(m+ 1), . . . , uj(2m)) (4.7)

for j = 0, 1, . . . ,m. By virtue of Lemma 4.1.1.(v) we have:

� u0 = χ0 +√
nδ0 and therefore z0 = (1, 1, . . . , 1);

� u j = 1
2 (χ j + χ− j )+

√
n
2 (δ j + δ− j ) and therefore, since 1

2 (χ j + χ− j )(m+
k) = cos π j(m+k)

2m ,

z j =
(
cos

π

2
j, cos

π (m+ 1)

2m
j, . . . , cos

π (m+ k)

2m
j, . . . , cos(π j)

)
for j = 1, 2, . . . ,m− 1;

� um = χ2m +√
nδ2m and, since χ2m(m+ k) = cosπ (m+ k)+ i sinπ (m+

k) = (−1)m+k,

zm = ((−1)m, (−1)m+1, . . . , (−1)2m−1, 1+√
n).

We conclude by using Proposition A.2.(ii) applied to the Chebyshëv set
{1, cos θ, . . . , cos(m− 1)θ} (cf. Proposition A.3) with tk = π (m+k)

2m , for
k = 0, 1, . . . ,m.

n = 4m+ 1. Following the previous case, we consider again the vectors (4.7):

� z0 = (1, 1, . . . , 1);
� since 1

2 (χ j + χ− j )(m+ k) = cos 2π (m+k)
4m+1 j,

z j=
(
cos

2mπ

4m+ 1
j, cos

2π (m+ 1)

4m+ 1
j, . . . , cos

2π (m+ k)

4m+ 1
j, . . . , cos

4mπ

4m+ 1
j

)
for j = 1, 2, . . . ,m− 1 ;

� since 1
2 (χ2m + χ−2m)(k + m) = cos 4m(m+k)π

4m+1 ,

zm=
(
cos

4m2π

4m+ 1
, cos

4m(m+ 1)π

4m+ 1
, . . . , cos

4m(2m− 1)π

4m+ 1
, cos

8m2π

4m+ 1
+
√
n

2

)
.

Thus we can conclude as in the previous case by taking tk = 2π (m+k)
4m+1 and

sk = cos 4m(m+k)π
4m+1 for k = 0, 1, . . . ,m− 1, and sm = cos 8m2π

4m+1 +
√
n
2 . Just note

that

cos
4m(m+ k)π

4m+ 1
= cos

[
(m+ k)π − m+ k

4m+ 1
π

]
= (−1)m+k cos

(m+ k)π

4m+ 1
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and (m+k)π
4m+1 < π

2 for k = 0, 1, . . . ,m so that the sks alternate in sign,
and, for k = m− 1 one has (−1)2m−1 = −1 so that sm−1 < 0, while
sm = cos 2mπ

4m+1 +
√
n
2 > 0.

n = 4m+ 2.We proceed as in the previous cases, now appealing to Proposition
A.2.(i) and replacing (4.7) by

z j = (u j(m+ 1), uj(m+ 2), . . . , uj(2m+ 1)).

From the equality

1

2
(χ j + χ− j )(m+ k) = cos

2π (m+ k) j

4m+ 2
= cos

π (m+ k) j

2m+ 1

we get the (m+ 1)-dimensional vectors

z j =
(
cos

(m+ 1)π

2m+ 1
j, cos

(m+ 2)π

2m+ 1
j, . . . , cos

(m+ k)π

2m+ 1
j, . . . , cosπ j

)
for j = 0, 1, . . . ,m. The Chebyshëv set is again {1, cos θ, . . . , cosmθ} and
tk = π (m+k)

2m+1 , for k = 1, 2, . . . ,m+ 1.

n = 4m+ 3. Now 1
2 (χ j + χ− j )(m+ k) = cos 2π (m+k) j

4m+3 so that, as in the preced-
ing case,

z j =
(
cos

2π (m+ 1)

4m+ 3
j, cos

2π (m+ 2)

4m+ 3
j, . . . , cos

2π (2m+ 1)

4m+ 3
j

)
for j = 0, 1, . . . ,m, and we may apply Proposition A.2.(i) with the same
Chebyshëv set as in the previous case and tk = 2π (m+k)

4m+3 , for k = 1, 2, . . . ,
m+ 1. �
Theorem 4.2.5 Let n = 4m+ r, with r ∈ {0, 1, 2, 3}. Consider the functions
v0, v1, . . . , vm ∈W2 defined by

v0 =
√
n(Fδ0 − δ0)

and

v j =
√
n

2
[F (δ j + δ− j )− (δ j + δ− j )]

for j = 1, 2, . . . ,m. Then the following holds:

� if n = 4m, 4m+ 1, then the functions v0, v1, . . . , vm−1 are linearly indepen-
dent;

� if n = 4m+ 2, 4m+ 3, then the functions v0, v1, . . . , vm are linearly inde-
pendent.
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Proof. As for the proof of Theorem 4.2.4, we divide the proof into the four
cases corresponding to the possible values of r.

n = 4m. Arguing as in the cases n = 4m+ 2 and n = 4m+ 3 in the proof
of Theorem 4.2.4, and evaluating the functions at the points {m+ k : k =
1, 2, . . . ,m} we get the vectors

z j =
(
cos

π (m+ 1)

2m
j, cos

π (m+ 2)

2m
j, . . . , cos

π (m+ k)

2m
j, . . . , cosπ j

)
for j = 0, 1, . . . ,m− 1, and we may apply Proposition A.2.(i) to the
Chebyshëv set {1, cos θ, . . . , cos(m− 1)θ} with tk = π (m+k)

2m , for k = 1,
2, . . . ,m.

n = 4m+ 1. This is very similar to the previous case: now

z j=
(
cos

2π (m+ 1)

4m+ 1
j, cos

2π (m+ 2)

4m+ 1
j, . . . , cos

2π (m+ k)

4m+ 1
j, . . . , cos

4πm

4m+ 1
j

)
for j = 0, 1, . . . ,m− 1, and we may apply Proposition A.2 to the same
Chebyshëv set as above and tk = 2π (m+k)

4m+1 , for k = 1, 2, . . . ,m.

n = 4m+ 2. This leads exactly to the same vectors as in case n = 4m+ 2
of Theorem 4.2.4, evaluating the functions at the points {m+ k : k =
1, 2, . . . ,m+ 1}.

n = 4m+ 3. This leads exactly to the same vectors as in case n = 4m+
3 of Theorem 4.2.4, evaluating the functions at the points {m+ k : k =
1, 2, . . . ,m+ 1}. �

Theorem 4.2.6 Let again n = 4m+ r, with r ∈ {0, 1, 2, 3}. Consider the func-
tions

w j =
√
n

2
[iF (δ j − δ− j )− (δ j − δ− j )] ∈W3

for j = 1, 2, . . . ,m. Then the following holds:

� if n = 4m then the functions w1,w2, . . . ,wm−1 are linearly independent;
� if n = 4m+ 1, 4m+ 2, 4m+ 3 then the functions w1,w2, . . . ,wm are lin-
early independent.
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Proof. Here, we divide the proof into two cases.

n = 4m. For k ≥ 1 and j ≥ 1, by virtue of Lemma 4.1.1.(v)

w j(m+ k) = i

2
(χ− j − χ j )(m+ k) = sin

π j(m+ k)

2m
.

Therefore, if we restrict to the set {m+ k : k = 1, 2, . . . ,m− 1} we get the
(m− 1)-dimensional vectors

z j=
(
sin

π (m+ 1)

2m
j, sin

π (m+ 2)

2m
j, . . . , sin

π (m+ k)

2m
j, . . . , sin

π (2m− 1)

2m
j

)
for j = 1, 2, . . . ,m− 1, and we can apply Proposition A.2 to the Chebyshëv
set {sin θ, sin 2θ, . . . , sin(m− 1)θ} (cf. Proposition A.3) with tk = π (m+k)

2m for
k = 1, 2, . . . ,m− 1.

n = 4m+ r, r = 1, 2, 3. Now we restrict to the set {m+ k : k = 1, 2, . . . ,m}
obtaining the m-dimensional vectors

z j=
(
sin

2π (m+ 1)

4m+ r
j, sin

2π (m+ 2)

4m+ r
j, . . . , sin

2π (m+ k)

4m+ r
j, . . . , sin

4πm

4m+ r
j

)
for j = 1, 2, . . . ,m. Using the Chebyshëv set {sin θ, sin 2θ, . . . , sinmθ} (cf.
Proposition A.3) with tk = 2π (m+k)

4m+r , for k = 1, 2, . . . ,m, we conclude the proof.
�

Theorem 4.2.7 Let again n = 4m+ r, with r ∈ {0, 1, 2, 3}. Consider the func-
tions

z j =
√
n

2

[
iF (δ j − δ− j )+ δ j − δ− j

]
for j = 1, 2, . . . ,m− 1,

zm =
√
n

2

{
iF (δ2m−1 − δ−2m+1)+ δ2m−1 − δ−2m+1 if r = 0

iF (δm − δ−m)+ δm − δ−m if r = 1, 2, 3

and, only for r = 3,

zm+1 =
√
n

2
[iF (δ2m+1 − δ−2m−1)+ δ2m+1 − δ−2m−1] .

Then, all these functions belong to W4 (cf. Theorem 4.2.1) and the following
holds:

� if r = 0, 1, 2 then the functions z1, z2, . . . , zm are linearly independent;
� if r = 3 then the functions z1, z2, . . . , zm, zm+1 are linearly independent.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.005
https://www.cambridge.org/core


114 Spectral analysis of the DFT and number theory

Proof. We divide the proof into three cases.

n = 4m. We restrict the functions to the set {m+ k : k = 0, 1, . . . ,m− 1}
obtaining the m-dimensional vectors

z j =
(
sin

π

2
j, sin

π (m+ 1)

2m
j, . . . , sin

π (m+ k)

2m
j, . . . , sin

π (2m− 1)

2m
j

)
for j = 1, 2, . . . ,m− 1 and, since

sin
π (m+ k)(2m− 1)

2m
= sin

[
π (m+ k)− π (m+ k)

2m

]
= (−1)m+k+1 sin

π (m+ k)

2m
,

with sin π (m+k)
2m > 0 (because 0 < π (m+k)

2m < π
2 ), for k = 0, 1, . . . ,m− 1, and

zm(2m− 1) = sin (2m−1)π
2m +

√
n
2 > 0, we have

zm =
(
(−1)m+1 sin

π

2
, (−1)m+2 sin

π (m+ 1)

2m
, . . .

. . . (−1)m+k+1 sin
π (m+ k)

2m
, . . . , sin

π (2m− 1)

2m
+

√
n

2

)
.

By Proposition A.2.(ii) with the Chebyshëv set {sin θ, sin 2θ, . . . , sin(m− 1)θ}
with tk = π (m+k)

2m , for k = 0, 1, . . . ,m− 1 and sk = (−1)m+k+1 sin π (m+k)
2m , for

k = 0, 1, . . . ,m− 2, and sm−1 = sin π (2m−1)
2m +

√
n
2 , this completes the first

case.

n = 4m+ 1, 4m+ 2. These cases lead to the same vectors in the corresponding
cases in Theorem 4.2.6.

n = 4m+ 3. We restrict the functions to the set {m+ k : k = 1, 2, . . . ,m+ 1}
obtaining the m-dimensional vectors

z j =
(
sin

2π (m+ 1)

4m+ 3
j, sin

2π (m+ 2)

4m+ 3
j, . . . , sin

2π (2m+ 1)

4m+ 3
j

)
for j = 1, 2, . . . ,m.

Since,

sin
π (m+ k)(4m+ 2)

4m+ 3
= sin

[
π (m+ k)− π (m+ k)

4m+ 3

]
= (−1)m+k+1 sin

π (m+ k)

4m+ 3
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4.3 Applications: some classical results by Gauss and Schur 115

with sin π (m+k)
4m+3 > 0, for k = 1, 2, . . . ,m, and

zm+1(2m+ 1) = sin
π (2m+ 1)

4m+ 3
+

√
n

2
> 0,

we conclude by using the Chebyshëv set {sin θ, sin 2θ, . . . , sinmθ} with
tk = 2π (m+k)

4m+3 , for k = 1, 2, . . . ,m+ 1, and sk = (−1)m+k+1 sin π (m+k)
4m+3 , for k =

1, 2, . . . ,m, and sm+1 = sin π (2m+1)
4m+3 +

√
n
2 . �

4.3 Applications: some classical results by Gauss and Schur

Theorem 4.3.1 (Schur) With the notation in Theorem 4.2.1, the multiplicities
of the eigenvalues of the DFT are given in Table 4.1 (recall, cf. Proposition
4.1.4, that mj = dimWj, for j = 1, 2, 3, 4).

Table 4.1. The multiplicities of the
eigenvalues of the DFT.

n m1 m2 m3 m4

4m m+ 1 m m− 1 m
4m+ 1 m+ 1 m m m
4m+ 2 m+ 1 m+ 1 m m
4m+ 3 m+ 1 m+ 1 m m+ 1

Proof. Consider first the case n = 4m. Then the following holds:

� Theorem 4.2.4 implies m1 = dimW1 ≥ m+ 1;
� Theorem 4.2.5 implies m2 = dimW2 ≥ m;
� Theorem 4.2.6 implies m3 = dimW3 ≥ m− 1;
� Theorem 4.2.7 implies m4 = dimW4 ≥ m.

Since m1 + m2 + m3 + m4 = 4m, all the inequalities above are indeed equali-
ties.
The other cases can be handled similarly. �

Remark 4.3.2 In the previous theorems we have given the spectral analy-
sis of the matrix (2.22) of the DFT, namely of Fn = 1√

n
(ω− jk )n−1

j,k=0. Other
authors (for instance Auslander and Tolimieri [15] and Terras [159]) consider,
instead, the matrix 1√

n
(ω jk )n−1

j,k=0 (the kth column is switched with the (n− k)th
column).
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Corollary 4.3.3 (Gauss, Schur) The trace of F is given by

Tr(F ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− i if n ≡ 0 mod 4

1 if n ≡ 1 mod 4

0 if n ≡ 2 mod 4

−i if n ≡ 3 mod 4

and its characteristic polynomial p(λ) ∈ C[λ] is

p(λ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(λ− 1)2(λ+ 1)(λ+ i)(λ4 − 1)(n−4)/4 if n ≡ 0 mod 4

(λ− 1)(λ4 − 1)(n−1)/4 if n ≡ 1 mod 4

(λ2 − 1)(λ4 − 1)(n−2)/4 if n ≡ 2 mod 4

(λ2 − 1)(λ+ i)(λ4 − 1)(n−3)/4 if n ≡ 3 mod 4.

Corollary 4.3.4 (Gauss)

n−1∑
k=0

exp

(
2π ik2

n

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1+ i)

√
n if n ≡ 0 mod 4√

n if n ≡ 1 mod 4

0 if n ≡ 2 mod 4

i
√
n if n ≡ 3 mod 4.

Proof.

Tr(F ) =
n−1∑
k=0

〈Fδk, δk〉 =
n−1∑
k=0

1√
n
χ−k(k) = 1√

n

n−1∑
k=0

exp

(
−2π ik2

n

)
, (4.8)

where the second equality follows from Lemma 4.1.1.(v). The statement then
follows from Corollary 4.3.3 by conjugating both sides of (4.8). �

The case n ≡ 2 mod 4 is trivial, as it is shown in the following exercise.

Exercise 4.3.5 Suppose n ≡ 2 mod 4. Prove the identity

exp

[
2π i

n

(
k + n

2

)2]
= − exp

2π ik2

n

and deduce the case n ≡ 2 mod 4 in Corollary 4.3.4.

4.4 Quadratic reciprocity and Gauss sums

This section is based on themonographs byNathanson [118], Ireland andRosen
[79], Apostol [13], Terras [159], Nagell [117], and the paper [15] by Auslander
and Tolimieri.
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4.4 Quadratic reciprocity and Gauss sums 117

Definition 4.4.1 Let n,m ∈ Zwith gcd(n,m) = 1.We say thatm is a quadratic
residue mod n if the congruence

x2 ≡ m mod n (4.9)

has a solution x inZ; otherwise, we say thatm is a quadratic nonresiduemod n.

This section is devoted to the study of the solvability of (4.9). It culminates
with the celebrated Gauss law of quadratic reciprocity (Theorem 4.4.18).

Remark 4.4.2

(1) It is clear that m = 1+ kn is a quadratic residue mod n for all n ∈ Z \
{0} and k ∈ Z. Indeed, the congruence (4.9) has solution x = 1.

(2) Let n,m ∈ Z with gcd(n,m) = 1, so that m ∈ U (Z/nZ) (cf. Lemma
1.5.1). Then m is a quadratic residue mod n if and only if m is a square
in U (Z/nZ) (that is, there exists x ∈ U (Z/nZ) such that x2 = m).

(3) Let n1, n2,m ∈ Z with gcd(n2,m) = 1 and n1|n2, and suppose that m
is a quadratic residue mod n2. Set q = n2/n1 ∈ Z and suppose that x is
a solution of the congruence x2 ≡ m mod n2. Then there exists k ∈ Z
such that x2 = n2k + m = n1(qk)+ m. This shows, in particular, thatm
is a quadratic residue mod n1.

Proposition 4.4.3 Let n,m ∈ Z with gcd(n,m) = 1. Suppose that n = n1n2
with gcd(n1, n2) = 1. Then m is a quadratic residue mod n if and only if it
is a quadratic residue mod ni for i = 1, 2.

Proof. The “only if” part is obvious. Conversely, suppose that there exist
xi ∈ Z such that m ≡ x2i mod ni, i = 1, 2. By the Chinese reminder theo-
rem I (Corollary 1.1.23), there exists x ∈ Z such that x ≡ xi mod ni, i = 1, 2.
Then, x2 ≡ x2i ≡ m mod ni, i = 1, 2, and gcd(n1, n2) = 1 implies x2 ≡ m mod
n1n2. �

Lemma 4.4.4 Let 1 ≤ μ ≤ 3 and suppose that m ∈ Z is odd. Then the follow-
ing conditions are equivalent:

(a) m is a quadratic residue mod 2μ;
(b) m ≡ 1 mod 2μ.

Proof. Suppose that m is a quadratic residue mod 2μ. Then we can find x ∈ Z
such that x2 ≡ mmod 2μ. Note that x cannot be even (otherwise m itself would
be even, contradicting the assumptions). Thus there exists h ∈ Z such that x =
2h+ 1 and therefore m ≡ x2 = (2h+ 1)2 = 4h(h+ 1)+ 1 ≡ 1 mod 2μ, since
h(h+ 1) ∈ 2Z. This shows the implication (a)⇒ (b).
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118 Spectral analysis of the DFT and number theory

Conversely, suppose that m ≡ 1 mod 2μ. Thus we can find k ∈ Z such
that m = 1+ 2μk and it follows from Remark 4.4.2.(1) that m = 1+ 2μk is
a quadratic residue mod 2μ. �

The following two theorems reduce the problem to the case n is an odd prime.
To simplify notation, we denote by

|n| = 2μpμ1
1 pμ2

2 · · · pμk
k (4.10)

the prime factorization of |n| with the convention that if n is odd, then μ = 0
and the factor 2μ is, in fact, missing.

Theorem 4.4.5 Let p be an odd prime. Then m ∈ Z is a quadratic residuemod
p if and only if m

p−1
2 ≡ 1 mod p.

Proof. The multiplicative group F∗
p is cyclic of order p− 1 (cf. Theorem

1.1.21). Thus, we can find 1 ≤ y ≤ p− 1 such that y generates F∗
p. For x ∈ Z

(respectively m ∈ Z) such that p � x (respectively p � m) we choose 1 ≤ s =
s(x) ≤ p− 1 (respectively 1 ≤ t = t(m) ≤ p− 1) such that

ys = x (resp. yt = m), equivalently, ys ≡ x (resp. yt ≡ m) mod p.

Then, m ∈ Z (with gcd(m, p) = 1) is a quadratic residue mod p if and only
if the equation x2 ≡ mmod p has a solution x ∈ Z and, with the above notation,
this holds if and only if the equation y2s = yt , which in turn is equivalent to the
congruence 2s ≡ t mod p− 1, has a solution s (with 1 ≤ s ≤ p− 1). But this
is the case if and only if t is even (just take s = t/2). Now

t is even ⇔ t
p− 1

2
≡ 0 mod p− 1 ⇔ (m)

p−1
2 = (y)t

p−1
2 = 1,

where the last equality follows from y having order p− 1. �

Theorem 4.4.6 Let n,m ∈ Z with gcd(n,m) = 1. Let (4.10) be the prime fac-
torization of |n|. Then, m is a quadratic residuemod n if and only if the following
conditions are satisfied:

(i) m
pj−1

2 ≡ 1 mod p j for j = 1, 2, . . . , k;
(ii) and, (only) if n is even,

� m ≡ 1 mod 2μ if μ = 1, 2;
� m ≡ 1 mod 8 if μ ≥ 3.

Proof. It follows from Proposition 4.4.3 that (4.9) has a solution (that is,
m is a quadratic residue mod n) if and only if all the equations x2 ≡ m
mod p

μ j

j for all j = 1, 2, . . . , k and, (only) if n is even, x2 ≡ m mod 2μ, have a
solution.
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4.4 Quadratic reciprocity and Gauss sums 119

Claim 1. m ∈ Z is a quadratic residue mod 2μ if and only if

� m ≡ 1 mod 2μ if μ = 1, 2;
� m ≡ 1 mod 8 if μ ≥ 3.

If 1 ≤ μ ≤ 3, the claim is equivalent to Lemma 4.4.4.
Suppose thatμ > 3 and thatm is a quadratic residuemod 2μ. Then, it follows

from Remark 4.4.2.(3) with n1 = 8 and n2 = 2μ that m is a quadratic residue
mod 8. From Lemma 4.4.4 we deduce that m ≡ 1 mod 8.
For the converse, suppose thatm ≡ 1mod 8.We show, by induction on t ≥ 3,

that the congruence x2 ≡ mmod 2t has a solution in Z. For t = 3, the statement
follows from Lemma 4.4.4. Suppose now that for t ≥ 3 there exists x ∈ Z such
that x2 ≡ m mod 2t and let us show that there exists y ∈ Z such that y2 ≡ m
mod 2t+1. Let q ∈ Z be such that

x2 − m = q2t (4.11)

and observe that if q is even then we are done: just take y = x. Therefore, we
suppose that q is odd. Set y = x+ 2t−1. Then we have

y2 − m = (x+ 2t−1)2 − m

= x2 − m+ 2t x+ 22t−2

(by (4.11)) = 2t (q+ x)+ 2t+12t−3

≡ 0 mod 2t+1,

where the last equality follows from the fact that q+ x is even because x is
odd (since m is odd). This completes the proof of the claim.

Claim 2. Let p be an odd prime and μ ≥ 1. Then m ∈ Z is a quadratic residue
mod pμ if and only if m is a quadratic residue mod p.
As in the previous claim, the “only if ” part is obvious.
Conversely, we again proceed by induction. The basis is trivial. Suppose that

x2 ≡ m mod pt with t ≥ 1 and let us show that we can find y ∈ Z such that
y2 ≡ m mod pt+1. By the inductive hypothesis, we can find q ∈ Z such that

x2 − m = qpt (4.12)

and observe that if q is a multiple of p, then we are done: just take y = x. There-
fore we suppose that p � q. By our assumption we also have p � x and there-
fore, since p is odd, gcd(2x, p) = 1. By virtue of Bézout identity, we can find
a, b ∈ Z such that ap+ 2bx = −q, equivalently,

q+ 2bx = −ap. (4.13)
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Set y = x+ ptb. Then we have

y2 − m = (x+ ptb)2 − m

= x2 − m+ 2bxpt + p2tb2

(by (4.12)) = pt (q+ 2bx)+ pt+1pt−1b2

(by (4.13)) = pt+1(pt−1b2 − a)

≡ 0 mod pt+1.

This completes the proof of the claim.
The statement then follows from Theorem 4.4.5. �

From now on, p is a fixed odd prime and we study quadratic residues mod p.

Definition 4.4.7 The Legendre symbol

(
n

p

)
is defined by setting

(
n

p

)
=

⎧⎪⎪⎨⎪⎪⎩
1 if gcd(n, p) = 1 and n is a quadratic residue mod p

−1 if gcd(n, p) = 1 and n is a quadratic nonresidue mod p

0 if p|n
for every n ∈ Z.

We now collect some basic properties of the Legendre symbol.

Proposition 4.4.8

(i) The map n �→
(
n

p

)
is constant on the congruence classes mod p, and

therefore it may be seen as a function defined on Fp;

(ii) n
p−1
2 ≡

(
n

p

)
mod p for all n ∈ Z;

(iii)

(
mn

p

)
=
(
m

p

)(
n

p

)
for all m, n ∈ Z;

(iv)

(−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 mod 4

−1 if p ≡ −1 mod 4.

Proof. (i) This follows immediately from the definition of the Legendre
symbol.

(ii) If p|n this is trivial; otherwise, from the fact that themultiplicative group
F∗
p has order p− 1, we have np−1 ≡ 1 mod p (cf. Fermat’s little theo-

rem [Exercise 1.1.22]), which implies

(n
p−1
2 − 1) · (n p−1

2 + 1) = np−1 − 1 ≡ 0 mod p,
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that is, n
p−1
2 ≡ ±1 mod p. By Theorem 4.4.5, n

p−1
2 ≡ 1 mod p if and

only if n is a quadratic residue mod p and therefore n
p−1
2 ≡ −1 mod p

if and only if n is a quadratic nonresidue. In both cases, the statement
follows from the definition of the Legendre symbol.

(iii) Again, this is obvious if p|n or if p|m, so that we may assume p � n and
p � m (and therefore p � nm). By (ii) we have(

nm

p

)
≡ (nm)

p−1
2 mod p

≡ n
p−1
2 m

p−1
2 mod p

≡
(
n

p

)(
m

p

)
mod p.

Since p is odd, 1 �≡ −1 mod p and we deduce that

(
nm

p

)
=(

n

p

)(
m

p

)
.

(iv) This follows from (ii), after taking n = −1 therein. �

Corollary 4.4.9 Let Q ⊆ Z (respectively P ⊆ Z) denote the set of quadratic
residues (respectively nonresidues) mod p and denote by Q (respectively P) its
image in Fp. Then P · P ⊆ Q = Q · Q and P · Q = P (respectively P · P = Q =
Q · Q and P · Q = P). Moreover,

|Q| = |P| = p− 1

2
. (4.14)

Proof. The inclusions Q · Q,P · P ⊆ Q, and P · Q ⊆ P follow immediately
from Proposition 4.4.8.(iii). Since 1 ∈ Q, the equalities Q · Q = Q and P · Q =
P follow. Projecting onto Fp we have P · P ⊆ Q = Q · Q and P · Q = P. In
order to show the equality P · P = Q and determine the cardinalities of Q
and P, let us fix an element n ∈ P. We first observe that, since Q,P ⊆ Z \
pZ,

Q
∐

P = F∗
p. (4.15)

Since multiplication by n yields a bijection of F∗
p, from (4.15) we deduce that

nQ
∐

nP = F∗
p

so that, since nQ ⊆ P and nP ⊆ Q, we necessarily have that the above inclu-
sions are indeed equalities. In particular, P · P = Q and (4.14) holds. �
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Exercise 4.4.10

(1) Deduce Corollary 4.4.9 from the proof of Theorem 4.4.5.
(2) Deduce Proposition 4.4.8.(iii) from Corollary 4.4.9 (which has been

proved independently in (1)).

Definition 4.4.11 A finite subset S ⊆ Z of cardinality |S| = p−1
2 is called a

Gaussian set modulo p if, for all n ∈ Z with gcd(n, p) = 1, there exist tn ∈ S
and εn ∈ {1,−1} such that

n ≡ εntn mod p. (4.16)

Exercise 4.4.12

(1) Show that if S is a Gaussian set, then r �≡ ±s mod p for all distinct
r, s ∈ S.

(2) Show that the sets S1 = {1, 2, . . . , p−1
2 } and S2 = {2, 4, . . . , p− 1} are

Gaussian sets modulo p.

Lemma 4.4.13 (Gauss’ lemma) Let S be a Gaussian set modulo p.
Then, for every n ∈ Z with gcd(n, p) = 1 we have(

n

p

)
=
∏
s∈S

εns = (−1)k,

where k = |{s ∈ S : εns = −1}|.

Proof. First of all, we show that for all s, r ∈ S

tns = tnr ⇔ s = r.

Indeed, if tns = tnr then

nr ≡ εnrtnr mod p

≡ εnrtns mod p

≡ ±εnstns mod p

≡ ±ns mod p

that, after simplifying, yields r ≡ ±s mod p. By virtue of Exercise 4.4.12.(1),
we deduce that r = s. In other words, the map s �→ tns is a permutation of S so
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that ∏
s∈S

s ·
∏
s∈S

εns =
∏
s∈S

tns ·
∏
s∈S

εns

=
∏
s∈S

tnsεns

(by (4.16)) ≡
∏
s∈S

sn mod p

(since |S| = p−1
2 ) ≡ n

p−1
2

∏
s∈S

s mod p

(by Proposition 4.4.8.(ii)) ≡
(
n

p

)∏
s∈S

s mod p.

Simplifying by
∏

s∈S s, and taking into account that both
∏

s∈S εns and
(
n

p

)
are

equal to either 1 or −1 (and these are different mod p), the lemma follows. �

Corollary 4.4.14(
2

p

)
= (−1)

p2−1
8 =

{
1 if p ≡ ±1 mod 8

−1 if p �≡ ±1 mod 8.

Proof. Take S = {1, 2, . . . , p−1
2 } and n = 2. Then, by Gauss’ lemma, we have(

2

p

)
= (−1)k, where k is the number of s ∈ S such that ε2s = −1. For every

s ∈ S, we clearly have 2 ≤ 2s ≤ p− 1. Since

2 ≤ 2s ≤ p− 1

2
⇒ 2s ∈ S ⇒ ε2s = 1

while, setting t = p− 2s,

p+ 1

2
≤ 2s ≤ p− 1 ⇒ 1 ≤ p− 2s ≤ p− 1

2
⇒ t ∈ S

⇒ 2s = p− t ≡ −t mod p⇒ ε2s = −1,

we deduce that k is equal to the number of s ∈ S such that

p+ 1

4
≤ s ≤ p− 1

2
. (4.17)

Now if, on the one hand, p ≡ ±1 mod 8, then we can find h ∈ Z such that
p = 8h± 1 and (4.17) becomes

2h+ 1

4
± 1

4
≤ s ≤ 4h− 1

2
± 1

2
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so that, in both cases, k = 2h and

(
2

p

)
= (−1)2h = 1.

If, on the other hand, p ≡ ±3 mod 8, then we can find h ∈ Z such that p =
8h± 3 and (4.17) becomes

2h+ 1

4
± 3

4
≤ s ≤ 4h− 1

2
± 3

2

so that k = 2h± 1 and, in both cases,

(
2

p

)
= (−1)2h±1 = −1. �

Now, following the monograph by Nathanson [118], we study the Legendre
symbol as a character of the multiplicative group F∗

p. We recall (cf. Section 2.2)

that for n, k ∈ Z \ pZ we have defined χn(k) = exp
(
2π ink
p

)
.

For all n ∈ Z we set

τ (p, n) =
p−1∑
k=1

(
k

p

)
χn(k). (4.18)

Note that setting �p(n) =
(
n

p

)
for all n ∈ Z then, in the notation in Section

2.4, we have τ (p, n) = �̂p(−n). Clearly,
(
k

p

)
is a multiplicative character (cf.

Proposition 4.4.8.(iii)), while χn is an additive character. Note also that

p−1∑
k=1

(
k

p

)
= 0. (4.19)

Indeed, the left hand side in (4.19) may be seen as the scalar product of the
nontrivial multiplicative character �p with the trivial multiplicative character,
so that we may use Proposition 2.3.5 (for multiplicative characters of F∗

p).

Theorem 4.4.15 (Gauss) Let n ∈ Z. Then the following holds:

(i) τ (p, n) =
(
n

p

)
τ (p, 1).

(ii) If gcd(n, p) = 1 then

τ (p, n) =
p−1∑
h=0

exp

(
2π ih2n

p

)
;

in particular,

τ (p, 1) =
p−1∑
h=0

exp

(
2π ih2

p

)
.
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(iii)

τ (p, 1) =
{√

p if p ≡ 1 mod 4

i
√
p if p ≡ 3 mod 4

= i
(p−1)2

4
√
p.

Proof. We first recall that χn(k) = χ1(nk). Assume gcd(n, p) = 1 so that(
n

p

)
= ±1 and, for 1 ≤ k ≤ p− 1,

(
k

p

)
=
(
k

p

)(
n

p

)2

=
(
nk

p

)(
n

p

)
, (4.20)

where the last equality follows from Proposition 4.4.8.(iii). Then

τ (p, n) =
p−1∑
k=1

(
k

p

)
χn(k)

(by (4.20)) =
(
n

p

) p−1∑
k=1

(
kn

p

)
χn(k)

=
(
n

p

) p−1∑
k=1

(
kn

p

)
χ1(kn)

=
(
n

p

)
�̂p(−1)

=
(
n

p

)
τ (p, 1).

It is easy to check, by means of (4.19), that if p|n then τ (p, n) = 0, and this
ends the proof of (i).
(ii) Let P (respectively Q) be as in Corollary 4.4.9 and set P′ = P ∩

{1, 2, . . . , p− 1} (respectively Q′ = Q ∩ {1, 2, . . . , p− 1}).
Let k ∈ Q′ and h ∈ {1, 2, . . . , p− 1} such that h2 ≡ k mod p. Then also

(p− h)2 ≡ h2 ≡ k mod p and p− h �≡ h mod p. Therefore

p−1∑
h=1

χ1(nh
2) = 2

∑
k∈Q′

χ1(nk) (4.21)
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and

τ (p, n) =
p−1∑
k=1

(
k

p

)
χ1(nk)

=
∑
k∈Q′

χ1(nk)−
∑
k∈P′

χ1(nk)

= 1+ 2
∑
k∈Q′

χ1(nk)−
p−1∑
k=0

χ1(nk)

(by (4.21) and (2.5)) = 1+
p−1∑
h=1

χ1(nh
2)

=
p−1∑
h=0

exp

(
2π inh2

p

)
.

(iii) This follows from (ii) and Corollary 4.3.4. Moreover, it is immediate to
check that

i
(p−1)2

4 =
{
1 if p ≡ 1 mod 4

i if p ≡ 3 mod 4.

�

Definition 4.4.16 Givenm, n ∈ Z, n �= 0, we define theGauss sum G(m, n) by
setting

G(m, n) =
n−1∑
k=0

exp

(
2π imk2

n

)
(see also Definition 7.4.1 for Gauss sums over finite fields).

Observe that by virtue of Theorem 4.4.15.(ii), if gcd(p, n) = 1 then

τ (p, n) = G(n, p) (4.22)

and that Corollary 4.3.4 may be reformulated in the form

G(1, n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1+ i)

√
n if n ≡ 0 mod 4√

n if n ≡ 1 mod 4

0 if n ≡ 2 mod 4

i
√
n if n ≡ 3 mod 4.

(4.23)

Proposition 4.4.17 Let m, r, s ∈ Z, r, s �= 0, and suppose that gcd(r, s) = 1.
Then

G(mr, s)G(ms, r) = G(m, sr).
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Proof.

G(mr, s)G(ms, r) =
s−1∑
v=0

exp

(
2π imrv2

s

)
·
r−1∑
u=0

exp

(
2π imsu2

r

)

=
s−1∑
v=0

r−1∑
u=0

exp

(
2π im

r2v2 + s2u2

sr

)

(since exp
(
2π im 2uvsr

sr

) = 1) =
s−1∑
v=0

r−1∑
u=0

exp

(
2π im

(rv + su)2

sr

)

(by Lemma 1.1.16) =
sr−1∑
k=0

exp

(
2π i

mk2

sr

)
= G(m, sr). �

We are now in a position to prove the main result of this section.

Theorem 4.4.18 (Gauss law of quadratic reciprocity) Let p, q be distinct
odd primes. Then (

p

q

)(
q

p

)
= (−1)

p−1
2 · q−1

2 .

Proof. By virtue of Theorem 4.4.15 we have

τ (p, q) =
(
q

p

)
τ (p, 1) =

(
q

p

)
i
(p−1)2

4
√
p

and, exchanging p and q,

τ (q, p) =
(
p

q

)
τ (q, 1) =

(
p

q

)
i
(q−1)2

4
√
q.

Moreover, from Proposition 4.4.17 (with r = q, s = p, and m = 1) and (4.22)
we deduce that

τ (p, q)τ (q, p) = G(q, p)G(p, q)

= G(1, pq)

(by (4.23)) = i
(pq−1)2

4
√
pq.

Then the equality (
p

q

)(
q

p

)
i
(p−1)2

4 + (q−1)2

4
√
pq = i

(pq−1)2

4
√
pq
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yields the quadratic reciprocity law because

1

4

[
(pq− 1)2 − (p− 1)2 − (q− 1)2

]
= 1

4

[−2(p− 1)(q− 1)+ (p2 − 1)(q2 − 1)
]

and

(4m+ 3)2 ≡ (4m+ 1)2 ≡ 1 mod 4 ⇒ p2 − 1 ≡ q2 − 1 ≡ 0 mod 4,

so that

i
(p2−1)(q2−1)

4 = 1,

while

i
−2(p−1)(q−1)

4 = (−1)
p−1
2 · q−1

2 . �
Exercise 4.4.19 From Theorem 4.4.18 deduce that

(1) if p ≡ 1 mod 4 or q ≡ 1 mod 4 then p is a quadratic residue mod q
if and only if q is a quadratic residue mod p;

(2) if p ≡ q ≡ 3 mod 4 then p is a quadratic residue mod q if and only if
q is a quadratic nonresidue mod p.

For instance, using the congruences

179 ≡ 59 ≡ 3 mod 4, 179 ≡ 2 mod 59, and 59 ≡ 3 mod 8,

we get (
59

179

)
= −

(
179

59

)
= −

(
2

59

)
= 1,

where the last equality follows from Corollary 4.4.14.

Exercise 4.4.20 Deduce the following identities from Proposition 4.4.8 and
Theorem 4.4.15: if gcd(n, p) = 1 and p is an odd prime, then

τ (p, n)2 =
(−1

p

)
p = (−1)

p−1
2 p;

if q is another distinct odd prime

τ (p, n)q−1 ≡ (−1)
p−1
2 · q−1

2

(
p

q

)
mod q.

Another, more elementary proof of the Gauss law of quadratic reciprocity
will be sketched in Exercise 6.5.7: it avoids Corollary 4.3.4 and, therefore, all
the machinery on the spectral analysis of the DFT.
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5

The Fast Fourier Transform

The Fast Fourier Transform (for brevity, FFT) is a numerical algorithm for the
computation of the Discrete Fourier Transform. It is one of the most important
algorithms, because it applies to an extremely wide class of numerical prob-
lems. It was discovered by Gauss who applied it to astronomical computations.
It was rediscovered several times, and the most celebrated paper devoted to
it is the seminal one by Cooley and Tukey [41] (one then often refers to this
algorithm as the Cooley-Tukey algorithm).
However, as indicated in [15], this algorithm also has interesting theoretical

interpretations. We will discuss this approach in Section 12.5.
In the present chapter, following the books by Tolimieri, An, and Lu [160]

and by Van Loan [163], as well as the papers [50, 130, 168], we present a matrix
theoretic approach to the FFT. Actually, [130] will constitute our main source,
[50] is a fundamental inspiration for our treatment of stride permutations, and
[160] has given us the general framework and the treatment of Rader’s algo-
rithm. Recent developments can be found in [46].
Before embarking on the formalism of Kronecker products and shuffle per-

mutations, following the exposition in [150], we present the simplest example
of the FFT.

5.1 A preliminary example

As in Section 2.2, set ωn = exp 2π i
n (note that we have added the subscript n

to ω). Then, the (unnormalized) Discrete Fourier Transform of f ∈ L(Zn) (cf.
Definition 2.4.1) is given by

f̂
n
(m) = 1

n

n−1∑
k=0

f (k)ω−km
n . (5.1)

129
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130 The Fast Fourier Transform

We have used the symbol̂n to emphasize the fact that we are computing the
DFT of a function f ∈ L(Zn). Then the computation of the Fourier coefficients
of f requires:

� n− 2 multiplications to compute the numbers ω2
n, ω

3
n, . . . , ω

n−1
n (note that

in (5.1) these numbers may occur with repetitions and do all appear in the
expression of some of these coefficients);

� each coefficient f̂
n
(m) requires n multiplications (to compute f (k)ω−km

n ),
n− 1 sums, plus a final multiplication by 1

n .

Therefore, to compute all Fourier coefficients, one needs (at most)

(n− 2)+ n(n+ (n− 1)+ 1) = 2n2 + n− 2 ≤ 2n2 + n = O(n2) (5.2)

elementary operations.We denote by �n theminimum number of operations that
are needed to compute all the Fourier coefficients of any function in L(Zn).

Remark 5.1.1 Note that in the definition of �n, the minimum is over all pos-
sible algorithms: we are not necessarily using the expression of the Fourier
coefficients provided by their definition (i.e. by (5.1)).

We begin with a preliminary lemma.

Lemma 5.1.2

�(2n) ≤ 2�n+ 8n.

Proof. As above, wemay compute the numbersωk
2n, k = 0, 1, . . . , 2n− 1, with

2n− 2 multiplications. Note also that

ω2r
2n = ωr

n and ω2s+1
2n = ω2nω

s
n. (5.3)

Then, for f ∈ L(Z2n) , we define f0, f1 ∈ L(Zn) by setting

f0(k) = f (2k)

f1(k) = f (2k + 1)

for all k = 0, 1, . . . , n− 1. Then

f̂
2n
(m) = 1

2n

2n−1∑
k=0

f (k)ω−km
2n

(by (5.3)) = 1

2

[
1

n

n−1∑
r=0

f0(r)ω
−rm
n + 1

n

n−1∑
s=0

f1(s)ω
−m
2n ω−sm

n

]

= 1

2

[
f̂0

n
(m)+ ω−m

2n f̂1
n
(m)
]
.

(5.4)
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As an application of this formula, in order to compute the coefficients of f we
need (at most):

� 2�n operations to compute the coefficients of both f0 and f1,
� 2n− 2 operations to compute the numbers ωk

2n, k = 0, 1, . . . , 2n− 1,
� 6n operations (4n multiplications and 2n additions),

so that

�(2n) ≤ 2�n+ 8n− 2 ≤ 2�n+ 8n. �

Theorem 5.1.3 Let n = 2h. Then the Fourier coefficients of a function
f ∈ L(Zn) may be computed with at most 2h+2h = 4n log2 n = O(n log n)
operations.

Proof. We proceed by induction on h. If h = 1 then n = 2 and the Fourier coef-
ficients are

f̂
2
(0) = 1

2
[ f (0)+ f (1)]

f̂
2
(1) = 1

2
[ f (0)+ (−1) f (1)] .

These computations require 5 < 8 = 21+2 · 1 operations. Assume the statement
for n = 2h, so that �n ≤ 2h+2h. By Lemma 5.1.2, for 2n = 2h+1 we have

�(2n) ≤ 2�n+ 8n

≤ 2(2h+2h)+ 8 · 2h
= 2h+3(h+ 1). �

As the above result shows, a factorization of n yields an improvement on the
computation of the DFT. We will explore this after the introduction of a couple
of basic theoretical tools.

5.2 Stride permutations

Let n,m be two positive integers. By means of the Euclidean algorithm, any
integer 0 ≤ i ≤ nm− 1 may be (uniquely) represented in the following forms:

i = sm+ r 0 ≤ s ≤ n− 1, 0 ≤ r ≤ m− 1 (5.5)

i = r̃n+ s̃ 0 ≤ s̃ ≤ n− 1, 0 ≤ r̃ ≤ m− 1. (5.6)

The expressions (5.5) and (5.6) are called the (m, n)-representation and the
(n,m)-representation of i, respectively.
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132 The Fast Fourier Transform

Definition 5.2.1 The stride (or shuffle) permutation is the bijection

σ (m, n) : {0, 1, . . . , nm− 1} → {0, 1, . . . , nm− 1}
defined by setting

σ (m, n)i ≡ σ (m, n)(sm+ r) = rn+ s

for every 0 ≤ i ≤ nm− 1 represented in the form (5.5).

We now present an alternative description of σ (m, n). Divide the ordered
sequence (0, 1, 2, . . . , nm− 1) into n consecutive blocks (see Table 5.1), that
is,

(0, 1, . . . , nm− 1) = (B0,B1, . . . ,Bn−1)

where B0 = (0, 1, . . . ,m− 1), B1 = (m,m+ 1, . . . , 2m− 1),…,Bs =
(sm, sm+ 1, . . . , sm+ r, . . . , (s+ 1)m− 1), . . . , and Bn−1 = ((n− 1)m,

(n− 1)m+ 1, . . . , nm− 1). Then

(σ (m, n)0, σ (m, n)1, . . . , σ (m, n)(nm− 1)) = (C0, C1, . . . , Cn−1)

where the blocks C0, C1, . . . , Cn−1 are the ordered sequences defined by setting
Cs = (s, s+ n, . . . , s+ rn, . . . , s+ (m− 1)n) for all s = 0, 1, . . . , n− 1.

Table 5.1. The action of the stride permutation σ (m, n): in the first array, the
rows are the blocks Bs, while, in the second array, the rows are the blocks Cs.

0 1 · · · m−1
m m+1 · · · 2m−1
...

...
. . .

...
(n−1)m (n−1)m+1 · · · nm−1

σ (m,n)−→
0 n · · · (m−1)n
1 n+1 · · · (m−1)n+1
...

...
. . .

...
n−1 2n−1 · · · mn−1

For instance,

σ (3, 2)0 = 0 σ (3, 2)1 = 2 σ (3, 2)2 = 4
σ (3, 2)3 = 1 σ (3, 2)4 = 3 σ (3, 2)5 = 5.

Clearly, σ (m, 1) and σ (1, n) are the identity permutation and

σ (m, n)−1 = σ (n,m). (5.7)

Let now m, n, k be positive integers. Then for any integer 0 ≤ i ≤ mnk −
1 two applications of the Euclidean algorithm yield firstly i = tmn+ s1, with
0 ≤ t ≤ k − 1 and 0 ≤ s1 ≤ mn− 1, and then s1 = sm+ r, with 0 ≤ s ≤ n− 1
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5.2 Stride permutations 133

and 0 ≤ r ≤ m− 1, so that we may write

i = tmn+ sm+ r. (5.8)

We refer to (5.8) as to the (m, n, k)-representation of i. Moreover the positive
integers t, s, r (or, to emphasize their ordering, the triple (t, s, r)) are called the
coefficients of this representation.

Lemma 5.2.2 Let 0 ≤ i < mnk − 1 with (m, n, k)-representation as in (5.8).
Then

(i)

σ (mn, k)i = smk + rk + t,

that is, the σ (mn, k)-image of i is the number whose coefficients in the
(k,m, n)-representation are (s, r, t ); we then write (symbolically):

[(m, n, k); (t, s, r)] σ (mn,k)→ [(k,m, n); (s, r, t )];
(ii)

σ (m, nk)i = rnk + tn+ s,

that is, the σ (m, nk)-image of i is the number whose coefficients in the
(n, k,m)-representation are (r, t, s) and we again write (symbolically):

[(m, n, k); (t, s, r)] σ (m,nk)→ [(n, k,m); (r, t, s)].
Proof. We have

σ (mn, k)(tmn+ sm+ r) = σ (mn, k)[tmn+ (sm+ r)]

(by Definition 5.2.1) = (sm+ r)k + t

= smk + rk + t

and this gives (i); moreover

σ (m, nk)(tmn+ sm+ r) = σ (m, nk)[(tn+ s)m+ r)]

(by Definition 5.2.1) = rnk + tn+ s

and (ii) follows as well. �

Theorem 5.2.3 (Basic product identities) Let m, n, k be positive integers.
Then

σ (mk, n)σ (mn, k) = σ (m, nk) (5.9)

σ (n,mk)σ (m, nk) = σ (mn, k). (5.10)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.006
https://www.cambridge.org/core


134 The Fast Fourier Transform

Proof. By two applications of Lemma 5.2.2.(i) we get

[(m, n, k); (t, s, r)] σ (mn,k)→ [(k,m, n); (s, r, t )] σ (km,n)→ [(n, k,m); (r, t, s)]
which coincides with σ (m, kn) by Lemma 5.2.2.(ii). This proves (5.9).
By two applications of Lemma 5.2.2.(ii) we get

[(m, n, k); (t, s, r)] σ (m,nk)→ [(n, k,m); (r, t, s)] σ (n,mk)→ [(k,m, n); (s, r, t )]
which coincides with σ (mn, k) by Lemma 5.2.2.(i). This proves (5.10). �
Definition 5.2.4 Let m, n, k be positive integers. We define the partial stride
permutations ι(m, n, k) and τ (m, n, k) by setting

ι(m, n, k)i = skm+ tm+ r

and

τ (m, n, k)i = tmn+ rn+ s

for all i = tmn+ sm+ r as in (5.8).

Note that in the definition of ι(m, n, k) we have skm+ tm+ r = (sk + t )m+
r, that is, in i = tmn+ sm+ r = (tn+ s)m+ r we replace tn+ s by sk + t.
Moreover, we have the following (symbolic) representation

[(m, n, k); (t, s, r)] ι(m,n,k)→ [(m, k, n); (s, t, r)].
Analogously, in the definition of τ (m, n, k) we have sm+ r replaced by rn+

s, and the corresponding (symbolic) representation is:

[(m, n, k); (t, s, r)] τ (m,n,k)→ [(n,m, k); (t, r, s)].
Theorem 5.2.5 (Product identities for partial strides) We have

ι(n,m, k)τ (m, n, k) = σ (m, nk) (5.11)

and

τ (m, k, n)ι(m, n, k) = σ (mn, k). (5.12)

Proof. We have

[(m, n, k); (t, s, r)] τ (m,n,k)→ [(n,m, k); (t, r, s)] ι(n,m,k)→ [(n, k,m); (r, t, s)]
which coincides with σ (m, nk), proving (5.11). Similarly,

[(m, n, k); (t, s, r)] ι(m,n,k)→ [(m, k, n); (s, t, r)] τ (m,k,n)→ [(k,m, n); (s, r, t )]
which coincides with σ (mn, k), proving (5.12). �
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Theorem 5.2.6 (Mixed products identities)

τ (k,m, n)σ (mn, k) = ι(m, n, k) (5.13)

ι(n, k,m)σ (m, nk) = τ (m, n, k) (5.14)

σ (mk, n)ι(m, n, k) = τ (m, n, k) (5.15)

σ (n,mk)τ (m, n, k) = ι(m, n, k).

Proof. The proofs are easy and left as exercises. �

Corollary 5.2.7 (Similarity identity)

σ (mn, k)τ (m, n, k)σ (k,mn) = ι(k,m, n).

Proof. Starting by using (5.14) we have

σ (mn, k)τ (m, n, k)σ (k,mn) = σ (mn, k)ι(n, k,m)σ (m, nk)σ (k,mn)

(by (5.15) and (5.10)) = τ (n, k,m)σ (mk, n)

(by (5.13)) = ι(k,m, n). �

Exercise 5.2.8 Give a direct proof of the similarity identity.

Notation 5.2.9 From now on, given integers 0 ≤ k < n and a map
f : {0, 1, . . . , n− 1} → {0, 1, . . . , n− 1}, we write “ f (k) = j mod n” to
indicate that, if j /∈ {0, 1, . . . , n− 1}, then the value f (k) equals the unique
element j′ ∈ {0, 1, . . . , n− 1} such that j′ ≡ j mod n. In other words, we
regard {0, 1, . . . , n− 1}, the domain and codomain of f , as the additive
group Zn.

Definition 5.2.10 Let 0 ≤ k ≤ m− 1 and suppose that gcd(k,m) = 1. Then
the elementary congruence permutation γ (m, k) of {0, 1, . . . ,m− 1} is defined
by setting

γ (m, k) j = k j mod m

for all j = 0, 1, . . . ,m− 1 (recall Lemma 1.5.1).
Let also 0 ≤ h ≤ m− 1 and suppose that gcd(h,m) = 1. Then the prod-

uct congruence permutation γ (m, k; n, h) of {0, 1, . . . , nm− 1} is defined by
setting

γ (m, k; n, h)i = s′m+ r′

for every i = sm+ r as in (5.5) and s′ = hs mod n and r′ = kr mod m.
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The proof of the following proposition is trivial.

Proposition 5.2.11 Let 0 ≤ h, k ≤ m− 1.

(i) If gcd(h,m) = gcd(k,m) = 1 then γ (m, k)γ (m, h) = γ (m, hkmod m)
= γ (m, h)γ (m, k);

(ii) if gcd(k,m) = 1 then γ (m, k)−1 = γ (m, k∗), where k∗ denotes the
inverse of k mod m. �

Definition 5.2.12 Suppose that gcd(n,m) = 1. We define one more permuta-
tion of {0, 1, . . .mn− 1}, denoted β(m, n), by setting

β(m, n)i = s1m+ r (5.16)

for all i = sm+ r as in (5.5), where s1 = s− m∗r mod n (here m∗ denotes the
inverse of m mod n).

Note that β(m, n) defined above is indeed a permutation: for, with the nota-
tion as in Definition 5.2.12, if 0 ≤ s0 ≤ n− 1 and 0 ≤ r0 ≤ m− 1, we have that
β(m, n)i = s0m+ r0 if and only if s1 = s0 and r = r0, so that also s = m∗r + s0
mod n.

Definition 5.2.13 Suppose that gcd(m, n) = 1, gcd(k,m) = 1, and gcd(h, n) =
1. Let n∗ be the inverse of n mod m. Then the composite bijection permutation
π (m, k; n, h) of {0, 1, . . . , nm− 1} is defined by setting

π (m, k; n, h)i = hsm+ kn∗nr mod nm

for all i = sm+ r as in (5.5).

Theorem 5.2.14 In the notation of Definition 5.2.13, π (m, k; n, h) is indeed a
permutation and

β(m, n)γ (m, k; n, h) = π (m, k; n, h). (5.17)

Moreover, its inverse is given by the map

j �→ sm+ r 0 ≤ j ≤ nm− 1,

where, denoting by k∗ (respectively h∗) the inverse of k (respectively h) mod m
(respectively mod n), {

s = h∗m∗ j mod n

r = k∗ j mod m.
(5.18)

Proof. It suffices to prove (5.17), since its left hand side is a permutation. We
claim that if 0 ≤ n∗ ≤ m− 1 is the inverse of n mod m and 0 ≤ m∗ ≤ n− 1 is
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the inverse of m mod n, then

mm∗ + nn∗ = 1 mod nm. (5.19)

Indeed, recalling that gcd(m, n) = 1, by virtue of Bézout identity (1.2), there
exist a, b ∈ Z such that an+ bm = 1. Clearly, this last identity implies that a
(respectively b) is the inverse of n (respectivelym) modm (respectively mod n).
If a = αm+ a1, with 0 ≤ a1 ≤ m− 1, and b = βn+ b1, with 0 ≤ b1 ≤ n− 1,
then

a1n+ b1m+ (α + β )nm = 1

and we can take n∗ = a1 and m∗ = b1, proving the claim.
Now suppose 0 ≤ s ≤ n− 1 and 0 ≤ r ≤ m− 1. Then

β(m, n)γ (m, k; n, h)(sm+ r) = β(m, n)(s′m+ r′) = s1m+ r′,

where (cf. Definition 5.2.10 and Definition 5.2.12)

kr = am+ r′ and 0 ≤ r′ ≤ m− 1
hs = bn+ s′ and 0 ≤ s′ ≤ n− 1,

for suitable a, b ∈ Z, and

s′ − m∗r′ = cn+ s1 and 0 ≤ s1 ≤ n− 1,

for a suitable c ∈ Z, and m∗ as in (5.19). It follows that

s1 = s′ − m∗r′ − cn = hs− bn− m∗kr + am∗m− cn.

Therefore

s1m+ r′ = hsm− bnm− m∗mkr + am∗m2 − cnm+ kr − am

= hsm+ (1− m∗m)kr − am(1− m∗m) mod nm

(by (5.19)) = hsm+ nn∗kr mod nm,

proving (5.17).
Finally, we prove the last assertion. Suppose that 0 ≤ j ≤ nm− 1 and

π (m, k; n, h)(sm+ r) = j. Then

j = hsm+ kn∗nr mod nm.

Multiplying by k∗, we get

k∗ j = k∗hsm+ k∗kn∗nr = r mod m,

while, multiplying by h∗m∗, we get

h∗m∗ j = sh∗hm∗m+ h∗m∗knn∗r = s mod n,

showing that conditions (5.18) are satisfied. �
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Remark 5.2.15 Two special cases of π (m, k; n, h) are worth mentioning.
For k = 1 and h = m∗, we define the Chinese remainder mapping c(m, n) =

π (m, 1; n,m∗). We have

c(m, n)(ms+ r) = mm∗s+ nn∗r mod nm.

Note that (cf. (5.18)), j = mm∗s+ nn∗r is a solution of the system{
j ≡ s mod n

j ≡ r mod m

(this explains the name of the map c(m, n), cf. Corollary 1.1.23).
For k = n and h = 1 we define the Ruritanian map r(m, n) = π (m, n; n, 1).

We have

r(m, n)(ms+ r) = sm+ n2n∗r mod nm

= sm+ nr mod nm

since nn∗ = 1 mod m implies that

n2n∗ = n mod nm. (5.20)

Theorem 5.2.16 (Permutational Reverse Radix Identity) If gcd(m, n) =
gcd(k,m) = gcd(h, n) = 1, then

π (m, k; n, h)γ (m, n; n,m∗) = π (n, h;m, k)σ (m, n),

where, as usual, m∗ denotes the inverse of m mod n.

Proof. For 0 ≤ s ≤ n− 1 and 0 ≤ r ≤ m− 1, by applying the definitions of γ
and π , and setting

s′ = sm∗ mod n and r′ = rn mod m, (5.21)

we have

π (m, k; n, h)γ (m, n; n,m∗)(ms+ r) = π (m, k; n, h)(s′m+ r′)

= hs′m+ knn∗r′ mod nm

(by (5.21)) = hsm∗m+ kn2n∗r mod nm

(by (5.20)) = hsm∗m+ knr mod nm.

On the other hand, applying the definition of σ (m, n), we get

π (n, h;m, k)σ (m, n)(ms+ r) = π (n, h;m, k)(rn+ s)

= krn+ hsmm∗ mod nm. �
The Permutational Reverse Radix Identity in the cases discussed in Remark

5.2.15 may be expressed as follows.
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Proposition 5.2.17

c(m, n) = c(n,m)σ (m, n) and r(m, n) = r(n,m)σ (m, n).

Proof. For 0 ≤ s ≤ n− 1 and 0 ≤ r ≤ m− 1 we have

c(n,m)σ (m, n)(ms+ r) = c(n,m)(rn+ s)

= rnn∗ + mm∗s mod nm

= c(m, n)(ms+ r)

(note that c(n,m) = π (n, 1;m, n∗)) and

r(n,m)σ (m, n)(ms+ r) = r(n,m)(rn+ s)

= rn+ sm mod nm

= r(m, n)(ms+ r)

(and now r(n,m) = π (n,m;m, 1)). �

5.3 Permutation matrices and Kronecker products

We begin with some elementary but useful remarks on the product of matrices.
Let A = (ai, j ) 1≤i≤n

1≤ j≤m
be an n× m matrix with complex coefficients.

Note that often we will actually use {0, 1, . . . , n− 1} (respectively
{0, 1, . . . ,m− 1}) in place of {1, 2, . . . , n} (respectively {1, 2, . . . ,m}) as
index sets.
We denote by A∗ j its j-th column and by Ai∗ its i-th row, that is,

A∗ j =

⎡⎢⎢⎢⎣
a1, j
a2, j
...
an, j

⎤⎥⎥⎥⎦ and Ai∗ =
[
ai,1, ai,2, · · · , ai,m

]

for j = 1, 2, . . . ,m and i = 1, 2, . . . , n. This way, we may decompose A as

A = [A∗1A∗2 · · ·A∗m] =

⎡⎢⎢⎢⎣
A1∗
A2∗
...
An∗

⎤⎥⎥⎥⎦ .

Let B = (b j,k )1≤ j≤m
1≤k≤h

be an m× h matrix. Then the product AB may be written

in the following two forms. The first is:

AB = [(AB)∗1(AB)∗2 · · · (AB)∗h]
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where, for k = 1, 2, . . . , h,

(AB)∗k =
m∑
j=1

A∗ jb j,k = A(B∗k ). (5.22)

In other words, the k-th column of AB is the linear combination of the columns
of A with coefficients b1,k, b2,k, . . . , bm,k (the k-th column of B). The second
one is:

AB =

⎡⎢⎢⎢⎣
(AB)1∗
(AB)2∗

...
(AB)n∗

⎤⎥⎥⎥⎦
where, for i = 1, 2, . . . , n,

(AB)i∗ =
m∑
j=1

ai, jB j∗ = Ai∗B. (5.23)

That is, the i-th row of AB is the linear combinations of the rows of B with
coefficients ai,1, ai,2, . . . , ai,m (the i-th row of A).
With a permutation π of {1, 2, . . . , n} we associate the n× n permutation

matrix

Pπ = (δπ (i), j )
n
i, j=1. (5.24)

That is, the (i, j)-coefficient of Pπ is equal to 1 if j = π (i), and 0 otherwise. In
other words, the i-th row of Pπ is

(Pπ )i∗ = [0 · · · 0 1 0 · · · 0]
where the unique 1 is in the π (i)-th position (column). Noting that

δπ (i), j = δi,π−1( j), (5.25)

we can also conclude that the j-th column of Pπ is

(Pπ )∗ j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the unique 1 is in the π−1( j)-th position (row).
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Lemma 5.3.1 (Product rules)

(i) Let π, σ be permutations of {1, 2, . . . , n}. Then
PπPσ = Pσπ .

Moreover,

(Pπ )
−1 = Pπ−1 = (Pπ )

T . (5.26)

(ii) Let A (respectively B) be an m× n (respectively n× m) matrix. Then

APπ = [A∗1A∗2 · · ·A∗n]Pπ = [A∗π−1(1)A∗π−1(2) · · ·A∗π−1(n)

]
,

while

PπB = Pπ

⎡⎢⎢⎢⎣
B1∗
B2∗
...
Bn∗

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Bπ (1)∗
Bπ (2)∗
...

Bπ (n)∗

⎤⎥⎥⎥⎦ .

Proof.

(i) The (i, j)-coefficient of the product PπPσ is:
n∑

k=1

δπ (i),kδσ (k), j =
n∑

k=1

δπ (i),kδk,σ−1( j)

=
{
1 if π (i) = σ−1( j)

0 otherwise

=
{
1 if j = σ (π (i))

0 otherwise

= δσ (π (i)), j.

Moreover, (5.26) follows from (5.25).
(ii) Taking into account (5.22) we have, for j = 1, 2, . . . , n,

(APπ )∗ j =
n∑

k=1

A∗kδπ (k), j

=
n∑

k=1

A∗kδk,π−1( j)

= A∗π−1( j).

Similarly, by (5.23), for i = 1, 2, . . . , n we have

(PπB)i∗ =
n∑

k=1

δπ (i),kBk∗ = Bπ (i)∗. �
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Corollary 5.3.2 Let A = (ai, j )ni, j=1 be an n× n-matrix. Then

PπAP
T
π = (aπ (i),π ( j) )

n
i, j=1.

In other words, multiplication on the left by Pπ is equivalent to a permutation of
the rows (in the i-th position we find the π−1(i)-th row). Multiplication on the
right byPπ is equivalent to a permutation of the columns (in the j-th position we
find the π ( j)-th column). Note also that if we set Qπ = PTπ then QπQσ = Qπσ .

Definition 5.3.3 Let A = (ai, j )ni, j=1 and B = (bi, j )mi, j=1 be an n× n matrix and
an m× m matrix, respectively. Then the Kronecker product of A and B is the
nm× nm matrix A⊗ B given in block form by

A⊗ B =

⎛⎜⎜⎜⎝
a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB
...

...
...

...
an,1B an,2B · · · an,nB

⎞⎟⎟⎟⎠ .

This notion will be used in Section 8.7 and Section 10.5.

Example 5.3.4 Denote by In the n× n identity matrix. Then

In ⊗ B =

⎛⎜⎜⎜⎝
B

B
. . .

B

⎞⎟⎟⎟⎠ (5.27)

and

A⊗ Im =

⎛⎜⎜⎜⎝
a1,1Im a1,2Im · · · a1,nIm
a2,1Im a2,2Im · · · a2,nIm

...
...

...
...

an,1Im an,2Im · · · an,nIm

⎞⎟⎟⎟⎠ .

In particular,

In ⊗ Im = Inm. (5.28)

Note that, in general, A⊗ B is different from B⊗ A (but we will show that they
are similar).

Proposition 5.3.5 The Kronecker product satisfies the following properties.

(i) Bilinearity:

(α1A1 + α2A2)⊗ B = α1(A1 ⊗ B)+ α2(A2 ⊗ B)
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and

A⊗ (β1B1 + β2B2) = β1(A⊗ B)+ β2(A⊗ B2);
(ii) associativity:

(A⊗ B)⊗ E = A⊗ (B⊗ E );
(iii) product rule:

(A⊗ B)(C ⊗ D) = (AC)⊗ (BD);
(iv)

A⊗ B = (A⊗ Im)(In ⊗ B) = (Im ⊗ A)(B⊗ In);
(v) if both A, B are invertible then A⊗ B is invertible and

(A⊗ B)−1 = A−1 ⊗ B−1;
(vi)

(A⊗ B)T = AT ⊗ BT ,

for all n× n matrices A,A1,A2,C; m× mmatrices B,B1,B2,D; h× h
matrices E; and α1, α2, β1, β2 ∈ C.

Proof. (i) and (ii) are easy exercises left to the reader.
(iii) If C = (ci, j )ni, j=1 then (A⊗ B)(C ⊗ D) equals⎛⎜⎜⎜⎝

a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB
...

...
...

...
an,1B an,2B · · · an,nB

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
c1,1D c1,2D · · · c1,nD
c2,1D c2,2B · · · c2,nD
...

...
...

...
cn,1D cn,2D · · · cn,nD

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝

(∑n
j=1 a1, jc j,1

)
BD

(∑n
j=1 a1, jc j,2

)
BD · · ·

(∑n
j=1 a1, jc j,n

)
BD(∑n

j=1 a2, jc j,1
)
BD

(∑n
j=1 a2, jc j,2

)
BD · · ·

(∑n
j=1 a2, jc j,n

)
BD

...
...

...
...(∑n

j=1 an, jc j,1
)
BD

(∑n
j=1 an, jc j,2

)
BD · · ·

(∑n
j=1 an, jc j,n

)
BD

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and this is exactly (AC)⊗ (BD).
(iv) and (v) are easy consequences of (iii). Finally, (vi) is an easy exercise. �

We now adopt the notation in [130]. We set

Pmn = Pσ (m,n) (5.29)
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that is, Pmn is the permutation matrix associated with the stride permutation
σ (m, n) (see Definition 5.2.1). Note that, by (5.26) and (5.7), we have

(Pmn )
−1 = (Pmn )

T = Pnm. (5.30)

The following important result connects stride permutations and Kronecker
products.

Proposition 5.3.6 (Similarity of tensor products by stride permutations)
Let A = (ai, j )n−1

i, j=0 and B = (bi, j )m−1
i, j=0. Then

Pnm(A⊗ B)Pmn = B⊗ A.

Proof. Denote by (A⊗ B)i,i′ (0 ≤, i, i′ ≤ nm− 1) the (i, i′)-coefficient of A⊗
B. Then, in the notation of (5.5) and (5.6), thematrixA⊗ Bmay be expressed as
follows: if i = sm+ r and i′ = s′m+ r′, with 0 ≤ r, r′ ≤ m− 1 and 0 ≤ s, s′ ≤
n− 1, then

(A⊗ B)i,i′ = as,s′br,r′ . (5.31)

Moreover, if j = rn+ s and j′ = r′n+ s, with, as above, 0 ≤ r, r′ ≤ m− 1 and
0 ≤ s, s′ ≤ n− 1, then

(B⊗ A) j, j′ = br,r′as,s′ (5.32)

and

j = σ (m, n)i j′ = σ (m, n)i′

i = σ (n,m) j i′ = σ (n,m) j′.
(5.33)

Therefore, taking into account Corollary 5.3.2 and (5.7), we have[
Pnm(A⊗ B)Pmn

]
j, j′ = (A⊗ B)σ (n,m) j,σ (n,m) j′

(by (5.33)) = (A⊗ B)i,i′

(by (5.31)) = as,s′br,r′

(by (5.32)) = (B⊗ A) j, j′ . �

We now examine the partial stride permutations introduced in Definition
5.2.4: we keep the same notation.

Proposition 5.3.7 We have

Pτ (m,n,k) = Ik ⊗ Pmn

and

Pι(m,n,k) = Pnk ⊗ Im.
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Proof. Note that

(Pmn )i,i′ = δσ (m,n)i,i′ = δr,r′δs,s′ (5.34)

if i = sm+ r and i′ = r′n+ s′, with 0 ≤ s, s′ ≤ n− 1 and 0 ≤ r, r′ ≤ m− 1.
Therefore, if i = tmn+ sm+ r, with 0 ≤ t ≤ k − 1, 0 ≤ s ≤ n− 1, and 0 ≤
r ≤ m− 1, and i′ = t ′mn+ r′n+ s′, with 0 ≤ t ′ ≤ k − 1, 0 ≤ r′ ≤ m− 1, and
0 ≤ s′ ≤ n− 1, then (cf. Definition 5.2.4)

τ (m, n, k)i = i′ ↔ t = t ′, s = s′, r = r′

so that

(Pτ (m,n,k) )i,i′ = δτ (m,n,k)i,i′ = δt,t ′δr,r′δs,s′ . (5.35)

Similarly, by virtue of (5.31) (with n replaced by k and m replaced by nm), we
have

(Ik ⊗ Pmn )i,i′ = δt,t ′ (P
m
n )sm+r,r′n+s′

(by (5.34)) = δt,t ′δr,r′δs,s′ .
(5.36)

Comparing (5.35) and (5.36), we deduce the first identity.
Now suppose that i′ = s′km+ t ′m+ r′ with 0 ≤ t ′ ≤ k − 1, 0 ≤ r′ ≤ m− 1,

and 0 ≤ s′ ≤ n− 1, while i is as above. Then (cf. Definition 5.2.4)

ι(m, n, k)i = i′ ↔ t = t ′, s = s′, r = r′

so that

(Pι(m,n,k) )i,i′ = δι(m,n,k)i,i′ = δt,t ′δs,s′δr,r′ , (5.37)

while, writing i, i′ in the forms i′ = (s′k + t ′)m+ r′ and i = (tn+ s)m+ r, we
have

(Pnk ⊗ Im)i,i′ = (Pnk )tn+s,s′k+t ′δr,r′

= δσ (n,k)(tn+s),s′k+t ′δr,r′

= δs,s′δr,r′δt,t ′ ,

(5.38)

where the first equality follows from (5.31). Comparing (5.37) and (5.38) we
deduce the second identity. �

By means of Lemma 5.3.1.(i) and of Proposition 5.3.7, all the identities in
Theorem 5.2.3, Theorem 5.2.5, Theorem 5.2.6, and Corollary 5.2.7 may be
translated into identities for permutation matrices. We list then in the following
proposition.
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Proposition 5.3.8 Basic product identities:

Pmnk Pmkn = Pmnk

PmnkP
n
mk = Pmnk .

(5.39)

Product identities for partial strides:

(Ik ⊗ Pmn )(P
m
k ⊗ In) = Pmnk

(Pnk ⊗ Im)(In ⊗ Pmk ) = Pmnk .

Mixed product identities:

Pmnk (In ⊗ Pkm) = Pnk ⊗ Im

Pmnk(P
k
m ⊗ In) = Ik ⊗ Pmn

(Pnk ⊗ Im)Pmkn = Ik ⊗ Pmn

(Ik ⊗ Pmn )P
n
mk = Pnk ⊗ Im.

Similarity identity:

Pkmn(Ik ⊗ Pmn )P
mn
k = Pmn ⊗ Ik.

Proof. The proof is immediate and is left to the reader. We just note that, using
the matrix formalism, the second identity follows from the first one bymeans of
an application of (5.30). The same observation holds true for the other group
of identities. Note also that the similarity identity is just a particular case of
Proposition 5.3.6. �

With the notation in Definition 5.2.10 we set

Bkm = Pγ (m,k). (5.40)

Proposition 5.3.9

Pγ (m,k;n,h) = Bhn ⊗ Bkm.

Proof. First note that, for 0 ≤ r, r′ ≤ m− 1,

(Bkm)r,r′ = δγ (m,k)r,r′ =
{
1 if r′ ≡ kr mod m

0 otherwise.
(5.41)
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Therefore, for i = ms+ r and i′ = ms′ + r′, with 0 ≤ s, s′ ≤ n− 1, and 0 ≤
r, r′ ≤ m− 1, by virtue of (5.31) we have

(Bhn ⊗ Bkm)i,i′ = (Bhn)s,s′ (B
k
m)r,r′

(by (5.41)) =
{
1 if s′ = hs mod n and r′ = kr mod m

0 otherwise

= δγ (m,k;n,h)i,i′

= (Pγ (m,k;n,h) )i,i′ . �

Note also that, if gcd(k,m) = gcd(h,m) = 1, from Proposition 5.2.11 we
get:

BkmB
h
m = Bkhm = BhmB

k
m

and

(Bkm)
−1 ≡ (Bkm)

T = Bk
∗
m , (5.42)

where, as usual, k∗k = 1 mod m.
In order to describe the matrix formulations corresponding to β(m, n) in

(5.16), we introduce a few more definitions and notation. The elementary cir-
culant permutation matrix of order n is the matrix

Cn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0

. . .

0 0 · · · 1 0 0
0 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

(cf. Exercise 2.4.16). In other words, denoting by ε = εn the permutation of
{0, 1, . . . , n− 1} defined by setting ε(i) = i− 1 mod n, then

(Cn)i, j = δε(i), j 0 ≤ i, j ≤ n− 1,

equivalently (cf. (5.24)),

Cn = Pε. (5.43)

Clearly, Ckn = Pεk and therefore

(Ckn )i, j =
{
1 if i− k ≡ j mod n

0 otherwise.
(5.44)
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We also define the m-th block diagonal power of an n× n matrixW , as the
mn× mn matrix Dm(W ) defined by setting

Dm(W ) =

⎛⎜⎜⎜⎜⎜⎝
W 0

W 1

W 2

. . .

Wm−1

⎞⎟⎟⎟⎟⎟⎠ (5.45)

where W 0 = In and Wi =WWi−1 for i = 1, 2, . . . ,m− 1. Note that, for j =
rn+ s and j′ = r′n+ s′, with 0 ≤ r, r′ ≤ m− 1 and 0 ≤ s, s′ ≤ n− 1, we have

[Dm(W )] j, j′ = δr,r′ · (Wr )s,s′ . (5.46)

In what follows, for 0 ≤ k ≤ n− 1, we set

Qn
m(k) = Pmn Dm(C

k
n )P

n
m. (5.47)

Then, with the notation in Definition 5.2.12 we have

Proposition 5.3.10

Pβ(m,n) = Qn
m(m

∗).

Proof. Let i = sm+ r and i′ = s′m+ r′, with 0 ≤ s, s′ ≤ n− 1 and 0 ≤ r, r′ ≤
m− 1. Then, setting j = σ (m, n)i = rn+ s and j′ = σ (m, n)i′ = r′n+ s′, by
virtue of Corollary 5.3.2 and (5.7), we have

[Pmn Dm(C
m∗
n )Pnm]i,i′ = [Dm(C

m∗
n )]σ (m,n)i,σ (m,n)i′

= [Dm(C
m∗
n )] j, j′

(by (5.46)) = δr,r′ (C
m∗r
n )s,s′

(by (5.44)) =
{
1 if r′ = r and s′ = s− m∗r mod n

0 otherwise

(by (5.16)) = δβ(m,n)i,i′ . �
Finally, we define the permutation matrix corresponding to the composite

bijection permutation by setting, with the same notation as in Definition 5.2.13,

�n
m(h, k) = Pπ (m,k;n,h). (5.48)

Therefore, for 0 ≤ i, i′ ≤ mn− 1 with i = sm+ r as in (5.5), we have

[�n
m(h, k)]i,i′ =

{
1 if i′ = hsm+ knn∗r mod nm

0 otherwise.
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By means of Lemma 5.3.1.(i) we immediately get the matrix version of Theo-
rem 5.2.14 and Theorem 5.2.16.

Theorem 5.3.11 Suppose gcd(n,m) = gcd(k,m) = gcd(h, n) = 1, mm∗ = 1
mod n and nn∗ = 1 mod m. Then we have:

(i) Matrix Factorization of Composite Bijection Permutations

�n
m(h, k) =

(
Bhn ⊗ Bkm

)
Qn
m(m

∗). (5.49)

(ii) Reverse Radix Identity(
Bm

∗
n ⊗ Bnm

)
�n
m(h, k) = Pmn �m

n (k, h).

Denote by

Cnm = Pc(m,n) (= �n
m(m

∗, 1)) and Rn
m = Pr(m,n) (= �n

m(1, n)) (5.50)

the permutation matrices associated with the Chinese remainder mapping and
with the Ruritanian map (cf. Remark 5.2.15), respectively. Then from Proposi-
tion 5.2.17 we deduce the following symmetry relations.

Proposition 5.3.12

Cnm = Pmn Cmn and Rn
m = Pmn Rm

n .

We need a generalization of (5.49).
Let n,m, h, k, � be positive integers such that gcd(n, h) = gcd(m, k) = 1.We

set

�n
m(h, k, �) =

(
Bhn ⊗ Bkm

)
Qn
m(�). (5.51)

Therefore, by (5.49), if gcd(n,m) = 1 then we have

�n
m(h, k) = �n

m(h, k,m
∗), (5.52)

where mm∗ = 1 mod n.
Before embarking on the study of the matrix formulation of the FFT, we

show how to apply the machinery of stride and partial stride permutations to
get some useful factorizations of tensor products.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.006
https://www.cambridge.org/core


150 The Fast Fourier Transform

Proposition 5.3.13 For k,m, n positive integers and A an n× n matrix we
have:

Ik ⊗ A⊗ Im = Pmkn(Ikm ⊗ A)Pknm

and

Ik ⊗ A⊗ Im = (Ik ⊗ Pmn )(Ikm ⊗ A)(Ik ⊗ Pnm)

(recall, cf. Proposition 5.3.7, that Ik ⊗ Pmn = Pτ (m,n,k) ).

Proof. First observe that Ik ⊗ A is a kn× kn matrix, so that

Pknm (Ik ⊗ A⊗ Im)P
m
kn = Pknm [(Ik ⊗ A)⊗ Im]P

m
kn

(by Proposition 5.3.6) = Im ⊗ (Ik ⊗ A)

(by Proposition 5.3.5.(ii) and (5.28)) = Imk ⊗ A.

Recalling that (Pknm )−1 = Pmkn (cf. (5.30)) we get the first identity by conjugating
with Pmkn. Similarly,

(Ik ⊗ Pnm)(Ik ⊗ A⊗ Im)(Ik ⊗ Pmn ) = (Ik ⊗ Pnm)[Ik ⊗ (A⊗ Im)](Ik ⊗ Pmn )

(by Proposition 5.3.5.(iii)) = Ik ⊗ [Pnm(A⊗ Im)P
m
n ]

= Ik ⊗ Im ⊗ A

= Ikm ⊗ A,

and the second identity follows as well. �

Wenow introduce some further notation. Suppose that n1, n2, . . . , nh are pos-
itive integers, h ≥ 3, and Aj is an n j × n j matrix, for j = 1, 2, . . . , h. Set

k1 = 1 and k j = n1n2 · · · n j−1 for j = 2, 3, . . . , h;
mj = n j+1n j+2 · · · nh for j = 1, 2, . . . h− 1, and mh = 1

and, for j = 1, 2, . . . , h,

Xj = In1 ⊗ In2 ⊗ · · · In j−1 ⊗ Aj ⊗ In j+1 ⊗ · · · ⊗ Inh = Ik j ⊗ Aj ⊗ Imj ,

Yj = Ik jmj ⊗ Aj.

Finally, we set

Qj = Pτ (mj+1,n j+1,k j+1 )τ (n j,mj,k j )

= (Ik j ⊗ P
nj
mj )(Ik j+1 ⊗ P

mj+1
n j+1 ),

(5.53)

where the second equality follows from Proposition 5.3.7 and Lemma 5.3.1.(i).
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Theorem 5.3.14 With the above notation, the following factorization identities
hold.

(i) Fundamental factorization:

A1 ⊗ A2 ⊗ · · · ⊗ Ah = X1X2 · · ·Xh.
(ii) Parallel tensor product factorization I:

A1 ⊗ A2 ⊗ · · · ⊗ Ah = Pm1
n1 Y1P

k2m2
n2 Y2P

k3m3
n3 · · ·Pkh−1mh−1

nh−1
Yh−1P

kh
nhYh

(iii) Parallel tensor product factorization II:

A1 ⊗ A2 ⊗ · · · ⊗ Ah = Pm1
n1 Y1Q1Y2Q2 · · ·Qh−2Yh−1Qh−1Yh.

Proof. The first identity is just an iterated form of Proposition 5.3.5.(ii)–(iv).
For the second identity, first observe that Proposition 5.3.13 yields

Xj = P
mj

k jn j
YjP

kjn j
mj j = 1, 2, . . . , h.

Moreover, since k j+1 = k jn j and mj = n j+1mj+1,

P
kjn j
mj P

mj+1

k j+1n j+1
= P

kj+1
n j+1mj+1P

mj+1

k j+1n j+1
= P

kj+1mj+1
n j+1 ,

where the last equality follows from (5.39) in Proposition 5.3.8. Therefore,

X1X2 · · ·Xh = Pm1
n1 Y1P

n1
m1
Pm2
k2n2

Y2P
k2n2
m2

· · ·YjPkjn jmj P
mj+1

k j+1n j+1
Yj+1 · · ·Yh

= Pm1
n1 Y1P

k2m2
n2 Y2 · · ·YjPkj+1mj+1

n j+1 Yj+1 · · ·Pkh−1mh−1
nh−1

Yh−1P
kh
nhYh.

Finally, from Proposition 5.3.13 we also deduce

Xj = (Ik j ⊗ P
mj
n j )(Ik jmj ⊗ Aj )(Ik j ⊗ P

nj
mj )

which, by virtue of (5.53), immediately implies the last equality in the
statement. �

5.4 The matrix form of the FFT

This is the central section of the present chapter. It is devoted to the matrix form
of several algorithms that reduce the matrix of the DFT to a tensor product of
smaller matrices, when the size of the DFT is factorizable.
Let ω ∈ C be an arbitrary n-th root of 1, that is, ωn = 1. Following [130], we

define the n× n matrix An(ω) by setting

An(ω) = (ωi j )n−1
i, j=0. (5.54)
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Clearly, An(ω) is symmetric. In the notation of Exercise 2.4.16.(4), we have

1√
n
An(e

− 2π i
n ) = Fn.

Note also that if ω is a primitive n-th root of 1, then An(ω)−1 exists and

An(ω)
−1 = 1

n
An(ω).

The proof is similar to that one of Lemma 2.2.3. In general, if ωr = 1 and
ωh �= 1 for 0 ≤ h ≤ r − 1, for some r ≥ 1 (note that r necessarily divides n),
then rkAn(ω) = r.

Recall thatCn denotes the elementary circulant matrix (see (5.43)) and Dn(·)
is the n-th diagonal power matrix (see (5.45)).

Proposition 5.4.1 (Eigenidentities) Let n be a positive integer, k ≥ 0, and ω

an n-th root of 1. Then we have

An(ω)C
k
n = Dn(ω

k )An(ω) and CknAn(ω) = An(ω)Dn(ω
−k ).

Proof. From (5.43) we get, for 0 ≤ i, j ≤ n− 1,

[An(ω)C
k
n]i, j =

n−1∑
h=0

ωihδεk (h), j

=
n−1∑
h=0

ωihδh,ε−k ( j)

= ωiε−k ( j)

= ωi( j+k)

= ωikωi j

= [Dn(ω
k )An(ω)]i, j,

proving the first equality.
The second equality follows from the first one, by transposing: observe that

(Ckn )
T = (Pεk )

T = Pε−k = C−k
n

so that we must replace k with −k. �

We also need the following transformation formula.

Proposition 5.4.2 Suppose that gcd(h, n) = 1 and h∗h = 1 mod n. Then

An(ω)B
h
n = An(ω

h∗ ) and BhnAn(ω) = An(ω
h).
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Proof. For 0 ≤ i, j ≤ n− 1 we have

[An(ω)B
h
n]i, j =∗ [An(ω)]i,γ (n,h)−1 j

(by Proposition 5.2.11.(ii)) = [An(ω)]i,h∗ j

= ωi jh∗

= [An(ω
h∗ )]i, j

where=∗ follows from Lemma 5.3.1.(ii) and (5.40). This proves the first equal-
ity. The proof of the second one is similar and left to the reader. �

Using the notation in (5.45), we define the diagonal matrix of twiddle factors
by setting

Tnm (ω) = Dm(Dn(ω)),

where now ω is an nm-th root of 1.
Note that, by virtue of (5.46), for 0 ≤ r, r′ ≤ m− 1 and 0 ≤ s, s′ ≤ n− 1,

we have

[Tnm (ω)]rn+s,r′n+s′ = δr,r′ [Dn(ω
r )]s,s′ = δr,r′δs,s′ω

rs. (5.55)

Proposition 5.4.3 With the above notation we have

Pmn T
n
m (ω)P

n
m = Tmn (ω).

Moreover, for integers k and h,

T nm (ω
k )Tnm (ω

h) = Tnm (ω
k+h).

Proof. By virtue of Corollary 5.3.2 we have

[Pmn T
n
m (ω)P

n
m]sm+r,s′m+r′ = [Tnm (ω)]σ (m,n)(sm+r),σ (m,n)(s′m+r′ )

= [Tnm (ω)]rn+s,r′n+s′

(by (5.55)) = δr,r′δs,s′ω
rs

(again by (5.55)) = [Tmn (ω)]sm+r,s′m+r′ .

The second identity is trivial. �

Proposition 5.4.4 (Tensor form of the eigenidentities) For n,m positive
integers, ω an nm-th root of 1, and an integer k, we have

Dm(Ckn )[Im ⊗ An(ωm)] = [Im ⊗ An(ωm)]Tnm (ω
−km)

[Im ⊗ An(ωm)]Dm(Ckn ) = Tnm (ω
km)[Im ⊗ An(ωm)].
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Proof. We only prove the first identity: the proof of the second one is similar
and left to the reader.

Dm(C
k
n )[Im ⊗ An(ω

m)]

=

⎛⎜⎜⎜⎝
In

Ckn
. . .

Ck(m−1)
n

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
An(ωm)

An(ωm)
. . .

An(ωm)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
An(ωm)

Ck
nAn(ω

m)
. . .

Ck(m−1)
n An(ωm)

⎞⎟⎟⎟⎠
and, by Proposition 5.4.1, this equals

=

⎛⎜⎜⎜⎝
An(ωm)

An(ωm)Dn(ω−km)
. . .

An(ωm)Dn(ω−km(m−1))

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
An(ωm)

An(ωm)
. . .

An(ωm)

⎞⎟⎟⎟⎠

·

⎛⎜⎜⎜⎝
In

Dn(ω−km)
. . .

Dn(ω−km(m−1))

⎞⎟⎟⎟⎠
= [Im ⊗ An(ω

m)]Tnm (ω
−km),

where the last identity follows from the definition of Tnm and the identity
Dn(ω−kmh) = [Dn(ω−km)]h. �

We are now in position to prove the basic tensor product form of the FFT and
to derive all its consequences.

Theorem 5.4.5 (General Radix Identity) Let n,m > 1 be two positive inte-
gers and ω an nm-th root of 1. Then

Anm(ω)P
n
m = [An(ω

m)⊗ Im]T
m
n (ω)[In ⊗ Am(ω

n)]. (5.56)
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Proof. Let i = sm+ r, i′ = s′m+ r′, j = αm+ β, and j′ = α′m+ β ′, with
0 ≤ s, s′, α, α′ ≤ n− 1 and 0 ≤ r, r′, β, β ′ ≤ m− 1. Then, on the one
hand,

{[An(ωm)⊗ Im]T
m
n (ω)[In ⊗ Am(ω

n)]}i,i′ =
nm−1∑
j, j′=0

[An(ω
m)⊗ Im]i, j[T

m
n (ω)] j, j′

· [In ⊗ Am(ω
n)] j′,i′

(by (5.31) and (5.55)) =
n−1∑

α,α′=0

m−1∑
β,β ′=0

[An(ω
m)]s,αδr,β

· δα,α′δβ,β ′ωαβδα′,s′ [Am(ω
n)]β ′,r′

(α = α′ = s′ and r = β = β ′) = [An(ω
m)]s,s′ω

s′r[Am(ω
n)]r,r′

(by (5.54)) = ωmss′+s′r+nrr′ .

On the other hand, by Lemma 5.3.1.(ii), (5.7), and (5.29),

[Anm(ω)P
n
m]i,i′ = [Anm(ω)]i,σ (m,n)i′

= [Anm(ω)]sm+r,r′n+s′

= ω(sm+r)(r′n+s′ )

(ωnm = 1) = ωmss′+s′r+nrr′ . �

We now show how, multiplying on the left and on the right the left hand
side of the General Radix Identity (5.56) by suitable permutations, changes the
diagonal matrix of twiddle factors in the right hand side (of (5.56)).

Theorem 5.4.6 (Twiddle Identity) With the notation of Theorem 5.4.5, for
arbitrary k1, k2 ∈ Z we have:

Qn
m(k1)Anm(ω)[P

m
n Q

m
n (k2)]

T

= [An(ω
m)⊗ Im]T

m
n (ω1−k1m−k2n)[In ⊗ Am(ω

n)].

Proof. First of all, note that (Ck2
m )T = C−k2

m (compare with (5.26) and (5.43))
and therefore, from (5.45) and (5.47) it follows that

[Qm
n (k2)]

T = Qm
n (−k2).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.006
https://www.cambridge.org/core


156 The Fast Fourier Transform

Therefore, taking into account Theorem 5.4.5,

Qn
m(k1)Anm(ω)[P

m
n Q

m
n (k2)]

T = Qn
m(k1)[An(ω

m)⊗ Im]T
m
n (ω)

· [In ⊗ Am(ω
n)]Pmn Q

m
n (−k2)Pnm

(by (5.47)) = Pmn Dm(C
k1
n )Pnm[An(ω

m)⊗ Im]

· Tmn (ω)[In ⊗ Am(ω
n)]Dn(C

−k2
m )

(by Proposition 5.3.6) = Pmn Dm(C
k1
n )[Im ⊗ An(ω

m)]Pnm

· Tmn (ω)[In ⊗ Am(ω
n)]Dn(C

−k2
m )

(by Proposition 5.4.4) = Pmn [Im ⊗ An(ω
m)]Tnm (ω

−k1m)PnmT
m
n (ω)

· Tmn (ω−k2n)[In ⊗ Am(ω
n)]

(by Propositions 5.3.6 and 5.4.3) = [An(ω
m)⊗ Im]T

m
n (ω1−k1m−k2n)·

· [In ⊗ Am(ω
n)]. �

Corollary 5.4.7 With the notation of (5.51) and supposing gcd(ki,m) =
gcd(hi, n) = 1, for i = 1, 2, we have

�n
m(h1, k1, �1)Anm(ω)[P

m
n �m

n (k2, h2, �2)]
T

= [An(ω
h1m)⊗ Bk1m ]T

m
n (ω1−�1m−�2n)[Bh

∗
2
n ⊗ Am(ω

k2n)], (5.57)

where h2h∗2 = 1 mod n.

Proof. This follows immediately from Proposition 5.3.5.(iii), Theorem 5.4.6,
(5.51) and Proposition 5.4.2. Just note that, if k2k∗2 = 1 mod m,

[Pmn �m
n (k2, h2, �2)]

T = [Pmn (B
k2
m ⊗ Bh2n )Qm

n (�2)]
T

(by Proposition 5.3.6) = {(Bh2n ⊗ Bk2m )[P
m
n Q

m
n (�2)]}T

=∗ [Pmn Q
m
n (�2)]

T (Bh
∗
2
n ⊗ B

k∗2
m ),

where, in =∗ we used the equality [Bh2n ⊗ Bk2m ]
T = B

h∗2
n ⊗ B

k∗2
m , which follows

from Proposition 5.3.5.(vi) and (5.42). �

Remark 5.4.8 Note that Theorem 5.4.5 and Theorem 5.4.6 are particular cases
of Corollary 5.4.7. Indeed, for hi = ki = 1, i = 1, 2, Corollary 5.4.7 reduces to
Theorem 5.4.6, by virtue of (5.51). If, in addition, �1 = �2 = 0, then it reduces
to Theorem 5.4.5.

Until now, we have determined algorithms for tensor product factorizations
of the matrix AN (ω), where N = mn is an arbitrary factorization. In what fol-
lows, we examine the case when gcd(m, n) = 1.
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Theorem 5.4.9 (Twiddle Free Identity) Suppose that gcd(m, n) = 1. Then,
with the notation and hypotheses of Corollary 5.4.7, we have

�n
m(h1, k1)Anm(ω)[P

m
n �m

n (k2, h2)]
T = An(ω

h1h2m)⊗ Am(ω
k2k1n).

Proof. In (5.57) choose �1 = m∗ and �2 = n∗ (where, as usual, mm∗ = 1
mod n and nn∗ = 1 mod m) and recall (5.52). Then, by (5.19), we have

1− �1m− �2n = 1− mm∗ − nn∗ = 0 mod nm

so that the twiddle factor disappears and, by Proposition 5.3.5.(iii) and Propo-
sition 5.4.2, the right hand side in (5.57) becomes

[An(ω
h1m)⊗ Bk1m ][B

h∗2
n ⊗ Am(ω

k2n)] = An(ω
h1h2m)⊗ Am(ω

k2k1n).

�

A special case of Theorem 5.4.9, where only elementary circulant matrices
and stride permutations are used, is of particular interest.

Corollary 5.4.10 Suppose gcd(m, n) = 1 and let ω be an nm-th root of 1. Then

Qn
m(m

∗)Anm(ω)[Pmn Q
m
n (n

∗)]T = An(ω
m)⊗ Am(ω

n).

Proof. Set h1 = h2 = k1 = k2 = 1 in Theorem 5.4.9, and recall Theorem
5.3.11.(i). �

Theorem 5.4.11 (Generalized Winograd’s Method) With the same notation
and assumption of Theorem 5.4.9, we have

�n
m(h1, k1)Anm(ω)[�

n
m(h2, k2)]

T = An(ω
αm)⊗ Am(ω

βn),

where α = h1h2m mod n and β = k1k2n∗ mod m.

Proof. Using the Reverse Radix Identity (Theorem 5.3.11.(ii)), the identity in
Theorem 5.4.9 becomes

�n
m(h1, k1)Anm(ω)[�

n
m(h2, k2)]

T (Bmn ⊗ Bn
∗
m ) = An(ω

h1h2m)⊗ Am(ω
k1k2n).

Multiplying both sides on the right by (Bmn ⊗ Bn
∗
m )−1 = Bm

∗
n ⊗ Bnm and taking

into account Proposition 5.4.2, the statement follows. �

From the generalized Winograd’s method we deduce the following four par-
ticular cases.

Corollary 5.4.12 (Winograd’s Method [168]) Suppose h1h2m = 1 mod n
and �1�2n = 1 mod m. Then

�n
m(h1, �1n)Anm(ω)[�

n
m(h2, �2n)]

T = An(ω
m)⊗ Am(ω

n).
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158 The Fast Fourier Transform

Proof. Just note that now k1 = �1n, k2 = �2n, and �1�2n = 1 mod m, which
imply that k1k2n∗ = �1�2n2n∗ = 1 mod m. �

Corollary 5.4.13 (Good’s Method [66]) With the notation in (5.50) we have

CnmAnm(ω)[Rn
m]

T = An(ω
m)⊗ Am(ω

n).

Proof. Just set h1 = m∗, k1 = 1, h2 = 1, and k2 = n in Theorem 5.4.11, so that
α = mm∗ = 1 mod n and β = nn∗ = 1 mod m. �

Corollary 5.4.14 (Similarity Identity) Suppose that gcd(k,m) =
gcd(h, n) = 1. Then

�n
m(h, k)Anm(ω)[�

n
m(h, k)]

T = An(ω
αm)⊗ Am(ω

βn)

where α = h2m mod n and β = k2n∗ mod m.

Proof. Just set h1 = h2 = h and k1 = k2 = k in Theorem 5.4.11. �

A special case of Corollary 5.4.14:

Corollary 5.4.15 (Winograd’s Similarity)

CnmAnm(ω)[Cnm]T = An(ω
mm∗

)⊗ Am(ω
nn∗ ).

Proof. Set h = m∗ and k = 1 in Corollary 5.4.14. �

For instance, for n = 4, m = 3, and ω = eiπ/6, we have m∗ = 3, n∗ = 1, and

C4
3A12(ω)[C4

3 ]
T = A4(ω

9)⊗ A3(ω
4).

Weend this sectionwith a brief description of thematrix form of the so-called
Rader-Winograd algorithm. It was developed in [125]; see also [14] and, for
the computational aspects, [15, 160, 163]. We consider first the case n = p, a
prime number. By Theorem 1.1.21, F∗

p is cyclic of order p− 1. Let α ∈ F∗
p be a

generator and define the permutation ξp of {0, 1, . . . , p− 1} by setting ξp(0) =
0 and ξp(k) = αk−1 mod p, for k = 1, 2, . . . , p− 1. Then Qp = Qp(α) = Pξp
denotes the corresponding permutation matrix, as in (5.24). If ω is a nontrivial
p-th root of 1, then, by Corollary 5.3.2,

QpAp(ω)Q
T
p =

(
ωξp(i)ξp( j)

)p−1

i, j=0 ,

that is,

QpAp(ω)Q
T
p =

⎛⎜⎜⎜⎝
1 1 · · · 1
1
... Cp−1

1

⎞⎟⎟⎟⎠ , (5.58)
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where

Cp−1 =
(
ωαi+ j

)p−2

i, j=0
,

is called the core matrix. Note that Cp−1 is a symmetric (p− 1)× (p− 1)
matrix, its (i, j)-entry only depends on the sum i+ j mod p− 1 (i.e., it is a
Hankel matrix: each ascending (from left to right) skew-diagonal is constant,
see Example 5.4.16) and its first row is (ω,ωα, ωα2

, · · · , ωαp−2
). The Rader

algorithm consists in the use of (5.58) to compute the DFT on Zp. Explicitly,
for Y = (y0, y1, . . . , yp−1)T we set X = (x0, x1, . . . , xp−1)T = QpY so that

Ap(ω)Y = QT
p

[
QpAp(ω)Q

T
pX
]

(5.59)

and we have[
QpAp(ω)QT

pX
]
0
=∑p−1

k=0 xk[
QpAp(ω)QT

pX
]
j
= x0 +

∑p−1
k=1 ω

αk+ j−2
xk for j = 1, 2, . . . , p− 1.

In some papers, matrix (5.58) is replaced by

Qp(α)Ap(ω)Qp(−α)T =

⎛⎜⎜⎜⎝
1 1 · · · 1
1
... Dp

1

⎞⎟⎟⎟⎠
with Dp =

(
ωαi− j

)p−2

i, j=0
. Then,

[
Qp(α)Ap(ω)Qp(−α)TX

]
0 =

∑p−1
k=0 xk and, for

j = 1, 2, . . . , p− 1,

[
Qp(α)Ap(ω)Qp(−α)TX

]
j
= x0 +

p−1∑
k=1

ωα j−k
xk,

which has a convolutional form.

Example 5.4.16 (Winograd) For p = 7 and α = 3 we get

Q7(3)A7(ω)Q7(3)
T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
1 ω ω3 ω2 ω6 ω4 ω5

1 ω3 ω2 ω6 ω4 ω5 ω

1 ω2 ω6 ω4 ω5 ω ω3

1 ω6 ω4 ω5 ω ω3 ω2

1 ω4 ω5 ω ω3 ω2 ω6

1 ω5 ω ω3 ω2 ω6 ω4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Exercise 5.4.17 Fill in the details in Example 5.4.16.
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160 The Fast Fourier Transform

For n = ph, with p prime and h ≥ 2, Winograd developed a variation of the
Rader algorithm. We describe it only for the case p ≥ 3. Recall that U (Z/phZ)
is a cyclic group of order (p− 1)ph−1 = ph − ph−1 (see Theorem 1.5.8). Then
we deduce the following decomposition

Z/phZ = {0}
∐ h∐

j=1

ph− jU (Z/pjZ). (5.60)

Indeed, for j = 1, 2, . . . , hwe have that x ∈ Z/pjZ is not invertible if and only
if it is divisible by p, so that we have

Z/pjZ = p(Z/pj−1Z)
∐

U (Z/pjZ).

By iterating this relation we get (5.60). Fix a generator α j of U (Z/pjZ), for
j = 1, 2, . . . , h. Using (5.60), we define a permutation ξph of {0, 1, . . . , ph − 1}
by setting ξph (0) = 0 and

ξph (k) = α
k−pj−1

j ph− j mod ph

for pj−1 ≤ k ≤ pj − 1 and j = 1, 2, . . . , h. In other words, ξph maps the
set {pj−1, pj−1 + 1, . . . , pj − 1} bijectively onto ph− jU (Z/pjZ) for all j =
1, 2, . . . , h. We then set

Qph = Pξph .

The matrix form of Winograd’s generalization of the Rader algorithm is
obtained as in (5.59) by applying

QphAph (ω)Q
T
ph

with ω a ph-th root of 1. The above matrix is symmetric, but no longer Hankel
(though it is made up of blocks consisting of Hankel matrices; see Example
(5.4.18) below).

Example 5.4.18 (Winograd) For p = 3, h = 2, α1 = 2, and α2 = 2 we get

Z/9Z = {0}
∐

3U (Z/3Z)
∐

U (Z/9Z) = {0}
∐

{3, 6}
∐

{1, 2, 4, 5, 7, 8}

so that

ξ9(0) = 0 ξ9(1) = 3 ξ9(2) = 6 ξ9(3) = 1 ξ9(4) = 2

ξ9(5) = 4 ξ9(6) = 8 ξ9(7) = 7 ξ9(8) = 5
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and

Q9A9(ω)Q
T
9 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 1 1 ω3 ω6 ω3 ω6 ω3 ω6

1 1 1 ω6 ω3 ω6 ω3 ω6 ω3

1 ω3 ω6 ω ω2 ω4 ω8 ω7 ω5

1 ω6 ω3 ω2 ω4 ω8 ω7 ω5 ω

1 ω3 ω6 ω4 ω8 ω7 ω5 ω ω2

1 ω6 ω3 ω8 ω7 ω5 ω ω2 ω4

1 ω3 ω6 ω7 ω5 ω ω2 ω4 ω8

1 ω6 ω3 ω5 ω ω2 ω4 ω8 ω7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Exercise 5.4.19 Fill in the details of the above example and show that the
matrix is made up of the multiplication tables of the following three groups
(written multiplicatively): the trivial group, U (Z/3Z), and U (Z/9Z).

Extensions of Rader’s algorithm will be discussed in Section 7.8.

5.5 Algorithmic aspects of the FFT

In this section we examine some of the algorithmic aspects of the formulas
obtained in Section 5.4. For a more complete discussion we refer to [160, 163].
First of all, we want to derive the general form of (5.4), which is also the

basic nonmatrix form of the Cooley-Tukey algorithm. We consider the action
of Anm(ω) to a column vector X = (x0, x1, . . . , xnm−1)T . The General Radix
Identity (Theorem 5.4.5) yields

Anm(ω) = [An(ω
m)⊗ Im]T

m
n (ω)[In ⊗ Am(ω

n)]Pmn . (5.61)

Therefore, arguing as in the proof of Theorem 5.4.5, and using the formulas
established therein, from (5.61), for j = sm+ r and j′ = r′n+ s′, with 0 ≤
s, s′ ≤ n− 1 and 0 ≤ r, r′ ≤ m− 1, we get (by Lemma 5.3.1.(ii) and (5.29))

[Anm(ω)X] j =
nm−1∑
j′=0

{[An(ωm)⊗ Im]T
m
n (ω)[In ⊗ Am(ω

n)]} j,σ (n,m) j′x j′

=
m−1∑
r′=0

n−1∑
s′=0

{[An(ωm)⊗ Im]

· Tmn (ω)[In ⊗ Am(ω
n)]}sm+r,s′m+r′xr′n+s′

=∗
m−1∑
r′=0

n−1∑
s′=0

ωmss′+s′r+nrr′xr′n+s′

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.006
https://www.cambridge.org/core


162 The Fast Fourier Transform

(where=∗ follows from the last equality in the first part of the proof of Theorem
5.4.5), that is,

[Anm(ω)X]sm+r =
n−1∑
s′=0

ωmss′ωs′r
m−1∑
r′=0

ωnrr′xr′n+s′ . (5.62)

The above is the nonmatrix form of the General Radix Identity and constitutes
one of the basic formulations of the Cooley-Tukey algorithm.

Exercise 5.5.1 (5.61) is also called the Decimation in time form of the Cooley-
Tukey algorithm. Prove the following equivalent formulas:

� (Decimation in Frequency)

Anm(ω) = Pnm[In ⊗ Am(ω
n)]Tmn (ω)[An(ω

m)⊗ Im];
� (Parallel Form)

Anm(ω) = Pmn [Im ⊗ An(ω
m)]PnmT

m
n (ω)[In ⊗ Am(ω

n)]Pmn ;
� (Vector Form)

Anm(ω) = [An(ω
m)⊗ Im]T

m
n (ω)Pmn [Am(ω

n)⊗ In].

Now, following [130], we examine the number of operations needed to compute
the DFT by means of the General Radix Identity in Theorem 5.4.5 or, equiva-
lently, in terms of (5.62). This way, we generalize the computation in Section
5.1. For the sake of clarity, we shall denote by X (n) (respectively X (nm)) the vec-
tor (x0, x1, . . . , xn−1)T (respectively (x0, x1, . . . , xnm−1)T ). First of all, arguing
as in the derivation of (5.2), we deduce that the n entries of the column matrix
An(ω)X (n) may be computed by means of at most

T1(n) = [n+ (n− 1)]n+ n− 2 = 2n2 − 2 = O(n2) (5.63)

operations.

Proposition 5.5.2 Suppose we have an algorithm that computes An(ω)X (n) (ω
an n-th root of 1) by means of at most T (n) operations. Then we can compute
Anm(ω)X (nm) (ω an nm-th root of 1) by means of at most

T (nm) ≤ nT (m)+ mT (n)+ (m− 1)(n− 1)

operations.
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Proof. Indeed, if we use (5.62), we need to compute

m−1∑
r′=0

ωnrr′xnr′+s′ for 0 ≤ r ≤ m− 1 and 0 ≤ s′ ≤ n− 1

and these may be seen as n DFT’s with Am(ωn), namely,

Am(ω
n)X (m)

s′

with

X (m)
s′ = (xs′ , xn+s′ , x2n+s′ , . . . , x(m−1)n+s′ )T

and s′ = 0, 1, . . . , n− 1. Then we must multiply these results by the numbers
ωs′r (note that, in general, only (n− 1)(m− 1) of them are different from 1).
Finally, we need to compute the external sum in (5.62) for 0 ≤ s ≤ n− 1 and
0 ≤ r ≤ m− 1, which, as before, may be seen as m DFTs with An(ωm). �

For instance, from Proposition 5.5.2 and using (5.63), we get

T (nm) ≤ m · 2(n2 − 1)+ n · 2(m2 − 1)+ (n− 1)(m− 1)

= 2nm(n+ m)+ nm− 3(n+ m)+ 1.

This is a great improvement: if n = m then T1(n2) ∼ 2n4 while T (n2) ∼ 4n3.

Theorem 5.5.3 Let M be a positive integer and let M = m1m2 · · ·mk be a non-
trivial factorization. Suppose that T (mj ) operation are needed to compute
the DFT with Amj . Then one can compute the DFT with AM by means of at
most

T (M) ≤
⎧⎨⎩M

k∑
j=1

1

mj
[T (mj )+ mj − 1]

⎫⎬⎭−M + 1

operations. Moreover, T (M) does not depend on the order of the factors used
in the factorization.

Proof. We deduce this from the General Radix Identity as in Proposition
5.5.2 by using induction on k. For k = 2 the theorem reduces to Proposition
5.5.2. Assume the result for 2 ≤ h ≤ k − 1 and let us set m = m1m2 · · ·m� and
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164 The Fast Fourier Transform

n = m�+1 · · ·mk for some 2 ≤ � ≤ k − 2. Then M = nm and

T (M) = T (nm)

(by Proposition 5.5.2) ≤ nT (m)+ mT (n)+ (mn− n− m+ 1)

(by inductive hypothesis) ≤ n

⎛⎝m �∑
j=1

1

mj
[T (mj )+ mj − 1]− m+ 1

⎞⎠
+ m

⎛⎝n k∑
j=�+1

1

mj
[T (mj )+ mj − 1]− n+ 1

⎞⎠
+ mn− n− m+ 1

= M

⎧⎨⎩
k∑
j=1

1

mj
[T (mj )+ mj − 1]

⎫⎬⎭−M + 1.

�
Some special cases of Theorem 5.5.3 are worth examining.

Corollary 5.5.4

T (M) ≤ M
k∑
j=1

(2mj + 1)−M + 1.

Proof. This follows from Theorem 5.5.3 by using (5.63) and the elementary
inequality (2m+3)(m−1)

m ≤ 2m+ 1. �
If m1 = m2 = · · · = mk = m, that is,M = mk, we get the following general-

ization of Theorem 5.1.3.

Corollary 5.5.5

T (mk ) ≤ (2m+ 1)mkk − mk + 1.

In particular, for m fixed and k → +∞, one gets

T (mk ) = O(kmk ),

equivalently, T (M) = O(M logM).
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6

Finite fields

This chapter is a self-contained introduction to the basic algebraic theory of
finite fields. This includes a complete study of the automorphisms, norms,
traces, and quadratic extensions of finite fields. Our treatment is inspired by
a course given by Giuseppe Tallini in 1991 at the Istituto Nazionale di Alta
Matematica “Francesco Severi” (INdAM) in Rome (cf. [141]). An alternative
approach is in the monograph by Lidl and Niederreiter [96].We also refer to the
impressive volumes by Knapp [87, 88] for a very complete treatment at both a
basic and an advanced level.

6.1 Preliminaries on ring theory

We start by recalling some basic notions and results in ring theory. Most of
the proofs are elementary and left as exercises: we refer to the monographs
by Herstein [71] and Lang [93] for more details. We also assume the most
elementary facts on polynomials over a field: a good reference is the book by
Kurosh [89].
Let A be a commutative unital ring. We denote by 0 the zero and by 1 the

(multiplicative) identity element of A.
A is said to be an integral domain if it contains no zero divisors, that is, if

a, b ∈ A satisfy ab = 0 then a = 0 or b = 0.
An ideal of A is a subring I ⊆ A such that ai ∈ I for all a ∈ A and i ∈ I.

Viewing I as a subgroup of the additive group A, we can form the quo-
tient group A/I = {(a+ I ) : a ∈ A} and then equip it with the multiplication
defined by (a+ I )(b+ I ) = (ab+ I ) for all a, b ∈ A. It is easy to check that
this multiplication is well defined and that A/I is a commutative unital ring,
called the quotient ring: its zero is (0+ I ) = I and its unit element is (1+ I ).

167
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168 Finite fields

An element u ∈ A is called invertible, or a unit, provided there exists an
element v ∈ A, necessarily unique, called the inverse of u, such that uv = 1.

A field is a commutative unital ring such that every nonzero element is invert-
ible. In the sequel, we shall denote a field by the letters F and E.

Exercise 6.1.1 Show that every finite integral domain is a field.
Hint. Use the pigeon-hole principle.

We denote byA[x] the commutative unital ring consisting of all polynomials

p(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0 (6.1)

with coefficients a0, a1, . . . , an inA in the indeterminate x. In (6.1) we implic-
itly assume that an �= 0 and then denote by deg p = n the degree of the polyno-
mial p(x). If an = 1 one says that the polynomial p(x) is monic.
Clearly, if A is an integral domain, so is A[x].
An ideal I in A is called principal provided there exists a ∈ A such that

I = aA = {ab : b ∈ A} and one then says that I is generated by a. A principal
ideal domain is an integral domain in which every ideal is principal.

Exercise 6.1.2 Let A be an integral domain and let a, b ∈ A. Suppose that the
ideal I = {xa+ yb : x, y ∈ A} is principal. Show that every generator of I is a
gcd(a, b) (the definition of a gcd in A is the same as in Theorem 1.1.1).

Exercise 6.1.3 Show that in a principal ideal domain any nondecreasing chain
of ideals I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · must stabilize, that is, there exists n0 ∈ N
such that In = In0 for all n ≥ n0.

Example 6.1.4 The ring Z of integers is a principal ideal domain. Let us show
that if I ⊆ Z is an ideal, then the minimal primitive element a = min{i ∈ I :
i > 0} generates I . Indeed, given m ∈ I , by Euclidean division we can find
(unique) q ∈ Z and r ∈ Z such that 0 ≤ r < a and m = aq+ r. Since r = m−
aq ∈ I, by minimality of a we deduce that r = 0, showing that m = aq. Thus
I = aA.

Exercise 6.1.5 Show that the integral domain Z[x] is not a principal ideal
domain.
Hint. Show that the ideal generated by 2 and x cannot be generated by a single
polynomial.

We recall that in the ring F[x] of all polynomials over a field F an analogue
of (1.1) holds. This is the Euclidean division of polynomials: for p, s ∈ F[x]
there exist unique q, r ∈ F[x] such that p(x) = q(x)s(x)+ r(x) and 0 ≤ deg r <
deg s.
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Exercise 6.1.6 Let F be a field. Show that F[x] is a principal ideal domain.
Hint. Use Euclidean division of polynomials.

Suppose that A is an integral domain. A nonzero noninvertible element p ∈
A is said to be irreducible if it cannot be expressed as a product p = ab with
a, b ∈ A noninvertible.

Exercise 6.1.7 LetA be a principal ideal domain and let a, b, p ∈ A. Show that
if p is irreducible and p|ab, then p|a or p|b.
Hint. Use Exercise 6.1.2.

Example 6.1.8

(1) In the ring of integers, an element p ∈ Z is irreducible if and only if its
absolute value |p| ∈ N is a prime number.

(2) If F is a field, then a polynomial p(x) ∈ F[x] is irreducible if and only
if it is irreducible over F (in the usual sense of elementary algebra).

One then says that an integral domain A is a unique factorization domain
(briefly, UFD) provided that every nonzero non-unit a ∈ A can be writ-
ten as a product a = up1p2 · · · pk of a unit u ∈ A and irreducible elements
p1, p2, . . . , pk ∈ A, and this factorization is unique in the following sense: if
a = vq1q2 · · · qh is another factorization, with v a unit and q1, q2, . . . , qh irre-
ducible, then h = k and, up to reordering the factors, qj = w j p j, withw j a unit,
for all j = 1, 2, . . . , k (and therefore v = u(w1w2 · · ·wk )−1).

Exercise 6.1.9 Show that every principal ideal domain is UFD.
Hint. For the existence of a factorization, consider the set B of all ideals of A,
whose generators do not admit factorization and use Exercise 6.1.3. For the
uniqueness use Exercise 6.1.7.

Example 6.1.10

(1) Z is a UFD: every n ∈ Z can be written (uniquely) as a product

n = εpα1
1 p

α2
2 · · · pαkk

where ε ∈ {1,−1} and p1, p2, . . . , pk ∈ N are distinct prime numbers
(the positive integers αi’s are the corresponding multiplicities).

(2) If F is a field, then F[x] is a UFD: every polynomial p(x) ∈ F[x] can be
written (uniquely) as a product

p(x) = up1(x)
α1 p2(x)

α2 · · · pk(x)αk

where u ∈ F and p1(x), p2(x), . . . , pk(x) ∈ F[x] are distinct, monic,
irreducible polynomials (the positive integers αi’s are the corresponding
multiplicities).
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A proper ideal I ⊂ A ismaximal if the following holds: whenever I ⊆ J ⊆
A, where J is also an ideal, we necessarily have either I = J or J = A.

Proposition 6.1.11 Let A be a unital ring and I ⊂ A an ideal. Then the quo-
tient ring A/I is a field if and only if I is maximal.

Proof. Suppose that I is maximal. Let a ∈ A \ I and let us show that the non-
zero element (a+ I ) ofA/I is a unit. Denote byH ⊂ A/I the ideal generated
by (a+ I ). Then if we denote by π : A → A/I the canonical quotient homo-
morphism, we have that J = π−1(H) is an ideal in A, which contains I and
a, so that I � J . By maximality of I we have π−1(H) = J = A. SinceH is
generated by (a+ I ), we can find b ∈ A such that (1+ I ) = (a+ I )(b+ I )
inH. Thus (b+ I ) is the inverse of (a+ I ) in A/I. This shows that A/I is a
field.
Conversely, suppose thatA/I is a field. LetJ be an ideal ofA such that I �

J ⊆ A. Let us show that J = A. Let b ∈ J \ I. Then (b+ I ) is a nonzero
element in A/I and therefore we can find a ∈ A such that (a+ I )(b+ I ) =
(1+ I ). It follows that

1 ∈ (ab+ I ) ⊆ aJ + J = J ,

so that J = A. This shows that I is maximal. �

Proposition 6.1.12 Let A be a principal ideal domain. If a ∈ A is a nonzero
element, then the (principal) ideal aA generated by a is maximal if and only if
a is irreducible.

Proof. Suppose that a is not irreducible. Then we can find noninvertible ele-
ments b, c ∈ A such that a = bc. Let us show that aA � bA � A. Indeed, if
we had bA = Awe could find an element b′ ∈ A such that bb′ = 1, contradict-
ing the fact that b is not invertible. On the other hand, if aA = bA then b ∈ aA
and we would find d ∈ A such that b = ad. As a consequence, a = bc = adc
yielding a(1− dc) = 0. Since A is an integral domain and a �= 0, we neces-
sarily have 1− dc = 0, equivalently dc = 1, contradicting the fact that c is not
invertible. This shows that the proper ideal aA is not maximal.
Conversely, suppose that a is irreducible and let us show that aA is a maximal

ideal. Thus suppose that J is an ideal such that aA ⊆ J ⊆ A. Since A is a
principal ideal domain, we can find b ∈ A such that J = bA. Since a ∈ bA
we can then find c ∈ A such that a = bc. By irreducibility of a, one of the
two elements b, c ∈ A must be invertible. If b is invertible then 1 ∈ J so that
J = A. If c is invertible, then b = ac−1 ∈ aA so thatJ = bA = aA. It follows
that aA is a maximal ideal. �
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Corollary 6.1.13 Let n ∈ N. Then the quotient ring Z/nZ is a field if and only
if n is a prime number.

Recall that, for p ∈ N a prime number, we denote by Fp the field Z/pZ (see
Notation 1.1.17).

Corollary 6.1.14 Let F be a field and p(x) ∈ F[x]. Then the quotient ring
F[x]/p(x)F[x] is a field if and only if p(x)is irreducible (over F).

Let F be a field. Consider the cyclic additive subgroup C generated by the
identity element 1 ∈ F. The characteristic of F, denoted char(F), is defined to
be 0 ifC is infinite (and therefore isomorphic to Z) and equal to the cardinality
of C otherwise. Let us show that in this last case char(F) is a prime number.
Consider the map � : Z → F defined by

�(±n) = ±(1+ 1+ · · · + 1︸ ︷︷ ︸
n terms

) (6.2)

for all n ∈ N. Then it is straightforward to see that � is a unital ring homo-
morphism, so that Z/Ker(�) ∼= �(Z) = C. If Ker(�) = {0} then char(F) = 0.
Otherwise, �(Z) ⊆ F, being a finite integral domain is a field (cf. Exercise
6.1.1) and therefore, by Corollary 6.1.13, Ker(�) = pZ for some prime num-
ber p, so that char(F) = p.

6.2 Finite algebraic extensions

We now give a basic introduction to field extensions. More complete treatments
can be found in the aforementioned monographs by Herstein [71], Lang [93],
and Knapp [87, 88].
Let F and E be two fields and suppose that F ⊆ E. We say that F is a subfield

of E or, equivalently, that E is an extension of F.

Exercise 6.2.1 Show that E is a vector space over F.

We denote by [E : F] the corresponding dimension dimFE (the cardinality of
one (=any) vector basis of E over F): it is called the degree of the extension. We
say that E is a finite (resp. infinite) extension of F provided that [E : F] < ∞
(resp. [E : F] is infinite).
An element α ∈ E is called algebraic over F (or F-algebraic) if there exists

p(x) ∈ F[x] such that p(α) = 0.
Let α ∈ E be an F-algebraic element. Then it is straightforward to check

that the set Iα = {p ∈ F[x] : p(α) = 0} is an ideal in F[x]. It follows from
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Exercise 6.1.6 that there exists a monic polynomial q ∈ F[x] such that Iα is
generated by q, i.e. Iα = q(x)F[x].

Exercise 6.2.2 Show that the monic polynomial q ∈ F[x] is unique and
irreducible.

The polynomial q is called the minimal polynomial of α (over F). It follows
from Corollary 6.1.14 that F[x]/q(x)F[x] is a field. On the other hand, consider
the map

� : F[x] → E
p �→ p(α).

We clearly have Ker(�) = Iα = q(x)F[x] and therefore F[x]/q(x)F[x] =
F[x]/Ker(�) is isomorphic to the image Im(�), which is a subfield of E con-
taining α, denoted F[α]. We say that F[α] is the subfield of E obtained by
adjoining α to F.

Exercise 6.2.3 Show that F[α] is the subfield of E generated by F and α (that
is, F[α] is the intersection of all subfields of E containing F and α).

Proposition 6.2.4 Let E be an extension of F. Suppose [E : F] < ∞. Then
every α ∈ E is algebraic over F.

Proof. Let α ∈ E and set n = [E : F] = dimFE. Then the n+ 1 elements
1, α, α2, . . . , αn are linearly dependent over F. It follows that there exists
a0, a1, . . . , an ∈ F such that (a0, a1, . . . , an) �= (0, 0, . . . , 0) and a0 + a1α +
· · · + anαn = 0. Then the polynomial q(x) = anxn + · · · + a1x+ a0 ∈ F[x]
satisfies q(α) = 0. This shows that α is algebraic over F. �

Proposition 6.2.5 Let E be an extension of F and α ∈ E. Suppose that α is
algebraic over F and denote by q(x) ∈ F[x] its minimal polynomial. Then set-
ting n = deg(q) the following holds:

(i) {1, α, α2, . . . , αn−1} is a basis of F[α] over F;
(ii) dimFF[α] = n;
(iii) F[α] ∼= F[x]/q(x)F[x].

Moreover, let β ∈ E and suppose that q(β ) = 0. Then the following holds:

(iv) β is algebraic over F and q(x) is the minimal polynomial of β;
(v) dimFF[β] = n;
(vi) F[α] ∼= F[β];
(vii) if β ∈ F[α] then F[α] = F[β].
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Proof. Let q(x) = xn + an−1xn−1 + · · · + a1x+ a0 and observe that a0 �= 0
by irreducibility (cf. Exercise 6.2.2). Since q(α) = 0, we deduce that αn =
−(an−1α

n−1 + · · · + a1α + a0). After multiplying both sides by αm−n we
deduce that, more generally,

αm = −(an−1α
m−1 + · · · + a1α

m−n+1 + a0α
m−n) (6.3)

for all m ≥ n. Similarly, after multiplying the equation q(α) = 0 by α−1,
we deduce that α−1 = − 1

a0
(αn−1 + an−1α

n−2 + · · · + a2α + a1) and, more
generally,

α−m = − 1

a0
(αn−m + an−1α

n−m−1 + · · · + a2α
2−m + a1α

1−m) (6.4)

for all m ≥ 1. This shows that the n elements 1, α, α2, . . . , αn−1 span F[α]
(recall Exercise (6.2.3)). Since n = deg(q) and q is the minimal polynomial
of α, the above elements are also linearly independent and therefore constitute
a basis for F[α] over F. This shows (i), and (ii) follows immediately there-
after. (iii) was observed when defining F[α]. (iv) follows from the obvious
fact that every irreducible polynomial is the minimal polynomial of any of its
roots. From this we deduce that the same relations (6.3) and (6.4) hold with α

replaced by β, thus proving (v), while (vi) follows from (iii). Finally, suppose
that β ∈ F[α]. Then F[β] = {p(β ) : p ∈ F[x]} is a subfield of F[α] and, from
(ii) and (v), we immediately deduce (vii). �

Remark 6.2.6 With the above notation, one can also say that F[α] is obtained
from F by adjoining a root of (the irreducible polynomial) q. In a more abstract
fashion, if q is any irreducible polynomial in F[x], then the field F[x]/q(x)F[x]
contains a subfield isomorphic to F (that we shall still denote by F), namely
the set of all elements of the form a0 + q(x)F[x], where a0 ∈ F is viewed as a
polynomial of degree 0. Then the element α = x+ q(x)F[x] ∈ F[x]/q(x)F[x]
is algebraic over F: indeed, q(α) = q (x+ q(x)F[x]) = q(x)+ q(x)F[x] = 0+
q(x)F[x] = 0. As a consequence, F[x]/q(x)F[x] is the algebraic extension of F
by means of the (irreducible) polynomial q(x).
When deg(q) = 2 we call it a quadratic extension.

Example 6.2.7 The field C = {a+ ib : a, b ∈ R} of complex numbers is a
quadratic extension of the field R of real numbers. The corresponding irre-
ducible polynomial is q(x) = x2 + 1.

Definition 6.2.8 Let p(x) ∈ F[x], say of degree deg(p) = n. Then the smallest
(= ofminimal degree) field extensionE ofF containing elements α1, α2, . . . , αn
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such that p(x) = (x− α1)(x− α2) · · · (x− αn) is called a splitting field for the
polynomial p(x) over F.

Exercise 6.2.9 (Existence and uniqueness of splitting fields)

(1) Prove that, in the above definition, the field E exists and is unique up to
isomorphism.
Hint: existence is obtained by a repeated application of the construc-
tions that have led to Proposition 6.2.5. Uniqueness is more difficult
(we refer to the aforementioned references).

(2) Prove that, if p is irreducible (over F), then [E : F] divides n!, where
n = deg(p).

Remark 6.2.10 Let F ⊆ G ⊆ E be fields and let p(x) ∈ F[x] (so that p(x) ∈
G[x]). Then E is the splitting field of p(x) over F if and only if it is the splitting
field of p(x) over G.

Definition 6.2.11 Let E be an extension of F. The Galois group E over F,
denoted Gal(E/F), is the group of all automorphisms of E that fix F pointwise,
in symbols:

Gal(E/F) = {ξ ∈ Aut(E) : ξ (α) = α for all α ∈ F}.
If we consider E as a vector space over F, then every automorphism ξ ∈

Gal(E/F) is F-linear:

ξ (α1β1 + α2β2) = α1ξ (β1)+ α2ξ (β2)

for all α1, α2 ∈ F and β1, β2 ∈ E.

Proposition 6.2.12 Gal(E/F) is F-linearly independent (as a subset of
EndF(E), the algebra of all F-linear maps T : E → E).

Proof. Suppose, by contradiction, that there exist ξ1, ξ2, . . . , ξn ∈ Gal(E/F),
all distinct, and (α1, α2, . . . , αn) �= (0, 0, . . . , 0) in Fn such that

α1ξ1 + α2ξ2 + · · · + αnξn = 0. (6.5)

Up to reducing n if necessary, we may suppose that the length n ≥ 2 of the non-
trivial linear combination in the left hand side of (6.5) is minimal (in particular,
αi �= 0 for all i = 1, 2, . . . , n).
Choose β ∈ E such that ξ1(β ) �= ξ2(β ). Then from (6.5) we deduce that

n∑
k=1

αkξk(β )ξk(γ ) =
n∑

k=1

αkξk(βγ ) = 0
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for all γ ∈ E. It follows that

α1ξ1(β )ξ1 + α2ξ2(β )ξ2 + · · · + αnξn(β )ξn = 0 (6.6)

is another vanishing nontrivial linear combination of length n. But then, multi-
plying (6.5) by ξ1(β ) and subtracting (6.6), we obtain

α2 (ξ1(β )− ξ2(β )) ξ2 + α3 (ξ1(β )− ξ3(β )) ξ3 + · · ·
+αn (ξ1(β )− ξn(β )) ξn = 0,

where the left hand side is nontrivial (because α2 (ξ1(β )− ξ2(β )) �= 0) and of
length at most n− 1, contradicting the minimality of n. This shows that the
elements in Gal(E/F) are F-linearly independent. �

Theorem 6.2.13 Let E be a finite extension of F. Then |Gal(E/F)| ≤ [E : F].

Proof. Let us set n = [E : F] and let β1, β2, . . . , βn ∈ E constitute a basis of E
as a vector space over F. Suppose that ξ1, ξ2, . . . , ξm are distinct elements in
Gal(E/F). Consider the homogeneous linear system of n equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α1ξ1(β1)+ α2ξ2(β1)+ · · · + αmξm(β1) = 0

α1ξ1(β2)+ α2ξ2(β2)+ · · · + αmξm(β2) = 0

· · · · · · · · · · · ·
α1ξ1(βn)+ α2ξ2(βn)+ · · · + αmξm(βn) = 0

in the m variables α1, α2, . . . , αm. It is a standard fact of linear algebra (over
any arbitrary field) that if m > n (i.e. the number of variables is greater
than the number of equations) the above system has a nontrivial solution
(α1, α2, . . . , αm) ∈ Em. Since the ξis are F-linear and β1, β2, . . . , βn constitute
a basis for E, we deduce that

α1ξ1(β )+ α2ξ2(β )+ · · · + αmξm(β ) = 0

for every β ∈ E, that is, αξ1 + αξ2 + · · · + αmξm = 0, contradicting Proposi-
tion 6.2.12. This shows that m ≤ n and therefore |Gal(E/F)| ≤ [E : F]. �

Let f (x) ∈ F[x], say f (x) = anxn + an−1xn−1 + · · · a1x+ a0. Then the
derivative of f (x) is the polynomial f ′(x) ∈ F[x] defined by setting

f ′(x) := nanx
n−1 + (n− 1)an−1x

n−2 + · · · 2a2x+ a1.

Exercise 6.2.14 Show that the map D : F[x] → F[x] given by D( f ) = f ′ is
F-linear.

Note that if char(F) = p > 0, then Dxkp = kpxkp−1 = 0 for all k ≥ 1.
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6.3 The structure of finite fields

Theorem 6.3.1 Let F be a finite field. Then the following holds:

(i) There exists a prime number p ∈ N such that char(F) = p;
(ii) F contains a subfield isomorphic to Fp;
(iii) the additive group (F,+) is isomorphic to ⊕n

i=1Fp for some n ≥ 1;
(iv) there exists n ≥ 1 such that |F| = pn.

Proof. Consider the unital homomorphism� : Z → F defined by (6.2). As we
already observed at the end of Section 6.1, we have Ker(�) = pZ with p a
prime number. Moreover, Im(�) ∼= Z/Ker(�) = Z/pZ = Fp and this proves
(i) and (ii). Let n = [F : Im(�)]; then F is a vector space of dimension n over
Im(�) ∼= Fp and (iii) follows. Taking cardinalities, from (iii) we immediately
deduce (iv). �

In the sequel, with the notation from the above theorem, we shall denote by
q = pn the cardinality of F and denote this field by Fq.

Corollary 6.3.2 Let Fq be a finite field of order q = pn and let Fr ⊂ Fq be a
subfield. Then there exists a divisor h of n such that r = ph.

Proof. Since 1 ∈ Fr, we clearly have char(Fr ) = char(Fq) = p. Thus there
exists an integer h ≥ 1 such that r = ph. Setting s = [Fq : Fr], by Exercise 6.2.1
we have pn = q = rs = (ph)s = phs, so that n = hs. �
In analogy with the particular case q = p (cf. Theorem 1.1.21) we have the

following:

Theorem 6.3.3 The (multiplicative) group F∗
q of invertible elements in Fq is

cyclic of order q− 1.

Proof. The proof is identical to that of Theorem 1.1.21. �
Definition 6.3.4 Agenerator of the cyclic groupF∗

q is called a primitive element
of Fq.

Corollary 6.3.5 Fq is the splitting field of the polynomial xq − x over Fp and
consists exactly of the roots of this polynomial.

Proof. First observe that xq − x ∈ Fp[x]. By Theorem 6.3.3, the multiplicative
group F∗

q is cyclic of order q− 1. Therefore, every β ∈ F∗
q satisfies the equation

xq−1 = 1, i.e. it is a root of the polynomial xq − x. Since, clearly, 0 is also a root
of this polynomial, it follows that Fq consists exactly of all the q roots of xq − x.
This shows that Fq is the splitting field of xq − x over Fp. �
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Recalling that ϕ denotes Euler’s totient function (cf. Definition 1.1.18), we have:

Corollary 6.3.6 Let r be a divisor of q− 1. Then F∗
q contains ϕ(r) elements of

order r. In particular, there are ϕ(q− 1) primitive elements of Fq. �

6.4 The Frobenius automorphism

Let Fq be a finite field, where q = pn. Then the map σ : Fq → Fq defined by

σ (α) = αp

for all α ∈ Fq, is an automorphism. Indeed, for α, β ∈ Fq we have

σ (α + β ) = (α + β )p

=
p∑

k=0

(
p

k

)
αkβ p−k

= αp + β p

= σ (α)+ σ (β ),

because the integer
(p
k

) = p (p−1)(p−2)···(p−k+1)
k! is a multiple of p (since p is

prime), and therefore
(p
k

) ≡ 0 mod p, for all 1 ≤ k ≤ p− 1, and

σ (αβ ) = (αβ )p = (α)p(β )p = σ (α)σ (β ).

One calls σ the Frobenius automorphism of Fq.
Recall (cf. Theorem 6.3.1) that for q = pn the field Fq contains the subfield

Fp and that [Fq : Fp] = n.

Theorem 6.4.1 Let q = pn. Then the following hold:

(i) Gal(Fq/Fp) is a cyclic group of order n;
(ii) Gal(Fq/Fp) is generated by the Frobenius automorphism σ ;
(iii) Gal(Fq/Fp) = Aut(Fq).

Proof. Let us first show that σ has order n. Clearly, σ k(α) = αpk for all α ∈ Fq

and k ≥ 1. Since (in any field) the equation xp
k − x = 0 has at most pk solutions,

there exists no 1 ≤ k < n such that σ k(α) ≡ αpk = α for all α ∈ Fq.
On the other hand, it follows from Corollary 6.3.5 that σ n(α) ≡ αq = α, for

all α ∈ Fq. In other words, σ n = idFq . This shows that the Frobenius automor-
phism σ has order n. Moreover, applying Corollary 6.3.5 to F∗

p, we deduce that
σ (α) ≡ αp = α for all α ∈ Fp. This shows that σ fixes pointwise all elements
in α ∈ Fp, that is, σ ∈ Gal(Fq/Fp). Since, by Theorem 6.2.13, |Gal(Fq/Fp)| ≤
[Fq : Fp] = n, we deduce (i) and (ii).
Finally, let ξ ∈ Aut(Fq). Then we have ξ (0) = 0, ξ (1) = 1, ξ (2) =

ξ (1+ 1) = ξ (1)+ ξ (1) = 1+ 1 = 2, and recursively, ξ (k) = k for all
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k = 2, 3, . . . , p− 1 (but ξ (p) = pξ (1) = 0). Thus ξ fixes Fp = {0, 1, 2, . . . ,
p− 1} pointwise. This shows (iii). �

Corollary 6.4.2 Every α ∈ Fq has exactly one pk-th root in Fq for k =
1, 2, . . . , n. �

Corollary 6.4.3 The field Fq admits an involutory automorphism if and only if
n is even. If this is the case, then it is given by σ n/2. �

A nontrivial square in a field F is an element α ∈ F∗ such that α �= 1 and
α = β2 for some β ∈ F.

Proposition 6.4.4 If p = 2 then every element in F∗
q is a square. If p > 2 then

there are q−1
2 squares in F∗

q.

Proof. The result for p = 2 follows immediately from Corollary 6.4.2 (with
k = 1). Suppose p > 2 and denote by φ : F∗

q → F∗
q the square map defined by

φ(β ) = β2 for all β ∈ F∗
q. Note that for β1, β2 ∈ Fq one has φ(β1) = φ(β2) if

and only if β1 = ±β2. This shows that φ is two-to-one. As a consequence, the
number of squares in F∗

q equals |φ(F∗
q )| = |F∗

q|/2 = (q− 1)/2. �

6.5 Existence and uniqueness of Galois fields

Definition 6.5.1 Let f (x) ∈ Fp[x] be an irreducible polynomial of degree n and
denote by f (x)Fp[x] the ideal generated by f (x). Then the field

Fp[x]/ f (x)Fp[x]

is called a Galois field of order pn (cf. Proposition 6.2.5 and Remark 6.2.6).

We shall not introduce a specific notation for Galois fields since for every
prime number p and integer n ≥ 1 all Galois fields of order q = pn are isomor-
phic (cf. Theorem 6.5.6), and we shall use the notation Fq. In this section, we
prove their existence and uniqueness. As usual, we denote by σ ∈ Aut(Fq) the
Frobenius automorphism.

Proposition 6.5.2 Let f (x) = a0 + a1x+ · · · + anxn ∈ Fp[x] be an irreducible
polynomial of degree n and let Fq = Fp[x]/ f (x)Fp[x] be the associated Galois
field. Let also α ∈ Fq be a root of f (cf. Remark 6.2.6). Then the elements αpk =
σ k(α), k = 0, 1, . . . , n− 1, are all distinct and are the roots of f . In particular,
Fq is the splitting field of f (x) over Fp (cf. Definition 6.2.8) and

f (x) = an(x− α)(x− αp)(x− αp2 ) · · · (x− αpn−1
).
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6.5 Existence and uniqueness of Galois fields 179

Proof. Since σ k is an automorphism that fixes Fp pointwise, we have that
f (σ k(α)) = σ k( f (α)) = σ (0) = 0, that is, σ k(α) is a root of f , for all k =
0, 1, . . . , n− 1. Let us show that these elements are all distinct. Suppose
that σ k(α) = σ j(α), that is, αpk = αpj for some 1 ≤ k < j ≤ n− 1. Set β =
σ k(α) = αpk and r = j − k ∈ N. We have

σ r(β ) = β pr = β pj−k = (αpk )p
j−k = αpj = αpk = β. (6.7)

Since f (β ) = 0, from Proposition 6.2.5 we deduce that the elements

1, β, β2, . . . , βn−1

constitute a vector space basis ofFq overFp. As a consequence, for every δ ∈ Fq

there exist η1, η2, . . . , ηn ∈ Fp such that

δ = η1 + η2β + · · · + ηnβ
n−1.

Since (ηi)p = ηi for i = 1, 2, . . . , n and, by (6.7), β pr = β, we get

δp
r = σ r

(
η1 + η2β + · · · + ηnβ

n−1
)

= η1 + η2β
pr + η3(β

pr )2 + · · · + ηn(β
pr )n−1

= η1 + η2β + · · · + ηnβ
n−1

= δ.

Since δ was arbitrary, this contradicts Theorem 6.3.3, because r < n. �

Proposition 6.5.3 Let f (x) ∈ Fq[x] be an irreducible polynomial of degree m,
and let k ≥ 1. Then f (x) divides xq

k − x if and only if m divides k.

Proof. By Proposition 6.2.5 and Theorem 6.3.1, Fq[x]/ f (x)Fq[x] has qm ele-
ments so that

αq
m = α for all α ∈ Fq[x]/ f (x)Fq[x] (6.8)

(cf. Corollary 6.3.5). Taking α = x+ f (x)Fq[x], this yields

xq
m − x ∈ f (x)Fq[x]. (6.9)

Let us show that for s = 0, 1, 2, . . . we have

xq
sm − x ∈ f (x)Fq[x]. (6.10)
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We proceed by induction. For s = 0, this is trivial and for s = 1 equation (6.10)
reduces to (6.9). Let us prove the inductive step:

xq
(s+1)m − x = (xqsm)qm − x

(by (6.10)) ∈ (x+ f (x)Fq[x]
)qm − x

⊆ xq
m − x+ f (x)Fq[x]

(by (6.9)) = f (x)Fq[x].

In particular, if m divides k then f (x) divides xq
k − x.

Let us prove the converse implication. Suppose that f (x) divides xq
k − x.

Applying the Euclidean algorithm, we can find two non-negative integers s, r,
with 0 ≤ r ≤ m− 1, such that k = sm+ r. We need to show that r = 0. By
virtue of (6.9) we have

xq
sm ∈ x+ f (x)Fq[x]

and therefore

xq
k = xq

sm+r = (xqsm)qr ∈ xq
r + f (x)Fq[x]. (6.11)

Since f (x) divides xq
k − x, from (6.11) we deduce xq

r − x ∈ f (x)Fq[x], equiva-
lently, f (x) also divides xq

r − x. As a consequence, in the field Fq[x]/ f (x)Fq[x]
every element α satisfies the identity

αq
r = α

that contradicts (6.8), since r < m, unless r = 0. This shows that m divides
k. �

Proposition 6.5.4 Let p and m be two primes and q = ph for some integer h ≥
1. Then in Fq[x] there exist exactly

qm − q

m
> 0

distinct irreducible monic polynomials of degree m.

Proof. From the identity αq = α in Fq, we deduce that αq
2 = αq = α and, sim-

ilarly, αq
3 = α, . . . , αq

m = α, for all α ∈ Fq. Therefore the polynomial xq
m − x

is divisible by x− α for every α ∈ Fq and therefore may be factorized as fol-
lows

xq
m − x = f1(x) f2(x) · · · fr(x)

∏
α∈Fq

(x− α) (6.12)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.007
https://www.cambridge.org/core


6.5 Existence and uniqueness of Galois fields 181

where f1, f2, . . . , fr ∈ Fq[x] are monic and irreducible. We claim that in the
factorization (6.12) there cannot be two equal factors (it is square free), that is,
one cannot have

xq
m − x = f (x)2g(x),

where f ∈ Fq[x] has degree ≥ 1. Otherwise, by taking the derivative of both
sides we would have that qmxq

m−1 − 1 = −1 should equal 2 f (x) f ′(x)g(x)+
f (x)2g′(x), that is,

−1 = f (x)
(
2 f ′(x)g(x)+ f (x)g′(x)

)
which is impossible since deg( f ) ≥ 1. This proves our claim. In particular, in
(6.12) for j = 1, 2, . . . , r we must have deg( f j ) ≥ 2 and therefore, by Propo-
sition 6.5.3 and primality of m, deg( f j ) = m.
In conclusion, f1, f2, . . . , fr are distinct irreducible polynomials of degree

m. Moreover, again by virtue of Proposition 6.5.3, they constitute the complete
list of all irreducible monic polynomials of degree m. It follows that the degree
of the right hand side of (6.12) is mr + q and must equal qm. This yields

r = qm − q

m
,

completing the proof. �

Remark 6.5.5 The fact that the number qm−q
m is an integer is a particular case

of Fermat’s little theorem (cf. Exercise 1.1.22).

We are now in position to state and prove the main theorem of the theory of
finite fields.

Theorem 6.5.6 (Main theorem: existence and uniqueness of Galois fields)
For every prime number p and integer h ≥ 1 there exists a unique (up to iso-
morphism) finite field Fq of order q = ph. It is the Galois field

Fp[x]/�(x)Fp[x],

where �(x) = (x− α)(x− αp)(x− αp2 ) · · · (x− αph−1
) and α is any generator

of the cyclic group F∗
q.

Proof. First of all, let us prove that a field with q = ph elements exists. Let

h = m1m2 · · ·mr (6.13)

be a factorization of h into primes (repetitions are allowed). By Proposition
6.5.4, there exists an irreducible polynomial f1 ∈ Fp[x] of degree m1. Con-
sider the field Fpm1 = Fp[x]/ f1(x)Fp[x] and recall that it has pm1 elements.
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182 Finite fields

Now, again by Proposition 6.5.4, in Fpm1 [x] there exists an irreducible poly-
nomial f2 of degree m2, and so on. Eventually, we obtain a field Fq with
(pm1m2···mr−1 )mr = pm1m2···mr = ph = q elements.
By Theorem 6.3.3, the group F∗

q is cyclic of order q− 1, and let α be a gen-
erator of F∗

q. Then α is algebraic over Fp, since it is a root of the polynomial
xq−1 − 1, and, clearly,

Fq = Fp[α].

Then, by Proposition 6.2.5, Fq is isomorphic to Fp[x]/�(x)Fp[x], where �(x) ∈
Fp[x] is the minimal polynomial of α. It follows that Fq is a Galois field. More-
over, by Proposition 6.5.2, we have

�(x) = (x− α)(x− αp)(x− αp2 ) · · · (x− αph−1
)

and

xq − x = �(x)g(x) (6.14)

with g(x) ∈ Fp[x], because α is a root of xq − x, and �(x) is its minimal poly-
nomial, and the principal ideal Iα = { f ∈ Fp[x] : f (α) = 0} is generated by
�(x).
Suppose now that Kq is another field with q elements. Let α ∈ Kq be a

generator of the cyclic group K∗
q. From the arguments above, we have that

Fp[α] = Kq. Finally, it is straightforward that the map Fq = Fp[α] → Fp[α] =
Kq, given by f (α) �→ f (α) for all f ∈ Fp[x], is an isomorphism. �
We now present, as an exercise, an elementary proof of Gauss law of

quadratic reciprocity from [5]. This proof uses some facts on finite fields that
we have already established. Let p and q be distinct odd primes and consider the
field Fqp−1 and the cyclic group F∗

qp−1 . By Fermat’s little theorem (see Exercise

1.1.22), p divides qp−1 − 1 = |F∗
qp−1 |, so that, by Corollary 1.2.9, F∗

qp−1 contains
an element ζ of order p. We consider the Gauss sum

Gζ =
p−1∑
k=1

(
k

p

)
ζ k,

where

(
k

p

)
is the Legendre symbol (cf. Definition 4.4.7). Clearly, Gζ ∈ Fqp−1 .

Exercise 6.5.7

(1) Prove that

Gq
ζ =

(
q

p

)
Gζ . (6.15)
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Hint: Use the identities (a+ b)q = aq + bq in Fqp−1 and(
k

p

)
=
(
kq2

p

)
=
(
kq

p

)(
q

p

)
,

where the last equality follows from Proposition 4.4.8.(iii).
(2) Suppose that p � h and show that

p−1∑
j=1

ζ jh = −1.

(3) Show that

p−2∑
h=1

(
h

p

)
= −

(−1

p

)
.

(Hint: use Corollary 4.4.9), and deduce that

p−2∑
h=1

(
h

p

) p−1∑
j=1

ζ (1+h) j =
(−1

p

)
.

(4) From (2) and (3) deduce that

G2
ζ =

(−1

p

)
p.

(Hint: first prove that G2
ζ =

∑p−1
h=1

(
h

p

)∑p−1
j=1 ζ (1+h) j), so that, by

Proposition 4.4.8.(iv),

G2
ζ = p(−1)(p−1)/2. (6.16)

(5) From (6.15) and (6.16) deduce the Gauss law of quadratic reciprocity
(Theorem 4.4.18).
Hint: start with the elementary identityGq

ζ = Gζ (G2
ζ )

(q−1)/2; use Propo-
sition 4.4.8.(ii).

6.6 Subfields and irreducible polynomials

Proposition 6.6.1 Let q = ph. Then, for every divisor m of h there exists a
unique subfield of Fq isomorphic to Fpm . Moreover all subfields are of this kind.

Proof. Let K be a subfield of Fq. Then Fq is a vector space over K and there-
fore the cardinality of K divides the cardinality of Fq. By the uniqueness of
Galois fields (Theorem 6.5.6), it follows that there exists an integerm ≤ h such
that K = Fpm = Fp/�(x)Fp[x], where � ∈ Fp[x] is an irreducible polynomial of
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184 Finite fields

degree m. Since the equation xp
h − x = 0 is satisfied by all elements in Fq ⊇ K

we deduce that �(x) divides xp
h − x in Fp[x] (compare with (6.14)). Therefore,

by virtue of Proposition 6.5.3, we havem = deg(�) must divide h (cf. Corollary
6.3.2).
In order to show that, conversely, if m divides h, then Fq = Fph contains

a subfield isomorphic to Fpm , we use the recursive construction of Fq in the
proof of Theorem 6.5.6. Indeed, if we arrange the primes in the decomposition
(6.13) of h in such a way that m = m1m2 · · ·mi for some 1 ≤ i ≤ r, then Fpm

appears, in the construction we alluded to above, as one of the intermediate
fields between Fp and Fph = Fq. Uniqueness of the subfield Fpm follows from
the fact that its elements are precisely the roots of the polynomial xp

m − x ∈
Fp[x]. �

Exercise 6.6.2 Show that the lattice of all subfields of Fq is isomorphic to the
lattice of all divisors of m.

In the following, σ ∈ Aut(Fq) denotes the Frobenius automorphism (cf. Section
6.4).

Proposition 6.6.3 Let p be a prime number, h ≥ 1 an integer, and q = ph. Let
also 1 ≤ r ≤ h− 1. Then

K = {β ∈ Fq : σ
r(β ) = β} (6.17)

coincides with the subfield of Fq isomorphic to Fpm , where m = gcd(h, r).
On the other hand, if m divides h then

Gal(Fq/Fpm ) ≡ {ξ ∈ Aut(Fq) : ξ (β ) = β for all β ∈ Fpm} = 〈σm〉.
Proof. First of all we observe that K is a subfield of Fq. Therefore, by Propo-
sition 6.6.1, there exists an integer m that divides h such that K = Fpm .

Let us set σ̃ = σ |Fpm ∈ Aut(Fpm ). This is the Frobenius automorphism ofFpm

so that, by Theorem 6.4.1, Aut(Fpm ) = 〈σ̃ 〉. Now, for an integer n ≥ 0 one has

σ n(β ) = β (i.e. σ̃ n(β ) = β) ∀β ∈ Fpm ⇔ m|n. (6.18)

We deduce thatm divides r and therefore also divides gcd(h, r). On the other
hand, settingm′ = gcd(h, r) and σ̂ = σ |F

pm
′ ∈ Aut(Fpm′ ), arguing as above, we

have σ n(β ′) = β ′ (i.e. σ̂ n(β ′) = β ′) for all β ′ ∈ Fpm′ if and only if m′ divides
n. Thus, taking n = r we have σ r(β ′) = β ′ for all β ′ ∈ Fpm′ . Since K = Fpm ⊆
Fpm′ , this shows that m = m′ = gcd(h, r).

Finally, Gal(Fq/Fpm ), being a subgroup of the cyclic group Gal(Fq/Fp), is
itself cyclic (cf. Proposition 1.2.12). By the above arguments, we have σm ∈
Gal(Fq/Fpm ) and, by (6.18), we indeed have Gal(Fq/Fpm ) = 〈σm〉. �
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The following is a generalization of Proposition 6.5.2.

Corollary 6.6.4 Let f ∈ Fq[x] be an irreducible polynomial of degree n. Then
Fqn is the splitting field of f over Fq. Moreover, if α ∈ Fqn is a root of f then
α, αq, . . . , αq

n−1
are the roots of f and they are also distinct.

Proof. Let F denote the splitting field of f over Fq. Then we can find a positive
integer h ≥ n such that F = Fqh : indeed, denoting by α1, α2, . . . , αn ∈ F the
roots of f , by Proposition 6.2.5 and Theorem 6.6.1 we have Fqn ∼= Fq[α1] ⊆
Fq[α1, α2, . . . , αn] = F = Fqh .
Let σ be the generator of Gal(Fqn ,Fq) given by σ (β ) = βq for all β ∈

Fqn . Observe that σ is not the Frobenius automorphism, although we use the
same symbol. Arguing as in the proof of Proposition 6.5.2, we deduce that
α, αq, . . . , αq

n−1
are distinct roots of f and therefore exhaust all the roots of f .

Then Fqn contains all the roots of f , and therefore n = h, i.e. F = Fqn . �

Corollary 6.6.5 With the notation from the previous corollary, if α is a root of
f in Fqn , then f is a scalar multiple of the minimal polynomial of α over Fq,
and Fqn = Fq[α].

Notation 6.6.6 Let F be a finite field. We denote by Fmon[x] (resp. Fmon,irr[x])
the set of monic (resp. monic irreducible) polynomials in F[x] and by Fmon,k[x]
(resp. Fmon,irr,k[x]) the set of monic (resp. monic irreducible) polynomials in F[x]
of degree k.

In the proof of the following proposition, we need the most elementary facts
on group actions (see the beginning of Section 10.4).

Proposition 6.6.7 Let f ∈ Fmon,irr
q [x] and h ≥ 1. Choose f̃ ∈ Fmon,irr

qh [x] that

divides f and set d = d( f̃ ) = min{1 ≤ � ≤ h : σ�( f̃ ) = f̃ }, where σ (x) = xq

for all x ∈ Fqh . Then d divides h and

f =
d−1∏
�=0

σ �( f̃ ) (6.19)

is the (unique up to reordering the factors) factorization of f into Fqh -
irreducible monic polynomials. Moreover, all factors are distinct, deg σ�( f̃ ) =
deg f
d , for all � = 0, 1, . . . , d − 1, and

d = d( f̃ ) = gcd(h, deg f ). (6.20)
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•
Fqn Fqh

Fq

Fqhs

•

•

•

Figure 6.1. The inclusions of the fields Fqt , t = n, h, �, hs.

As a consequence we have, for all k ≥ 1,

Fmon,irr,k
qh [x] =

∐
d|h

∐
f∈Fmon,irr,dkq [x]:
gcd(h/d,k)=1

{ f̃ , σ ( f̃ ), . . . , σ d−1( f̃ )}.

In other words, given f̃ ∈ Fmon,irr,k
qh [x] there exists a unique f ∈ Fmon,irr

q [x] such

that f̃ divides f (clearly, deg f = d( f̃ ) deg f̃ ).

Proof. Every σ�( f̃ ), for � = 0, 1, . . . , h− 1, is an Fqh -irreducible monic poly-
nomial and divides f , since σ ( f ) = f . In other words, the Galois group
Gal(Fqh/Fq) acts on the space of monic Fqh -irreducible divisors of f . We have
that d( f̃ ) divides h because Gal(Fqh/Fq) is cyclic of order h and generated
by σ (cf. Proposition 6.6.3), and the stabilizer of f̃ coincides with the set
{σ dk : k = 0, 1, . . . , hd }. Thus, the polynomial

f̃σ ( f̃ ) · · · σ d−1( f̃ ), (6.21)

a product of distinct Fqh -irreducible monic divisors of f , divides f . But (6.21)
is also σ -invariant and monic, so that it belongs to Fq[x] and therefore must be
equal to f (since f is irreducible over Fq). This proves that the action described
above is transitive. Moreover, since Fqd = {α ∈ Fqh : σ d (α) = α} (by virtue of
Proposition 6.6.3), we have f̃ ∈ Fqd [x].

Set s = deg f̃ and n = deg f . It follows fromCorollary 6.6.4 that the splitting
field of f̃ over Fqh is Fqhs . Similarly, the splitting field of f over Fq is Fqn , so
that, in particular, f , and therefore its factor f̃ , split into linear factors over Fqn .
Observe that, since d|h, say h = ad, and n = sd (this follows from the fact that
the polynomial in (6.21) coincides with f ), we have hs = ads = an, so that
n|hs.
Setting � = lcm(h, n), we have the inclusion diagram as in Figure 6.1.
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6.7 Hilbert Satz 90 187

Since Fqn ⊆ Fq� , it follows that f̃ splits into linear factors over Fq� . Thus,
since Fqh ⊆ Fq� ⊆ Fqhs , we deduce that Fq� = Fqhs , this being the splitting field
of f̃ over Fqh . In particular, hs = lcm(h, n).

Setting r = gcd(h, n), we have

hs = lcm(n, h) = hn

gcd(h, n)
= hsd

r
⇒ d = r,

and (6.20) follows. �

Corollary 6.6.8 Let f ∈ Fq[x] be irreducible and let h ≥ 2. Then f is irre-
ducible over Fqh if and only if gcd(deg f , h) = 1.

6.7 Hilbert Satz 90

We now specialize, to the case of finite fields, the theory of the norm and the
trace for extensions of fields. A more general treatment may be found in [93].
Fix a prime number p, two integers n ≥ 1 and h > 1, and set q = pn. Let E =
Fqh = Fphn be the field with qh elements and F = Fq the unique subfield of E
with q elements (cf. Proposition 6.6.1). By Proposition 6.6.3, the Galois group
Gal(E/F) is a cyclic group of order h: we denote by σ a generator of Gal(E/F).
We remark that here the notation is different from that in Proposition 6.6.3: for
instance, σ is not the Frobenius automorphism of E but it can be chosen as
its n-th power so that σ (α) = αpn = αq for all α ∈ E (see Corollary 6.6.4 and
Proposition 6.6.7 ).We define the trace and the norm as themaps TrE/F : E → F
and NE/F : E → F given by

TrE/F(α) =
h∑

k=1

σ k(α) (6.22)

and

NE/F(α) =
h∏

k=1

σ k(α) (6.23)

for all α ∈ E. Note that TrE/F(α) (resp. NE/F(α)) is indeed in F:

σ
(
TrE/F(α)

) = h∑
k=1

σ k+1(α) =
h+1∑
k=2

σ k(α) = TrE/F(α) (6.24)

(resp. σ
(
NE/F(α)

) = NE/F(α)) because σ has order h. Moreover, it is clear
that TrE/F(α) (resp. NE/F(α)) is independent of the choice of the generator σ
in (6.22) (resp. (6.23)).
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Proposition 6.7.1 (Transitivity of the trace and the norm) Let E,F,G be
finite fields such that F ⊆ E ⊆ G. Then

(i) TrG/F = TrE/F ◦ TrG/E

(ii) NG/F = NE/F ◦ NG/E.

Proof. By virtue of Theorem 6.5.6 and Proposition 6.6.1, there exists h,m ∈ N
such that F = Fq, E = Fqh and G = Fqhm . For every α ∈ G we have:

[TrE/F ◦ TrG/E](α) =
h−1∑
k=0

[
TrG/E(α)

]qk

=
h−1∑
k=0

⎡⎣m−1∑
j=0

αq
jh

⎤⎦qk

(the map β �→ βq
k
belongs to Aut(G)) =

h−1∑
k=0

m−1∑
j=0

αq
jh+k

(setting r = h j + k) =
hm−1∑
r=0

αq
r

= TrG/F(α).

Analogously,

[NE/F ◦ NG/E](α) =
h−1∏
k=0

⎛⎝m−1∏
j=0

αq
jh

⎞⎠qk

=
h−1∏
k=0

m−1∏
j=0

αq
jh+k

(setting r = h j + k) =
hm−1∏
r=0

αq
r

= NG/F(α). �

Theorem 6.7.2 (Hilbert Satz 90)

(i) TrE/F is a surjective F-linear map from E onto F and

KerTrE/F = {α − σ (α) : α ∈ E}.
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6.7 Hilbert Satz 90 189

(ii) NE/F yields (by restriction) a surjective homomorphism from the multi-
plicative group E∗ of E into the multiplicative group F∗ of F and

KerNE/F = {ασ (α)−1 : α ∈ E}.
Proof.

(i) The map TrE/F is F-linear since

TrE/F(α1β1 + α2β2) =
h∑

k=1

σ k(α1β1 + α2β2)

(since σ k ∈ Gal(E/F)) =
h∑

k=1

α1σ
k(β1)+ α2σ

k(β2)

= α1TrE/F(β1)+ α2TrE/F(β2)

for all αi ∈ F and βi ∈ E, i = 1, 2. As a consequence, ImTrE/F is an F-
vector subspace of F and therefore (being F a field) it is either equal
to {0} or to the whole F. But the first possibility implies that TrE/F is
identically zero, which leads to a contradiction since it is the sum of
F-linearly independent F-linear transformations of E (cf. Proposition
6.2.12). This shows that TrE/F is surjective. As a consequence,

|KerTrE/F| = |E|
|F| = qh−1.

Moreover, every element of the form α − σ (α), with α ∈ E, clearly
belongs to KerTrE/F. Also, for α and β in E we have α − σ (α) =
β − σ (β ) if and only if α − β = σ (α − β ), equivalently α − β ∈ F.
We deduce that the set

{α − σ (α) : α ∈ E},
which consists of exactly qh−1 elements, coincides with KerTrE/F.

(ii) As for (i), it is easy to check that NE/F is a group homomorphism
between E∗ and F∗: we leave the details to the reader. Moreover, we
have

NE/F(α) =
h∏

k=1

σ k(α) = αqαq
2 · · ·αqh−1

α = α
∑h−1

k=0 q
k = α(qh−1)/(q−1)

for all α ∈ E. In particular, if α is a generator of E∗, so that it has order
qh − 1, then NE/F(α) has order q− 1 and therefore generates F∗. It fol-
lows that NE/F is surjective. As a consequence,

|KerNE/F| = |E∗|
|F∗| =

qh − 1

q− 1
. (6.25)
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190 Finite fields

Moreover, every element of the form ασ (α)−1, with α ∈ E∗, clearly
belongs to KerNE/F. Also, for α and β in E∗ we have ασ (α)−1 =
βσ (β )−1 if and only if αβ−1 = σ (αβ−1), equivalently αβ−1 ∈ F∗. We
deduce that the set {ασ (α)−1 : α ∈ E∗} has (qh − 1)/(q− 1) elements
and therefore (cf.(6.25)) equals KerNE/F. �

Proposition 6.7.3 Let F ⊆ E be finite fields. Let α ∈ E and suppose that
E = F[α]. Then, denoting by f (x) = xh + ah−1xh−1 + · · · + a1x+ a0 ∈ F[x]
the minimal polynomial of α, we have

− ah−1 =
h∑

k=1

σ k(α) ≡ TrE/F(α) (6.26)

and

(−1)ha0 =
h∏

k=1

σ k(α) ≡ NE/F(α). (6.27)

Proof. By virtue of Corollary 6.6.4 and Corollary 6.6.5 it follows that f is fac-
torizable over E and its roots are precisely the elements σ k(α), k = 1, 2, . . . , h.
That is, f (x) = (x− α)(x− σ (α)) · · · (x− σ h−1(α)), so that (6.26) and (6.27)
follow. �

Since, by definition, f (α) = 0, we have f (σ k(α)) = σ k( f (α)) = 0 for all
k = 1, 2, . . . , h; moreover the elements σ k(α) ∈ E, k = 1, 2, . . . , h are distinct.

Theorem 6.7.4 Let F ⊆ E be finite fields and let α ∈ E. Consider the F-linear
transformation λ(α) : E → E defined by setting

λ(α)β = αβ

for all β ∈ E. Then we have

Trλ(α) = TrE/F(α)

and

det λ(α) = NE/F(α).

Proof. Set h = [E : F].
We first prove the statement under the hypothesis that E = F[α]. In this case

(see Proposition 6.2.4), we have that the elements

1, α, α2, . . . , αh−1 (6.28)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.007
https://www.cambridge.org/core


6.7 Hilbert Satz 90 191

constitute a basis for the vector space E over F and the minimal polynomial
f ∈ F[x] of α has degree h. We denote it by

f (x) = xh + ah−1x
h−1 + · · · + a1x+ a0. (6.29)

Since f (λ(α)) = λ( f (α)), we have that f is the minimal polynomial of λ(α) ∈
EndF(E). Since the characteristic polynomial

pλ(α)(x) = det(xI − λ(α))

of λ(α) also has degree h, from the Cayley-Hamilton theorem, we deduce that,
in fact, f = pλ(α).

Keeping in mind (6.29), we have that the matrix Mλ(α) representing λ(α) in
the basis (6.28) is the so-called companion matrix of f , namely

Mλ(α) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 0 −a0
1 0 0 · · · 0 0 0 −a1
0 1 0 · · · 0 0 0 −a2

. . .

0 0 0 · · · 0 1 0 −ah−2

0 0 0
. . . 0 0 1 −ah−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.30)

From this we deduce that

Trλ(α) = TrMλ(α) = −ah−1 and det λ(α) = detMλ(α) = (−1)ha0. (6.31)

Comparing (6.26) and (6.27) with (6.31), the statement follows in the case
F[α] = E.

Suppose now thatF[α] is a proper subfield ofE. Thenm = [F[α] : F] divides
h (cf. Proposition 6.6.1). Let {uj : j = 1, 2, . . . , h/m} be a vector space basis of
E over F[α]. Moreover, as before, the elements αk, k = 1, 2, . . . ,m, constitute
a basis of F[α] over F. As a consequence of these facts,

{αku j : k = 1, 2, . . . ,m; j = 1, 2, . . . , h/m}

is a vector space basis of E over F. Thus, setting Uj = spanF{αku j : k =
1, 2, . . .m} for j = 1, 2, . . . , h/m, we have the direct sum decomposition

F =
h/m⊕
j=1

Uj
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192 Finite fields

into λ(α)-invariant subspaces. Moreover, λ(α)|Uj is represented by an m× m
matrixMλ(α)|Uj (in fact, independent of j) with coefficients in F as in (6.30)

Mλ(α)|Uj =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 0 −a0
1 0 0 · · · 0 0 0 −a1
0 1 0 · · · 0 0 0 −a2

. . .

0 0 0 · · · 0 1 0 −am−2

0 0 0
. . . 0 0 1 −am−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

namely the companion matrix of the minimal polynomial f (x) = xm +
am−1xm−1 + · · · + a1x+ a0 ∈ F[x] of α. Then, on the one hand, we have

Trλ(α) =
h/m∑
j=1

Tr
(
λ(α)|Uj

) = h/m∑
j=1

Tr
(
Mλ(α)|Uj

)
= h

m
(−am−1)

and

det λ(α) =
h/m∏
j=1

det
(
λ(α)|Uj

) = h/m∏
j=1

det
(
Mλ(α)|Uj

)
= ((−1)ma0)

h/m.

On the other hand,

TrE/F(α) =
h∑

k=1

σ k(α) =∗
h

m

m∑
k=1

σ k(α) = h

m
TrF[α]/F(α) = h

m
(−am−1)

where the last equality follows from (6.26), and

NE/F(α) =
h∏

k=1

σ k(α) =∗

(
m∏
k=1

σ k(α)

)h/m
= (NF[α]/F(α)

)h/m = ((−1)ma0)
h/m

where the last equality follows from (6.27), and=∗ both follow from the equal-
ity Gal(E,F[α]) = 〈σm〉 (cf. Proposition 6.6.3). Thus, the general case follows
as well. �

6.8 Quadratic extensions

We now concentrate on the case of quadratic extensions. We split the analysis
according to the parity of the characteristic p of the fields. Our purpose is to pro-
duce matrix representations of quadratic extensions similar to the well known

matrix representation of the complex numbers z = a+ ib �→
(
a −b
b a

)
, for all

a, b ∈ R. We begin with some general considerations.
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6.8 Quadratic extensions 193

Let p be a prime number, h a positive integer, and set q = ph. Then
Gal(Fq2/Fq) is a cyclic group of order two. More precisely, it is generated
by the automorphism σ defined by σ (α) = αq for all α ∈ Fq2 , which clearly
fixes every element α ∈ Fq, and is involutory (cf. Corollary 6.4.3 and Propo-
sition 6.6.3). By virtue of Proposition 6.5.4, the polynomial ring Fq[x] con-
tains (q2 − q)/2 irreducible monic polynomials of degree 2 and Fq2 may be
obtained, abstractly, by adjoining one of the roots of any of these. Moreover, if
x2 + ax+ b ∈ Fq[x] is irreducible over Fq and α, β are its roots, then σ (α) = β

(and σ (β ) = α). Indeed, since σ fixes Fq pointwise, we have

σ (α2 + aα + b) = σ (α)2 + aσ (α)+ b

so that σ (α) is still a root. But σ fixes exactly the elements in Fq so that, since
α /∈ Fq, we necessarily have σ (α) �= α and therefore σ (α) = β.
We first examine the case when p is odd.

Theorem 6.8.1 Suppose p is odd. Let η be a generator of the cyclic group F∗
q

(cf. Theorem 6.3.3) and denote by ±i the square roots of η. Then ±i /∈ Fq and
{1, i} is a vector space basis for Fq2 over Fq. Moreover, Fq2 is isomorphic (as
an Fq-algebra) to the algebraM2(Fq, η) ⊆ M2(Fq) consisting of all matrices
of the form (

α ηβ

β α

)
with α, β ∈ Fq. The isomorphism is provided by the map M2(Fq, η) → Fq2
given by (

α ηβ

β α

)
�→ α + iβ (6.32)

for all α, β ∈ Fq. Moreover

σ (α + iβ ) = α − iβ

for all α, β ∈ Fq.

Proof. First observe that, under our assumptions on the parity of p, the order
q− 1 of the cyclic group F∗

q is even. If we had i ∈ Fq then we would have

η
q−1
2 = (i2) q−1

2 = iq−1 = 1

which is impossible (since η has order q− 1).
Alternatively, η cannot be a square in F∗

q since, otherwise, every other ele-
ment in F∗

q would also be a square, contradicting Proposition 6.4.4.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.007
https://www.cambridge.org/core


194 Finite fields

As a consequence, the polynomial x2 − η ∈ Fq[x] is irreducible and therefore
Fq2 = Fq[i] so that, by Proposition 6.2.5, {1, i} is a vector space basis of Fq2 over
Fq. We thus have

Fq2 = {α + iβ : α, β ∈ Fq}
with addition given by

(α1 + iβ1)+ (α2 + iβ2) = (α1 + α2)+ i(β1 + β2)

and multiplication given by

(α1 + iβ1)(α2 + iβ2) = (α1α2 + ηβ1β2)+ i(α1β2 + α2β1)

for all α1, α2, β1, β2 ∈ Fq. Moreover, since σ (i) = −i we also have
σ (α + iβ ) = α − iβ

for all α, β ∈ Fq. Finally, as(
α1 ηβ1

β1 α1

)(
α2 ηβ2

β2 α2

)
=
(
α1α2 + ηβ1β2 η(α1β2 + α2β1)
α1β2 + α2β1 α1α2 + ηβ1β2

)
we deduce that the map (6.32) is indeed an isomorphism. �

Corollary 6.8.2 Suppose p is odd. Then the (q2 − q)/2 irreducible monic
quadratic polynomials in Fq[x] (cf. Proposition 6.5.4) are exactly the
polynomials

pα,β (x) = x2 − 2αx+ (α2 − β2η)

where α ∈ Fq and β ∈ F∗
q.

Proof. Any irreducible monic quadratic polynomial over Fq is necessarily of
the form [x− (α + iβ )] [x− σ (α + iβ )], with α, β ∈ Fq and β �= 0. Since
σ (α + iβ ) = α − iβ, the statement follows. (Note that pα,−β = pα,β .) �

We now examine the case p = 2. Recall (cf. Proposition 6.4.4) that, in this
case, all elements in F2h are squares.

Theorem 6.8.3 There exists j ∈ F22h \ F2h and ω ∈ F2h such that

j2 + j + ω = 0 (equivalently, j2 = j + ω)

and

F22h = F2h [ j].
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Moreover, the polynomial x2 + x+ ω ∈ F2h [x] is irreducible and the map(
α ωβ

β α + β

)
�→ α + jβ (6.33)

yields an (F2h -algebra) isomorphism of the algebra M2(F2h , ω) ⊆ M2(F2h )
consisting of all the matrices of the form(

α ωβ

β α + β

)
where α, β ∈ F2h , onto the field F22h . Finally,

σ (α + jβ ) = (α + β )+ jβ

for all α, β ∈ F2h .

Proof. Since F22h is a quadratic extension of F2h , there exists an irreducible
polynomial f (x) = x2 + αx+ β ∈ F2h [x] such that F22h = F2h [ j], where j ∈
F22h \ F2h is a root of f . Note that α �= 0: otherwise, the polynomial f (x) =
x2 + β would be reducible since every element in F2h is a square.
Thus, setting y = xα−1 and ω = βα−2 ∈ F2h , the equation x2 + αx+ β = 0

becomes α2y2 + α2y+ β = 0, equivalently, y2 + y+ ω = 0.
Let then j, j′ ∈ F22h be the roots of x2 + x+ ω, so that (x− j)(x− j′) =

x2 + x+ ω, yielding j + j′ = 1 and j j′ = ω. Thus j′ = 1+ j = ω j−1 and
j2 = ω + j. As a consequence, in the basis {1, j} of F22h over F2h , addition
and multiplication are given by

(α1 + jβ1)+ (α2 + jβ2) = (α1 + α1)+ j(β1 + β2)

and

(α1 + jβ1)(α2 + jβ2) = (α1α2 + ωβ1β2)+ j(α1β2 + α2β1 + β1β2) (6.34)

for all α1, α2, β1, β2 ∈ F2h . Clearly, σ ( j) = j′ = 1+ j = ω j−1 and therefore

σ (α + jβ ) = (α + β )+ jβ

for all α, β ∈ F2h . Finally, we have(
α1 ωβ1

β1 α1 + β1

)(
α2 ωβ2

β2 α2 + β2

)
=
(

α1α2 + ωβ1β2 ω(α1β2 + α2β1 + β1β2)
α1β2 + α2β1 + β1β2 α1α2 + ωβ1β2 + α1β2 + α2β1 + β1β2

)
for all α1, α2, β1, β2 ∈ F2h . From (6.34) we deduce that the map (6.33) yields
the desired isomorphism. �
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Corollary 6.8.4 The 22h−1 − 2h−1 irreducible monic quadratic polynomials in
F2h [x] (cf. Proposition 6.5.4) are exactly the polynomials

qα,β (x) = x2 + βx+ (α2 + αβ + β2ω)

where β ∈ F∗
2h and α ∈ F2h .

Proof. Any irreducible monic quadratic polynomial over F2h is necessarily
of the form (x+ (α + jβ )) (x+ σ (α + jβ )) with α, β ∈ Fq and β �= 0. Since
σ (α + jβ ) = (α + β )+ jβ, the statement follows. (Note that qα,β = qα′,β ′ if
and only if β ′ = β and α′ ∈ {α, α + β}). �
In view of the next chapters, we set

α = σ (α)

and call it the conjugate of α ∈ Fq2 . Explicit expressions are given in Theorem
6.8.1 and Theorem 6.8.3. Note also that

NFq2 /Fq
(α) = αα

and

TrFq2 /Fq (α) = α + α

for all α ∈ Fq2 . Moreover, α = α if and only if α ∈ Fq (see also [86]).
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7

Character theory of finite fields

In this chapter we give an introduction to the character theory of finite fields.
Our exposition is mainly based on the books by Ireland and Rosen [79], Winnie
Li [95], and by Lidl and Niederreiter [96]. Actually, one of the main goals is to
present the generalizedKloosterman sums fromPiatetski-Shapiro’smonograph
[123], which will play a fundamental role in Chapter 14 on the representation
theory of GL(2,Fq). We also introduce the reader to the study of the number of
solutions of equations over finite fields. This is quite a vast and difficult subject,
which culminates with very deep results such as theWeil conjecture, proved by
Deligne (see [95]). Finally, Section 7.8, devoted to the FFT over finite fields, is
based on the book by Tolimieri, An, and Lu [160].

7.1 Generalities on additive and multiplicative characters

Let p be a prime number, n a positive integer, and consider Fq, the finite field
of order q = pn. An additive character of Fq is a character of the finite Abelian
group (Fq,+) (cf. Definition 2.3.1), that is, a map

χ : Fq → T

such that χ (x+ y) = χ (x)χ (y) for all x, y ∈ Fq (here, as usual, T = {z ∈ C :
|z| = 1} is the (multiplicative) circle group). We observe (cf. Definition 2.3.1)
that the additive characters constitute a (multiplicative) Abelian group, denoted
by F̂q, called the dual group of Fq. Clearly, if χ is an additive character,
then

χ (x) = χ (x)−1 = χ (−x) = χ−1(x)

197
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198 Character theory of finite fields

for all x ∈ Fq. Moreover, for χ, ξ ∈ F̂q, the orthogonality relations (cf. Propo-
sition 2.3.5) are:

〈χ, ξ 〉 =
∑
x∈Fq

χ (x)ξ (x) =
{
q if χ = ξ

0 if χ �= ξ .
(7.1)

In particular, taking ξ = 1, we have∑
x∈F∗

q

χ (x) = −1 for all χ �= 1, (7.2)

since
∑

x∈Fq χ (x) = 0 and χ (0) = 1.
The principal (or canonical) additive character of Fq is defined by setting,

for all x ∈ Fq,

χprinc(x) = exp[2π iTr(x)/p], (7.3)

where Tr = TrFq/Fp denotes the trace (cf. (6.22)) and, as usual, we identify Fp

with {0, 1, . . . , p− 1} to compute the exponential. Since Tr is a surjective Fp-
linear map fromFq ontoFp (so that, in particular, Tr(x+ y) = Tr(x)+ Tr(y) for
all x, y ∈ Fq) by Hilbert Satz 90 (cf. Theorem 6.7.2), χprinc is indeed a nontrivial
additive character.
In the following we present another explicit isomorphism between (Fq,+)

and its dual group F̂q (cf. Corollary 2.3.4).

Proposition 7.1.1 Let χ be a nontrivial additive character of Fq. For each y ∈
Fq define χy : Fq → T by setting

χy(x) = χ (xy)

for all x ∈ Fq. Then χy is also an additive character of Fq, and the map

� : Fq → F̂q

y �→ χy

is a group isomorphism.

Proof. The fact that χy is an additive character and that� is a group homomor-
phism follow immediately from the distributivity law in Fq. Indeed,

χy(x1 + x2) = χ (y(x1 + x2)) = χ (yx1 + yx2) = χ (yx1)χ (yx2) = χy(x1)χy(x2)
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7.1 Generalities on additive and multiplicative characters 199

and

χy+z(x) = χ ((y+ z)x) = χ (yx+ zx) = χ (yx)χ (zx) = χy(x)χz(x)

for all x, x1, x2, y, and z in Fq.
Suppose now that y �= 0. Since χ is nontrivial, we can find x ∈ Fq such that

χ (x) �= 1. Let x = y−1x, then χy(x) = χ (yx) = χ (x) �= 1. Thus y /∈ Ker(�).
This shows that � is injective. Since |F̂q| = |Fq| = q (cf. Corollary 2.3.4), we
deduce that � is also surjective. �

Exercise 7.1.2 Show that F̂2
q = {χs,t : s, t ∈ Fq}, where

χs,t (x, y) = χprinc(sx+ ty) (7.4)

for all s, t, x, y,∈ Fq.

Corollary 7.1.3 Let χ ∈ F̂q be a nontrivial additive character. Then for all z ∈
Fq we have

∑
x∈F∗

q

χ (xz) =
{
q− 1 if z = 0

−1 if z �= 0.

Proof. It is an immediate consequence of Proposition 7.1.1 and (7.2). �

If we choose χ = χprinc, we get the canonical isomorphism between Fq and F̂q:

χy(x) = exp[2π iTr(xy)/p]; (7.5)

in particular, χ1 = χ = χprinc, where 1 is the (multiplicative) identity element
in the field Fq, and χ0 = 1, the trivial character.

A multiplicative character of Fq is a character of the finite cyclic group
(F∗

q, ·) (cf. Theorem 6.3.3 and Definition 2.3.1), that is, a map

ψ : F∗
q → T

such thatψ (xy) = ψ (x)ψ (y) for all x, y ∈ F∗
q. We observe (cf. Definition 2.3.1)

that the set F̂∗
q of all multiplicative characters is a (multiplicative) cyclic (cf.

Remark 2.3.2) group, called the dual group of F∗
q.
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200 Character theory of finite fields

We can extend a multiplicative character ψ ∈ F̂∗
q to a map Fq → T ∪ {0}

(still denoted by ψ), by setting

ψ (0) =
{
0 if ψ is nontrivial

1 if ψ = 1.
(7.6)

Clearly, if ψ is a multiplicative character, then

ψ (x) = ψ (x)−1 = ψ (x−1) = ψ−1(x)

for all x ∈ F∗
q.

Let ψ ∈ F̂∗
q. In the following, we shall often encounter the quantity ψ (−1):

since ψ (−1)2 = ψ[(−1)2] = ψ (1) = 1, we necessarily have ψ (−1) = ±1.
The order of ψ is the smallest positive integer m such that ψm = 1: clearly, m
divides q− 1, since ψ (x)q−1 = ψ (xq−1) = ψ (1) = 1 (alternatively, this is an
immediate consequence of Lagrange’s theorem; see Proposition 1.2.12). We
recall (cf. Definition 6.3.4), that x ∈ F∗

q is called a primitive element of Fq if it
generates F∗

q.

Lemma 7.1.4 Let ψ be a nontrivial multiplicative character of Fq and denote
by m its order. Then ψ (−1) = −1 if and only if m is even and q−1

m is odd.

Proof. Since ψ (x)m = ψm(x) = 1 for all x ∈ F∗
q, all the values of ψ are m-th

roots of unity. Let also x be a primitive element of Fq. Then ψ (x) is a primitive
m-th root of 1, so that ψ (x)h �= 1 for 1 ≤ h ≤ m− 1.

If m is odd, then −1 is not an m-th root of unity and therefore ψ (−1) is
necessary equal to 1.
Suppose now thatm is even. Thenψ (x)h = −1 if and only if h ≡ m

2 mod m.

Moreover (note that q− 1 is even, because it is divisible by m), x
q−1
2 = −1

(since xq−1 = 1 but x
q−1
2 �= 1). It follows that

ψ (−1) = ψ (x
q−1
2 ) = ψ (x)

q−1
2

so that

ψ (−1) = −1 ⇔ q− 1

2
≡ m

2
mod m

⇔ q− 1

m
≡ 1 mod 2

⇔ q− 1

m
is odd.

�
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Exercise 7.1.5 Fill in the details of the above equivalence q−1
2 ≡ m

2 mod m⇔
q−1
m ≡ 1 mod 2.

Let ψ, φ ∈ F̂∗
q. The orthogonality relations are (cf. Proposition 2.3.5):

〈ψ, φ〉 =
∑
x∈F∗

q

ψ (x)φ(x) =
{
q− 1 if ψ = φ

0 if ψ �= φ.
(7.7)

As a consequence, if ψ is nontrivial (taking φ the trivial character) we have∑
x∈F∗

q\{−1}
ψ (x) = −ψ (−1) (7.8)

so that, keeping in mind (7.6), ∑
x∈Fq

ψ (x) = 0. (7.9)

The dual orthogonal relations (cf. (2.13)) are

∑
ψ∈F̂∗

q

ψ (x)ψ (y) =
{
q− 1 if x = y

0 if x �= y.
(7.10)

Let x be a primitive element of Fq. The principal multiplicative character of
F∗
q associated with x is the multiplicative character ψprinc defined by setting

ψprinc(x
k ) = exp

(
2π ik

q− 1

)
(7.11)

for all k = 1, 2, . . . , q− 1.

Exercise 7.1.6 Show that ψprinc is a generator of F̂∗
q.

7.2 Decomposable characters

We fix q = pn and consider the field Fq together with its quadratic extension
Fq2 . We use the notation at the end of Section 6.8. In particular, if α ∈ F∗

q2 then
its conjugate is the element α = σ (α) ∈ F∗

q2 and we have αα = NFq2 /Fq
(α) and

α + α = TrFq2 /Fq (α) ∈ Fq.

Definition 7.2.1 Let ν be a character of F∗
q2 .

One says that ν is decomposable if there exists a character ψ of F∗
q such that

ν(α) = ψ (αα) (7.12)

for all α ∈ F∗
q2 . If this is not the case, ν is called indecomposable.
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202 Character theory of finite fields

Moreover, the conjugate of ν is the character ν defined by

ν(α) = ν(α) (7.13)

for all α ∈ F∗
q2 .

Proposition 7.2.2 A character ν ∈ F̂∗
q2 is decomposable if and only if ν = ν.

Proof. Suppose first that ν is decomposable. Then, by virtue of (7.12), we have,
for all α ∈ F∗

q2 ,

ν(α) = ν(α) = ψ (αα) = ψ (αα) = ν(α).

This shows that ν = ν.
Conversely, if ν = ν, we may set

ψ (αα) = ν(α) (7.14)

for all α ∈ F∗
q2 . Note that this is well defined since, by virtue of Hilbert

satz 90 (Theorem 6.7.2), the map NFq2 /Fq
: F∗

q2 → F∗
q is surjective with ker-

nel KerNFq2 /Fq
= {αα−1 : α ∈ F∗

q2 }. Indeed, if α, β ∈ F∗
q2 and αα = ββ, then

NFq2 /Fq
(α) = NFq2 /Fq

(β ), that is, αβ−1 ∈ KerNFq2 /Fq
since the norm is a group

homomorphism. Then there exists γ ∈ F∗
q2 such that αβ−1 = γ γ−1 so that

ν(αβ−1) = ν(γ γ−1) = ν(γ )ν(γ )−1 = 1 (recall that ν = ν), showing that
ν(α) = ν(β ).
We leave it to the reader to check that ψ is indeed a character of F∗

q. By
construction, (7.12) follows from (7.14). �

Proposition 7.2.3 Let ν ∈ F̂∗
q2 and suppose that it is not decomposable. Then∑

β∈F∗
q2
:

ββ=α

ν(β ) = 0 (7.15)

for all α ∈ F∗
q.

Proof. First of all, we show that there exists γ ∈ Fq2 such that γ γ = 1 for which

ν(γ ) �= 1. Indeed, otherwise, if α, β ∈ F∗
q2 satisfy αα = ββ, then αβ−1αβ−1 =

1 and therefore ν(αβ−1) = 1 so that ν(α) = ν(β ). We may then define a char-
acter ψ of F∗

q as in (7.14) and this would contradict our assumptions on the
indecomposability of ν.
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Thus, for all α ∈ F∗
q∑

β∈F∗
q2
:

ββ=α

ν(β ) =
∑
β∈F∗

q2
:

ββ=α

ν(γ β ) = ν(γ )
∑
β∈F∗

q2
:

ββ=α

ν(β ),

where the first equality follows from the fact that γ γ = 1. Since ν(γ ) �= 1,
(7.15) follows. �

7.3 Generalized Kloosterman sums

In this section we introduce and study a family of generalized Kloosterman
sums, that we shall use (cf. Section 14.6), following Piatetski-Shapiro [123], to
describe the cuspidal representations of GL(2,Fq) and their associated Bessel
functions, a finite analogue of the classical Bessel functions.
Let q = pn and consider the quadratic extension Fq2 of the field Fq.
Let also χ be a nontrivial character of Fq and ν an indecomposable character

of F∗
q2 .
We use the notation in Section 6.8 and Section 7.2.
The generalized Kloosterman sum associated with the pair (χ, ν) is the map

j = jχ,ν : F∗
q → C defined by setting

j(x) = 1

q

∑
w∈F∗

q2
:

ww̄=x

χ (w + w̄)ν(w) (7.16)

for all x ∈ F∗
q.

We need a few technical formulas involving these sums: we begin with two
results on additive characters.

Lemma 7.3.1 Let z ∈ F∗
q2 and χ ∈ F̂q. Then

∑
t∈F∗

q2

χ [tz+ t̄ z̄] =
{
q2 − 1 if χ is trivial and/or z = 0

−1 otherwise.

Proof. We first observe that the map χ̃ : Fq2 → C defined by

χ̃ (t ) = χ [tz+ t̄ z̄] (7.17)

for all t ∈ Fq2 , is a character of Fq2 .
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204 Character theory of finite fields

Now, if χ is trivial and/or z = 0, then χ̃ is the trivial character and therefore,∑
t∈F∗

q2

χ [tz+ t̄ z̄] =
∑
t∈F∗

q2

χ̃ (t ) =
∑
t∈F∗

q2

1 = |F∗
q2 | = q2 − 1.

Suppose now thatχ is nontrivial and z �= 0.We claim that themapF q2 � t �→
tz+ t̄ z̄ ∈ Fq is surjective. Indeed, the map t �→ tz is a bijection of Fq2 and the
map s �→ s+ s̄ = TrFq2 /Fq (s) is surjective by Hilbert Satz 90 (Theorem 6.7.2). It
follows that the character (7.17) is nontrivial and, by the orthogonality relations
of characters (cf. (7.1)),∑

t∈Fq2
χ [tz+ t̄ z̄] =

∑
t∈Fq2

χ̃ (t ) = 〈χ̃ , 1〉 = 0.

Since

χ [tz+ t̄ z̄]t=0 = χ (0) = 1,

the result follows. �

Lemma 7.3.2 Let χ ∈ F̂q be a nontrivial character. Let also z ∈ F∗
q2 and y ∈ F∗

q.
Then ∑

t∈F∗
q2

χ [y−1(t + y+ z)(t + y+ z)] = −q− χ [y−1(y+ z)(y+ z̄)].

Proof. We have∑
t∈F∗

q2

χ [y−1(t + y+ z)(t + y+ z)] =
∑
s∈Fq2 :
s�=y+z

χ (y−1ss̄)

=
∑
s∈F∗

q2

χ (y−1ss̄)+ 1− χ [y−1(y+ z)(y+ z̄)]

(by (6.25) and setting r = ss̄) = (q+ 1)
∑
r∈F∗

q

χ (y−1r)

+ 1− χ [y−1(y+ z)(y+ z̄)]

(by (7.1)) = −(q+ 1)+ 1− χ [y−1(y+ z)(y+ z̄)]

= −q− χ [y−1(y+ z)(y+ z̄)]. �

Proposition 7.3.3 For every x ∈ F∗
q we have

j(x) = ν(−x) j(x).
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Proof. Let x ∈ F∗
q. Then, by definition of the Kloosterman sum j (cf. (7.16)),

j(x) = 1

q

∑
y∈F∗

q2
:

yȳ=x

χ (−y− ȳ)ν(y−1)

=∗
1

q

∑
t∈F∗

q2
:

tt̄=x

χ [x(t−1 + t̄−1)]ν(−x−1t )

=∗∗ ν(−x)1
q

∑
t∈F∗

q2
:

tt̄=x

χ (t + t̄ )ν(t )

= ν(−x) j(x),
where equality=∗ follows by setting t = −xy−1 (so that tt̄ = x and y = −xt−1),
and equality =∗∗ follows from x(t−1 + t̄−1) = x t+t̄tt̄ = t + t̄. �
Proposition 7.3.4 For all x, y ∈ F∗

q we have∑
w∈F∗

q

j(xw) j(yw)ν(w−1)χ (w) = −χ (−x− y)ν(−1) j(xy).

Proof. We have∑
w∈F∗

q

j(xw) j(yw)ν(w−1)χ (w)

= 1

q2
∑
w∈F∗

q

∑
t∈F∗

q2
:

tt̄=xw

∑
s∈F∗

q2
:

ss̄=yw

χ (t + t̄ + s+ s̄+ w)ν(tsw−1) (7.18)

Let us set z = yt(s)−1. First note that from ss̄ = yw we get

tsw−1 = yt(s̄)−1 = z.

From tt̄ = xw we then deduce

zz̄ = yt(s̄)−1yt̄s−1 = ytt̄y(ss̄)−1 = yxwyw−1y−1 = yx.

Moreover,

y−1(s+ y+ z)(s+ y+ z) = (y−1s+ 1+ y−1z)(s+ y+ z)

= y−1ss+ s+ y−1sz+ s+ y

+ z+ y−1zs+ z+ y−1zz

= w + s+ t + s+ y+ z+ t + z+ x

= w + s+ s+ t + t + y+ z+ z+ x

(7.19)
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and

y−1(y+ z)(y+ z) = (y+ z)(1+ y−1z)

= y+ z+ z+ y−1zz

= y+ z+ z+ x.

(7.20)

Then the calculation (7.18) continues as follows:

=(i)
1

q2
∑
w∈F∗

q

∑
s∈F∗

q2
:

ss̄=yw

∑
z∈F∗

q2
:

zz̄=xy

χ [y−1(s+ y+ z)(s+ y+ z)− x− y− z− z̄]ν(z)

=(ii)
1

q2
∑
s∈F∗

q2

∑
z∈F∗

q2
:

zz̄=xy

χ [y−1(s+ y+ z)(s+ y+ z)− x− y− z− z̄]ν(z)

= 1

q2
∑
z∈F∗

q2
:

zz̄=xy

χ [−x− y− z− z̄]ν(z)
∑
s∈F∗

q2

χ [y−1(s+ y+ z)(s+ y+ z)]

=(iii)
1

q2
∑
z∈F∗

q2
:

zz̄=xy

χ [−x− y− z− z̄]ν(z)
{−q− χ [y−1(y+ z)(y+ z)]

}

= −1

q

∑
z∈F∗

q2
:

zz̄=xy

χ [−x− y− z− z̄]ν(z)

− 1

q2
∑
z∈F∗

q2
:

zz̄=xy

χ [−x− y− z− z̄+ y−1(y+ z)(y+ z)]ν(z)

=(iv ) −1

q
χ (−x− y)ν(−1)

∑
z∈F∗

q2
:

zz̄=xy

χ (z+ z̄)ν(z)− 1

q2
∑
z∈F∗

q2
:

zz̄=xy

ν(z)

=(v ) −χ (−x− y)ν(−1) j(xy)

where=(i) follows from (7.19),=(ii) follows fromHilbert Satz 90,=(iii) follows
from Lemma 7.3.2,=(iv ) is obtained by changing z to−z and because−x− y−
z− z̄+ y−1(y+ z)(y+ z) = 0, by (7.20), and =(v ) follows from Proposition
7.2.3 and the definition of j (cf. (7.16)). �

Proposition 7.3.5 (Orthogonality relations)
∑

w∈F∗
q
j(xw) j(yw) = δx,y for

all x, y ∈ F∗
q.
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Proof. By definition of j, we have∑
w∈F∗

q

j(xw) j(yw) = 1

q2
∑
w∈F∗

q

∑
t∈F∗

q2
:

tt̄=xw

∑
s∈F∗

q2
:

ss̄=yw

χ (t + t̄ − s− s̄)ν(ts−1)

(setting z = ts−1) = 1

q2
∑
w∈F∗

q

∑
s∈F∗

q2
:

ss̄=yw

∑
z∈F∗

q2
:

zz̄=xy−1

χ (zs+ z̄s̄− s− s̄)ν(z)

(by (6.25)) = 1

q2
∑
z∈F∗

q2
:

zz̄=xy−1

⎛⎜⎝∑
s∈F∗

q2

χ ((z− 1)s+ (z̄− 1)s̄)

⎞⎟⎠ ν(z).

If x �= y, then z �= 1 and, by virtue of Lemma 7.3.1,
∑

s∈F∗
q2
χ ((z− 1)s+ (z̄−

1)s̄) = −1, so that

1

q2
∑
z∈F∗

q2
:

zz̄=xy−1

⎛⎜⎝∑
s∈F∗

q2

χ ((z− 1)s+ (z̄− 1)s̄)

⎞⎟⎠ ν(z) = − 1

q2
∑
z∈F∗

q2
:

zz̄=xy−1

ν(z) = 0,

where the last equality follows from Proposition 7.2.3.
If x = y, then z = 1 is admissible and, again by virtue of Lemma 7.3.1,

1

q2
∑
z∈F∗

q2
:

zz̄=xy−1

⎛⎜⎝∑
s∈F∗

q2

χ ((z− 1)s+ (z̄− 1)s̄)

⎞⎟⎠ν(z) = 1

q2
[(q2 − 1)−

∑
z∈F∗

q2
\{1}:

zz̄=1

ν(z)]

= 1

q2
[(q2 − 1)− (−1)]

= 1,

where the last but one equality follows from Proposition 7.2.3. �

Corollary 7.3.6 For every x ∈ F∗
q we have

∑
y∈F∗

q

j(xy) j(y)ν(y−1) =
{
ν(−1) if x = 1

0 if x �= 1.
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Proof. Let x ∈ F∗
q. Then∑

y∈F∗
q

j(xy) j(y)ν(y−1) =
∑
y∈F∗

q

j(xy) j(y)ν(−y−1)ν(−1)

(by Proposition 7.3.3) =
⎛⎝∑
y∈F∗

q

j(xy) j(y)

⎞⎠ ν(−1)

(by Proposition 7.3.5) = δx,1ν(−1). �

In the following (see also Section 14.6), in order to emphasize the depen-
dance of the map j from ν, we shall write jν (clearly j also depends on χ ).
Note that, from (7.16) it follows immediately that

jν̄ = jν, (7.21)

where ν̄ is the conjugate character of ν (cf. (7.13)).

Theorem 7.3.7 Let μ and ν be two indecomposable characters of F∗
q2 . Suppose

that jμ = jν and

μ|F∗
q
= ν|F∗

q
. (7.22)

Then μ = ν or μ = ν.

Proof. Our first assumption yields∑
y∈F∗

q2
:

yy=x

χ (y+ y)μ(y) = q jμ(x) = q jν (x) =
∑
y∈F∗

q2
:

yy=x

χ (y+ y)ν(y)

for all x ∈ F∗
q. Moreover, for y ∈ F∗

q2 and δ ∈ F∗
q, we set z = δ−1y (i.e. y = δz)

and t = zz = δ−2yy, so that, taking into account (7.22), from the above formula
we deduce ∑

z∈F∗
q2
:

zz=t

χ [δ(z+ z)]μ(z) =
∑
z∈F∗

q2
:

zz=t

χ [δ(z+ z)]ν(z) (7.23)

for all t ∈ F∗
q and δ ∈ Fq (the case δ = 0 follows from Proposition 7.2.3).

Fix t ∈ F∗
q. Then the solutions of the equation zz = t may be partitioned into

sets of the form {z, z}. Choose a complete system Ct of representatives for such
sets, that is,

{z ∈ F∗
q2 : zz = t} =

∐
z∈Ct

{z, z}.
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Note (recall Proposition 6.4.4) that if t is a square in Fq, say t = u2, u ∈ F∗
q,

then also the singletons {u} and {−u} must be considered (and they coincide if
q is even). We may then write (7.23) in the form∑

z∈Ct\Fq
χ [δ(z+ z)][μ(z)+ μ(z)− ν(z)− ν(z)]

+
∑

z∈Ct∩Fq
χ [δ(z+ z)][μ(z)− ν(z)] = 0, (7.24)

where Ct ∩ Fq is empty if t is not a square. In any case, the second sum in the
left hand side vanishes by virtue of (7.22).
We now set C̃t = {z+ z : z ∈ Ct}. Since z+ z = TrFq2 /Fq (z) ∈ Fq for all z ∈

Fq2 , we have C̃t ⊆ Fq. Moreover, every x ∈ C̃t corresponds to a unique set {z, z}
(possibly z = z) because the system{

z+ z = x

zz = t

is equivalent to the equation z2 − xz+ t = 0. In other words, x ∈ C̃t determines
{z, z} and the map

Ct → C̃t
z �→ z+ z

is a bijection. Then we may define a function ft : C̃t → C by setting

ft (x) =
{
μ(z)+ μ(z)− ν(z)− ν(z) if zz = t, z+ z = x, and z �= z

μ(z)− ν(z) ≡ 0 if z2 = t, z ∈ Fq, and 2z = x.

Therefore (7.24) may be written in the form∑
x∈C̃t

χ (δx) ft (x) = 0 (7.25)

for all t ∈ F∗
q and δ ∈ Fq. By Proposition 7.1.1, the functions ψx ∈ L(Fq), x ∈

C̃t , defined by ψx(δ) = χ (δx) for all δ ∈ Fq, are distinct characters of Fq, and
the left hand side of (7.25) may be considered as a linear combination of distinct
characters. Since the characters are linearly independent, it follows that ft = 0
for all t ∈ F∗

q, that is,

μ(z)+ μ(z) = ν(z)+ ν(z) (7.26)
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for all z ∈ Fq2 \ Fq. Moreover, since μ and ν are multiplicative, and zz =
NFq2 /Fq

(z) ∈ Fq for all z ∈ Fq2 , keeping in mind (7.22), we have

μ(z)μ(z) = ν(z)ν(z). (7.27)

From (7.26) and (7.27) we deduce that the sets {μ(z), μ(z)} and {ν(z), ν(z)}
solve the same quadratic equation, namely,

λ2 − [μ(z)+ μ(z)]λ+ μ(z)μ(z) = 0.

It follows that {μ(z), μ(z)} = {ν(z), ν(z)}, that is, μ(z) = ν(z) or μ(z) = ν(z),
for each z ∈ Fq2 \Fq.

Let z0 be a generator of the cyclic group F∗
q2 (cf. Theorem 6.3.3). Then

μ(z0) = ν(z0) yields μ = ν, while μ(z0) = ν(z0) yields μ = ν. �

The (ordinary) Kloosterman sums are defined by

K(χ; a, b) =
∑
c∈F∗

q

χ (ac+ bc−1),

where χ is a nontrivial element of F̂q and a, b ∈ Fq. For more on these sums
we refer to [96] and the references therein. We limit ourselves to a couple of
elementary identities.

Exercise 7.3.8 Let a, b ∈ Fq.

(a) Show that K(χ; a, b) = K(χ; b, a);
(b) show that if a ∈ F∗

q then K(χ; a, b) = K(χ; 1, ab).

7.4 Gauss sums

Definition 7.4.1 Let χ ∈ F̂q and ψ ∈ F̂∗
q. We define the Gauss sum of the mul-

tiplicative character ψ and the additive character χ as the complex number

g(ψ, χ ) =
∑
x∈F∗

q

ψ (x)χ (x). (7.28)

Note that, by virtue of (4.18) and (4.22), the Gauss sum G(n, p) = τ (p, n)
coincides with g(�p, χn), where �p and χn are the multiplicative and additive
characters defined in Section 4.4, respectively.

Proposition 7.4.2 Denote by χ0 = 1 the trivial character of Fq (so that, by
(7.6), it is also the trivial multiplicative character). Then for all χ ∈ F̂q and
ψ ∈ F̂∗

q we have:

(i) g(χ0, χ0) = q− 1;
(ii) g(χ0, χ ) = −1 if χ �= χ0;
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(iii) g(ψ, χ0) = 0 if ψ �= χ0;
(iv) g(ψ, χ ) =∑x∈Fq ψ (x)χ (x) = 〈ψ, χ〉L(Fp) if ψ �= χ0.

Proof. These are all elementary consequences of the orthogonality relations for
the additive and multiplicative characters (in particular (7.2), (7.6), and (7.9)).
We thus leave it to the reader to fill in the details of the proof. �

Note that (iv) shows that for ψ �= χ0, the Gauss sum g(ψ, χ ) equals the
Fourier coefficient (2.15), both of ψ with respect to χ as well as of χ |F∗

q
with

respect to ψ . We now present the basic properties of Gaussian sums.

Theorem 7.4.3 Let χy be the additive character as in (7.5), χ ∈ F̂q and ψ ∈
F̂∗
q. Then we have:

(i) g(ψ, χy) = ψ (y)g(ψ, χ1) if y �= 0;
(ii) g(ψ,χ ) = ψ (−1)g(ψ, χ );
(iii) g(ψ, χ ) = ψ (−1)g(ψ, χ );
(iv)

ψ = 1

q

∑
χ∈F̂q
χ �=χ0

g(ψ, χ )χ = 1

q
g(ψ, χ1)

∑
y∈F∗

q

ψ (y)χy

if ψ �= χ0;
(v) χ |F∗

q
= 1

q−1

∑
ψ∈F̂∗

q
g(ψ, χ )ψ;

(vi) g(ψ, χ )g(ψ, χ ) = ψ (−1)q if ψ, χ �= χ0;
(vii) |g(ψ, χ )| = √

q if ψ, χ �= χ0;
(viii) g(ψ p, χy) = g(ψ, χσ (y) ), where σ (y) = yp is the Frobenius automor-

phism.

Proof.

(i) Suppose y �= 0. Then

g(ψ, χy) =
∑
x∈F∗

q

ψ (x)χ1(xy)

(setting t = xy) =
∑
t∈F∗

q

ψ (ty−1)χ1(t )

=
∑
t∈F∗

q

ψ (y−1)ψ (t )χ1(t )

= ψ (y)g(ψ, χ1).
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(ii) We have:

g(ψ, χ ) =
∑
x∈F∗

q

ψ (x)χ (x)

=
∑
x∈F∗

q

ψ (x)χ (−x)

(setting y = −x) =
∑
y∈F∗

q

ψ (−y)χ (y)

=
∑
y∈F∗

q

ψ (−1)ψ (y)χ (y)

= ψ (−1)g(ψ, χ ).

(iii) By (ii) and recalling that ψ (−1) = ±1 (cf. Lemma 7.1.4), we have:

g(ψ, χ ) = ψ (−1)g(ψ, χ )

= ψ (−1)g(ψ, χ ).

(iv) and (v) are immediate consequences of Proposition 7.4.2 (iii) and (iv),
the Fourier inversion formula (cf. (2.16)), and (i). We leave it to the
reader to fill in the details.

(vi) We have:

g(ψ, χ )g(ψ, χ ) =
⎡⎣∑
x∈F∗

q

ψ (x)χ (x)

⎤⎦ ·
⎡⎣∑
y∈F∗

q

ψ (y)χ (y)

⎤⎦
=
∑
x,y∈F∗

q

ψ (xy−1)χ (x+ y)

(setting t = xy−1) =
∑
t∈F∗

q

ψ (t )
∑
y∈F∗

q

χ [y(t + 1)]

(by Corollary 7.1.3) = (q− 1)ψ (−1)−
∑

t∈F∗
q\{−1}

ψ (t )

(by (7.8)) = (q− 1)ψ (−1)− [−ψ (−1)]

= qψ (−1).

(vii) Recalling, once more, that ψ (−1) = ±1, we have:

|g(ψ, χ )|2 = g(ψ, χ )g(ψ, χ )

(by (iii)) = ψ (−1)g(ψ, χ )g(ψ, χ )

(by (vi)) = q.
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(viii) We have:

g(ψ p, χy) =
∑
x∈F∗

q

ψ p(x)χy(x)

=
∑
x∈F∗

q

ψ (xp)χy(x)

(setting z = xp, and by bijectivity of σ ) =
∑
z∈F∗

q

ψ (z)χy[σ
−1(z)]

(by definition of χy) =
∑
z∈F∗

q

ψ (z)χ1
(
σ−1[σ (y)z]

)
=∗
∑
z∈F∗

q

ψ (z)χ1[σ (y)z]

= g(ψ, χσ (y) ),

where =∗ follows from Tr ◦ σ−1 = Tr (cf. (7.3), (6.22), and (6.24)).
�

Even if its module is given by Theorem 7.4.3.(vii), the exact evaluation of a
Gauss sum g(ψ, χ ) is a very difficult problem and only a few special values are
known. See Gauss’ original results in Theorem 4.4.15 for an important exam-
ple. Other cases are in the books by Lidl and Niederreiter [96] and by Berndt,
Evans, and Williams [20].

7.5 The Hasse-Davenport identity

In this section we reproduceWeil’s proof [165] of the Hasse-Davenport identity
[48], which relates the Gauss sums over a finite field and those over a finite
extension. We split it into several preliminary results.
Let us fix ψ ∈ F̂∗

q and χ ∈ F̂q, with ψ nontrivial. Moreover, for every
monic polynomial f (x) = xn + an−1xn−1 + · · · + a0 ∈ Fq[x], define the com-
plex number λ( f ) = λψ,χ ( f ) by setting, keeping in mind (7.6),

λ( f ) = ψ (a0)χ (an−1). (7.29)

Notice that if n = 1 then an−1 = a0 and therefore λ( f ) = ψ (a0)χ (a0). Sinceψ
is not trivial, we have |λ( f )| = 1 if a0 �= 0, while λ( f ) = 0 if a0 = 0.Moreover,
if g(x) = xm + bm−1xm−1 + · · · + b0 ∈ Fq[x] then

f (x)g(x) = xn+m + (an−1 + bm−1)x
n+m−1 + · · · + a0b0

so that

λ( f · g) = ψ (a0b0)χ (an−1 + bm−1) = λ( f )λ(g),
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that is, the map λ : Fmon
q [x] → C is multiplicative (see Notation 6.6.6).

We define the formal power series �(z) = �ψ,χ (z) by setting

�(z) =
∑

f∈Fmon
q [x]

λ( f )zdeg f ≡
∞∑
k=0

⎛⎝ ∑
f∈Fmon,k

q [x]

λ( f )

⎞⎠ zk. (7.30)

Proposition 7.5.1 The series �(z) converges for all z ∈ C and its sum is given
by

�(z) = 1+ g(ψ, χ )z.

Proof. Clearly, Fmon,0
q [x] = {1}. Moreover, Fmon,1

q [x] = {x+ a0 : a0 ∈ Fq} so
that (recalling Proposition 7.4.2.(iv))∑

f∈Fmon,1
q [x]

λ( f ) =
∑
a0∈Fq

ψ (a0)χ (a0) = g(ψ, χ ).

Let k ≥ 2. For every a0, ak−1 ∈ Fq there are exactly qk−2 monic polynomials
of the form xk + ak−1xk−1 + · · · + a0. Then we have∑

f∈Fmon,k
q [x]

λ( f ) = qk−2
∑
ak−1,a0

ψ (a0)χ (ak−1) = 0,

since, being ψ nontrivial,
∑

a0∈Fq ψ (a0) = 0 (cf. (7.9)). �
We have the following formal product development:

�(z) =
∏

f∈Fmon,irr
q [x]

1

1− λ( f )zdeg f
, (7.31)

where the right hand side must be seen as the product∏
f∈Fmon,irr

q [x]

( ∞∑
r=0

λ( f )rzr deg f
)
.

In other words, the coefficient of zk in �(z) is given by∑
λ( f1)

r1λ( f2)
r2 · · · λ( fs)rs , (7.32)

where the (finite) sum runs over all (distinct) f1, f2, . . . , fs ∈ Fmon,irr
q [x] and

r1, r2, . . . , rs ∈ N such that r1 deg f1 + r2 deg f2 + · · · + rs deg fs = k.
Indeed, (7.31) then amounts to saying that

∑
f∈Fmon,k

q [x] λ( f ) equals the sum
(7.32). But this simply follows from the fact that f may be written uniquely (up
to reordering the factors) in the form f = f r11 f r22 · · · f rss with f1, f2, . . . , fs ∈
Fmon,irr
q [x], r1, r2, . . . , rs ∈ N, and, since λ is multiplicative, λ( f r11 f r22 · · · f rss ) =

λ( f1)r1λ( f2)r2 · · · λ( fs)rs .
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7.5 The Hasse-Davenport identity 215

Let now h > 1 and consider the field extension Fqh of Fq. We set

� = ψ ◦ NFqh /Fq
and X = χ ◦ TrFqh /Fq (7.33)

and observe that � ∈ F̂∗
qh is nontrivial and X ∈ F̂qh .

Also, in analogy with (7.29), we define � = ��,X : Fmon

qh [x] → C by setting

�(F ) = �(A0)X (As−1)

for every monic polynomial F (x) = xs + As−1xs−1 + · · · + A1x+ A0 ∈ Fqh [x].

Lemma 7.5.2 Let f (x) = xn + an−1xn−1 + · · · + a1x+ a0 be an irreducible
polynomial in Fq[x]. Let also h > 1 and set d = gcd(h, n). Then, if F (x) ∈
Fqh [x] is an irreducible and monic polynomial that divides f , we have

�(F ) = λ( f )
h
d .

Proof. We start by observing that, by (6.20), s = n
d equals degF . Write F (x) =

xs + As−1xs−1 + · · · + A1x+ A0. Let α ∈ Fqn be a root of f (see Corollary
6.6.4). Clearly, f is the minimal polynomial of α over Fq (see Corollary 6.6.5).
Moreover, by virtue of (6.19), we may suppose that α is also a root of F (if
necessary, we may replace α by σ−�(α) for some � ≥ 1). Since hs = h

d n ≥ n,
so that Fqhs ⊇ Fqn , we conclude that F is the minimal polynomial of α ∈ Fqhs

over Fqh (again by Corollary 6.6.5). By Proposition 6.7.3 (and the elementary
fact that σ (−1) = −1), we have

A0 = (−1)sNFqhs /Fqh
(α) = NFqhs /Fqh

(−α) (7.34)

As−1 = −TrFqhs /Fqh (α) = TrFqhs /Fqh (−α) (7.35)

a0 = NFqn /Fq (−α) (7.36)

an−1 = TrFqn /Fq (−α). (7.37)

It follows that

�(F ) = �(A0)X (As−1)

(by (7.34) and (7.35)) = �[NFqhs /Fqh
(−α)] · X[TrFqhs /Fqh (−α)]

(by (7.33)) = ψ[NFqh /Fq
◦ NFqhs /Fqh

(−α)]·
· χ [TrFqh /Fq ◦ TrFqhs /Fqh (−α)]

(by Proposition 6.7.1) = ψ[NFqhs /Fq
(−α)] · χ [TrFqhs /Fq (−α)]

(again by Proposition 6.7.1) = ψ[NFqn /Fq ◦ NFqhs /Fqn
(−α)]·

· χ [TrFqn /Fq ◦ TrFqhs /Fqn (−α)]
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(since α ∈ Fqn ) = ψ[NFqn /Fq (−α)h/d] · χ
[
h

d
TrFqn /Fq (−α)

]
= {ψ[NFqn /Fq (−α)]} hd · {χ [TrFqn /Fq (−α)]} hd

(by (7.36) and (7.37)) = [ψ (a0)χ (an−1)]
h
d

= λ( f )
h
d . �

Theorem 7.5.3 (Hasse-Davenport identity) With the above notation (in par-
ticular, (7.33)) we have

g(�,X ) = (−1)h−1[g(ψ, χ )]h.

Proof. As in (7.30), with ψ and χ replaced by � and X , respectively, we set

L(Z) =
∑

F∈Fmon
qh

[x]

�(F )ZdegF .

Then, Proposition 7.5.1 and (7.31) become

L(z) = 1+ g(�,X )Z =
∏

F∈Fmon,irr
qh

[x]

1

1−�(F )ZdegF

(by Proposition 6.6.7) =
∏

f∈Fmon,irr
q [x]

∏
F∈Fmon,irr

qh
[x]:

F| f

1

1−�(F )ZdegF

=∗
∏

f∈Fmon,irr
q [x]

1

[1− λ( f )h/dZdeg f /d]d

(setting Z = zh) =
∏

f∈Fmon,irr
q [x]

[
1− λ( f )h/dzdeg( f )·h/d

]−d
=∗∗

∏
f∈Fmon,irr

q [x]

h/d−1∏
�=0

[
1− λ( f )ζ d�zdeg f

]−d
=∗∗∗

∏
f∈Fmon,irr

q [x]

h−1∏
j=0

[
1− λ( f )(ζ jz)deg f

]−1

(by (7.31) and Proposition 7.5.1) =
h−1∏
j=0

[1+ g(ψ, χ )ζ jz]

=∗∗∗∗ 1− [−g(ψ, χ )]hzh

= 1− [−g(ψ, χ )]hZ,
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where:

=∗ follows by Lemma 7.5.2 and recalling that d = gcd(deg f , h);
=∗∗ follows by observing that, for n ≥ 1, zn − 1 =∏n−1

�=0(z− exp(2�π i/n))
which yields (after dividing by zn and setting w = z−1) 1− wn =∏n−1

�=0(1− exp(2�π i/n)w) so that, setting ζ = exp(2π i/h) and n =
h/d, 1− wh/d =∏h/d−1

�=0 (1− ζ d�w);
=∗∗∗ the numbers

ζ j deg f , j = 0, 1, . . . , h− 1, (7.38)

are the same as ζ d�, � = 0, 1, . . . , h/d, with each number in (7.38)
repeated d times. Indeed, d = gcd(deg f , h) implies that the period of
ζ deg f is h/d, and if deg f = md then ζ j deg f = ζmjd (and gcd(m, h) =
1);

=∗∗∗∗ finally follows from the equality 1− wh =∏h−1
j=0 (1− ζ jw) (cf. =∗∗).

Then the Hasse-Davenport identity follows from simplifying

1+ g(�,X )Z = 1− [−g(ψ, χ )]hZ. �

7.6 Jacobi sums

Definition 7.6.1 For a ∈ Fq and ψ1, ψ2, . . . , ψn ∈ F̂∗
q, the associated Jacobi

sum is the complex number

Ja(ψ1, ψ2, . . . , ψn) =
∑

b1,b2,...,bn∈Fq:
b1+b2+···+bn=a

ψ1(b1)ψ2(b2) · · ·ψn(bn),

with the usual convention as in (7.6).

Note that this sum effectively depends only on n− 1 terms: we can choose
b1, b2, . . . , bn−1 arbitrarily and then bn is uniquely determined. Recall that 1
denotes the trivial character in F̂∗

q.

Proposition 7.6.2 Let a ∈ Fq and ψ1, ψ2, . . . , ψn ∈ F̂∗
q. Then the following

holds.

(i) Ja (1, 1, . . . , 1)︸ ︷︷ ︸
n times

= qn−1;
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(ii) if a �= 0

Ja(ψ1, ψ2, . . . , ψn) = ψ1(a)ψ2(a) · · ·ψn(a)J1(ψ1, ψ2, . . . , ψn);

(iii) if some but not all of the characters ψ1, ψ2, . . . , ψn are trivial, then
Ja(ψ1, ψ2, . . . , ψn) = 0;

(iv) if ψn is nontrivial then

J0(ψ1, ψ2, . . . , ψn)

=
⎧⎨⎩0 if ψ1ψ2 · · ·ψn �= 1

ψn(−1)(q− 1)J1(ψ1, ψ2, . . . , ψn−1) if ψ1ψ2 · · ·ψn = 1.

Proof.

(i) This is obvious: each term in the sum is equal to 1.
(ii) Setting c j = b ja−1, for j = 1, 2, . . . , n, from b1 + b2 + · · · + bn = a

we deduce that c1 + c2 + · · · + cn = 1 and therefore

Ja(ψ1, ψ2, . . . , ψn) =
∑

c1,c2,...,cn∈Fq:
c1+c2+···+cn=1

ψ1(ac1)ψ2(ac2) · · ·ψn(acn)

= ψ1(a)ψ2(a) · · ·ψn(a)
∑

c1,c2,...,cn∈Fq:
c1+c2+···+cn=1

ψ1(c1)ψ2(c2) · · ·ψn(cn)

= ψ1(a)ψ2(a) · · ·ψn(a)J1(ψ1, ψ2, . . . , ψn).

(iii) Up to reordering the characters, we may suppose that ψ1, ψ2, . . . , ψk

are nontrivial and ψk+1, ψk+2, . . . , ψn are trivial for some 1 ≤ k ≤
n− 1. Since for all b1, b2, . . . , bk ∈ Fq there exist qn−k−1 choices of
(bk+1, bk+2, . . . , bn) such that bk+1 + bk+2 + · · · + bn = a− b1 − b2 −
· · · − bk, we have

Ja(ψ1, ψ2, . . . , ψn) =
∑

b1,b2,...,bn∈Fq:
b1+b2+···+bn=a

ψ1(b1)ψ2(b2) · · ·ψk(bk )

= qn−k−1

⎛⎝∑
b1∈Fq

ψ1(b1)

⎞⎠⎛⎝∑
b2∈Fq

ψ2(b2)

⎞⎠· · ·
⎛⎝∑
bk∈Fq

ψk(bk )

⎞⎠
(by (7.9)) = 0.
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(iv) First note that we may assume n ≥ 2 because, for n = 1 and ψ1 �= 1,
the statement immediately follows from (7.6). Then

J0(ψ1, ψ2, . . . , ψn) =
∑
a∈Fq

⎛⎜⎜⎝ ∑
b1,b2,...,bn−1∈Fq:

b1+b2+···+bn−1=−a

ψ1(b1)ψ2(b2) · · ·ψn−1(bn−1)

⎞⎟⎟⎠ψn(a)

(ψn(0) = 0) =
∑
a∈F∗

q

ψn(a)J−a(ψ1, ψ2, . . . , ψn−1)

(by (ii)) = J1(ψ1, ψ2, . . . , ψn−1)

·
∑
a∈F∗

q

ψn(a)ψ1(−a)ψ2(−a) · · ·ψn−1(−a)

= J1(ψ1, ψ2, . . . , ψn−1)ψ1(−1)ψ2(−1) · · ·ψn−1(−1)

·
∑
a∈F∗

q

(ψ1ψ2 · · ·ψn)(a).

Now, if ψ1ψ2 · · ·ψn is nontrivial, the statement follows from (7.9).
If ψ1ψ2 · · ·ψn = 1 then

∑
a∈F∗

q
(ψ1 · · ·ψn)(a) = q− 1 and

ψ1(−1)ψ2(−1) · · ·ψn−1(−1) = ψn(−1) = ψn(−1)

(recall that ψn(−1) = ±1; see Lemma 7.1.4). �

Corollary 7.6.3 Suppose that ψ1, ψ2, . . . , ψn ∈ F̂∗
q are nontrivial as well as

their product. Then, setting ψ0 = (ψ1ψ2 · · ·ψn)−1, one has

J1(ψ1, ψ2, . . . , ψn) = ψ0(−1)

q− 1
J0(ψ0, ψ1, . . . , ψn)

and

J−1(ψ1, ψ2, . . . , ψn) = 1

q− 1
J0(ψ0, ψ1, . . . , ψn).

Proof. Applying Proposition 7.6.2.(iv) with ψn replaced by ψ0, we get

J0(ψ0, ψ1, . . . , ψn) = (q− 1)ψ0(−1)J1(ψ1, ψ2, . . . , ψn).

For the second identity, use 7.6.2.(ii). �

Actually, the term “Jacobi sum” is attributed to J1 in [79] and [96], and to
J−1 in [95].
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Proposition 7.6.4 Suppose that ψ1, ψ2, . . . , ψn ∈ F̂∗
q are nontrivial as well as

their product. Then, for every nontrivial χ ∈ F̂q, we have:

J1(ψ1, ψ2, . . . , ψn) = g(ψ1, χ )g(ψ2, χ ) · · · g(ψn, χ )

g(ψ1ψ2 · · ·ψn, χ )
.

Proof. Indeed, by Definition 7.4.1 and (7.6), we have

g(ψ1, χ )g(ψ2, χ ) · · · g(ψn, χ )

=
⎛⎝∑
x1∈Fq

ψ1(x1)χ (x1)

⎞⎠⎛⎝∑
x2∈Fq

ψ2(x2)χ (x2)

⎞⎠· · ·
⎛⎝∑
xn∈Fq

ψn(xn)χ (xn)

⎞⎠
=

∑
x1,x2,...,xn∈Fq

ψ1(x1)ψ2(x2) · · ·ψn(xn)χ (x1 + x2 + · · · + xn)

=
∑
a∈Fq

χ (a)
∑

x1,x2,...,xn∈Fq:
x1+x2+···+xn=a

ψ1(x1)ψ2(x2) · · ·ψn(xn)

=
∑
a∈Fq

χ (a)Ja(ψ1, ψ2, . . . , ψn)

=∗ J1(ψ1, ψ2, . . . , ψn)
∑
a∈F∗

q

(ψ1ψ2 · · ·ψn)(a)χ (a)

= J1(ψ1, ψ2, . . . , ψn)g(ψ1ψ2 · · ·ψn, χ ),

where =∗ follows from Proposition 7.6.2.(ii) and (iv). By Theorem 7.4.3.(vii),
g(ψ1ψ2 · · ·ψn, χ ) �= 0, and this observation ends the proof. �

Proposition 7.6.5 Suppose thatψ1, ψ2, . . . , ψn ∈ F̂∗
q are nontrivial while their

product ψ1ψ2 · · ·ψn is trivial. Then

J1(ψ1, ψ2, . . . , ψn−1) = ψn(−1)

q
g(ψ1, χ )g(ψ2, χ ) · · · g(ψn, χ ),

for all nontrivial χ ∈ F̂q. Moreover,

J1(ψ1, ψ2, . . . , ψn) = −ψn(−1)J1(ψ1, ψ2, . . . , ψn−1).

Proof. Since ψ−1
n = ψ1ψ2 · · ·ψn−1, by Theorem 7.4.3.(vi) we have

g(ψ1ψ2 · · ·ψn−1, χ )g(ψn, χ ) = ψn(−1)q
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and therefore, by Proposition 7.6.4 (recall also that ψn(−1) = ±1; see Lemma
7.1.4),

J1(ψ1, ψ2, . . . , ψn−1) = g(ψ1, χ )g(ψ2, χ ) · · · g(ψn−1, χ )

g(ψ1ψ2 · · ·ψn−1, χ )

= ψn(−1)

q
g(ψ1, χ )g(ψ2, χ ) · · · g(ψn, χ )

and the first identity is proved.
Note now that the triviality of ψ1ψ2 · · ·ψn and Proposition 7.6.2.(ii) yield

Ja(ψ1, ψ2, . . . , ψn) = J1(ψ1, ψ2, . . . , ψn)

for all a ∈ F∗
q. Then

J0(ψ1, ψ2, . . . , ψn)+ (q− 1)J1(ψ1, ψ2, . . . , ψn)

=
∑
a∈Fq

Ja(ψ1, ψ2, . . . , ψn)

(by Definition 7.6.1) =
∑
a∈Fq

∑
b1,b2,...,bn∈Fq:
b1+b2+···+bn=a

ψ1(b1)ψ2(b2) · · ·ψn(bn)

=
∑

c1,c2,...,cn∈Fq
ψ1(c1)ψ2(c2) · · ·ψn(cn)

=
⎛⎝∑
c1∈Fq

ψ1(c1)

⎞⎠⎛⎝∑
c2∈Fq

ψ2(c2)

⎞⎠· · ·
⎛⎝∑
cn∈Fq

ψn(cn)

⎞⎠
(by (7.9)) = 0.

Therefore

J1(ψ1, ψ2, . . . , ψn) = 1

1− q
J0(ψ1, ψ2, . . . , ψn)

(by Proposition 7.6.2.(iv)) = −ψn(−1)J1(ψ1, ψ2, . . . , ψn−1). �

Corollary 7.6.6 Suppose that ψ1, ψ2, . . . , ψn ∈ F̂∗
q are nontrivial. If their

product ψ1ψ2 · · ·ψn is nontrivial then

|J1(ψ1, ψ2, . . . , ψn)| = q(n−1)/2, (7.39)

while, if ψ1ψ2 · · ·ψn is trivial then

|J1(ψ1, ψ2, . . . , ψn)| = q(n−2)/2, (7.40)
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and

|J0(ψ1, ψ2, . . . , ψn)| = (q− 1)q(n−2)/2. (7.41)

Proof. (7.39) follows from Theorem 7.4.3.(vii) and Proposition 7.6.4. Also,
(7.40) follows from 7.4.3.(vii) and Proposition 7.6.5. Finally, (7.41) follows
from Proposition 7.6.2.(iv) and (7.39). �

Exercise 7.6.7 Let ψ1, ψ2, . . . , ψk ∈ F̂∗
q and suppose that they are not all triv-

ial. Denote by �1, �2, . . . , �k ∈ F̂qh their corresponding extensions as in
(7.33). Prove that

J1(�1, �2, . . . , �k ) = (−1)(h−1)(k−1)J1(ψ1, ψ2, . . . , ψk ).

Hint. Use Proposition 7.6.2.(iii) if some character is trivial, then apply Propo-
sition 7.6.4, Proposition 7.6.5, and Theorem 7.5.3.
For more on Jacobi sums we refer to the aforementioned book by Berndt,

Evans, and Williams [20].

7.7 On the number of solutions of equations

This section is based on the original paper by Weil [165] and the monographs
by Ireland and Rosen [79], Lidl and Niederreiter [96], and Winnie Li [95]. It
contains very important results that led Weil (ibidem) to the statement of his
celebrated conjecture, solved by Deligne [52] (see also [95]).
Let r ∈ N and f (x0, x1, . . . , xr ) ∈ Fq[x0, x1, . . . , xr]. We denote by Nf the

number of solutions of the equation f = 0, that is,

Nf = |{(x0, x1, . . . , xr ) ∈ Fr+1
q : f (x0, x1, . . . , xr ) = 0}|,

where Fr+1
q is the (r + 1)-dimensional vector space over Fq. Moreover, if u ∈

Fq and n ∈ N, we denote by Nn(u) the number of solutions of the equation
xn = u, that is,

Nn(u) = |{x ∈ Fq : xn = u}|.
Lemma 7.7.1

(i) If d = gcd(n, q− 1) then

Nn(u) =

⎧⎪⎪⎨⎪⎪⎩
1 if u = 0

d if u is a d-th power in F∗
q

0 otherwise.
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(ii) If f (x0, x1, . . . , xr ) = a0x
n0
0 + a1x

n1
1 + · · · + arxnrr with ai ∈ F∗

q and
integers ni > 0, for i = 1, 2, . . . , r, then

Nf =
∑

u0,u1,...,ur∈Fq:∑r
i=0 aiui=0

Nn0 (u0)Nn1 (u1) · · ·Nnr (ur ).

Proof.

(i) The case u = 0 is obvious; the remaining is just Remark 1.2.14.
(ii) Put xnii = ui for i = 0, 1, . . . , r, and count the number of solutions of

these equations. �

Lemma 7.7.2 With the same notation as in Lemma 7.7.1.(i) we have

Nn(u) =
∑
ψ∈F̂∗

q :

ψd=1

ψ (u).

Proof. Suppose first that u ∈ F∗
q is a d-th power, say u = vd , for some v ∈ F∗

q.
Then ∑

ψ∈F̂∗
q :

ψd=1

ψ (u) =
∑
ψ∈F̂∗

q :

ψd=1

ψ (vd )

=
∑
ψ∈F̂∗

q :

ψd=1

[ψ (v )]d

= |{ψ ∈ F̂∗
q : ψ

d = 1}|
= d,

where the last equality follows from Proposition 1.2.12 applied to the cyclic
group F̂∗

q (recall also Corollary 2.3.4 and Exercise 7.1.6).
Suppose now that u is not a d-th power and let α be a generator of F∗

q. Then
we can find k, r ∈ N with 0 < r < d such that u = αdk+r. Thus, if ψd = 1, we
have

ψ (u) = ψ (αr )

and we may think of ψ as a character of the quotient group F∗
q/H, where

H = {vd : v ∈ F∗
q} = {αkd : k = 0, 1, . . . ,

q− 1

d
}.

Since F∗
q/H is cyclic of order q− 1/((q− 1)/d) = d, we conclude that {ψ ∈

F̂∗
q : ψ

d = 1} may be identified with F̂∗
q/H, so that, using the dual orthogonal
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relations (7.10), we deduce that∑
ψ∈F̂∗

q :

ψd=1

ψ (u) =
∑

ψ∈F̂∗
q/H

ψ (1)ψ (αr ) = 0.

To conclude, in both cases, we may invoke Lemma 7.7.1.(i). �

In the following we use the notation

� = {(ψ0, ψ1, . . . , ψr ) ∈ (F̂∗
q )
r+1 : ψi �= 1, ψdi

i = 1, i = 0, 1, . . . , r}
and

�1 = {(ψ0, ψ1, . . . , ψr ) ∈ � : ψ0ψ1 · · ·ψr = 1}.
Theorem 7.7.3 (Hua-Vandiver [77], Weil [165]: the homogeneous case)
Let f be as in Lemma 7.7.1.(ii) and set di = gcd(ni, q− 1), for i = 0, 1, . . . , r.
Then

Nf = qr +
∑

(ψ0,ψ1,...,ψr )∈�1

ψ0(a
−1
0 )ψ1(a

−1
1 ) · · ·ψr(a

−1
r )J0(ψ0, ψ1, . . . , ψr )

(7.42)
and

|Nf − qr| ≤ (q− 1)q
r−1
2 M, (7.43)

where M = |�1|.
Proof. From Lemma 7.7.1 and Lemma 7.7.2 we deduce that

Nf =
∑

u0,u1,...,ur∈Fq:∑r
i=0 aiui=0

∑
ψ0,ψ1,...,ψr∈F̂∗

q :

ψ
di
i =1, i=0,1,...,r

ψ0(u0)ψ1(u1) · · ·ψr(ur )

=
∑

ψ0,ψ1,...,ψr∈F̂∗
q :

ψ
di
i =1, i=0,1,...,r

ψ0(a
−1
0 )ψ1(a

−1
1 ) · · ·ψr(a

−1
r )

·
∑

u0,u1,...,ur∈Fq:∑r
i=0 aiui=0

ψ0(a0u0)ψ1(a1u1) · · ·ψr(arur )

=
∑

ψ0,ψ1,...,ψr∈F̂∗
q :

ψ
di
i =1, i=0,1,...,r

ψ0(a
−1
0 )ψ1(a

−1
1 ) · · ·ψr(a

−1
r )J0(ψ0, ψ1, . . . , ψr ).

Then (7.42) follows from Proposition 7.6.2.(i), (iii), (iv). Moreover, we deduce
(7.43) from (7.42) and (7.41). �
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We now consider the equation

a0x
n0
0 + a1x

n1
1 + · · · + arx

nr
r = b, (7.44)

where n0, n1, . . . , nr are positive integers and b ∈ F∗
q. We set

f (x0, x1, . . . , xr ) = a0x
n0
0 + a1x

n1
1 + · · · + arx

nr
r − b

and

Nf = |{(x0, x1, . . . , xr ) ∈ Fr+1
q : f (x0, x1, . . . , xr ) = 0}|.

Theorem 7.7.4 (Hua-Vandiver, Weil: the non-homogeneous case) With the
notation above, and setting again di = gcd(ni, q− 1), i = 0, 1, . . . , r, we have:

Nf = qr +
∑

(ψ0,ψ1,...,ψr )∈�
(ψ0ψ1 · · ·ψr )(b)

· ψ0(a
−1
0 )ψ1(a

−1
1 ) · · ·ψr(a

−1
r )J1(ψ0, ψ1, . . . , ψr ) (7.45)

and

|Nf − qr| ≤ Mq
r−1
2 +M′q

r
2 (7.46)

where, as before, M = |�1|, and M′ = |� \�1|.
Proof. Arguing as in the proof of Theorem 7.7.3 we get

Nf =
∑

u0,u1,...,ur∈Fq:∑r
i=0 aiui=b

∑
ψ0,ψ1,...,ψr∈F̂∗

q :

ψ
di
i =1, i=0,1,...,r

ψ0(u0)ψ1(u1) · · ·ψr(ur )

=
∑

ψ0,ψ1,...,ψr∈F̂∗
q :

ψ
di
i =1, i=0,1,...,r

ψ0(a
−1
0 b)ψ1(a

−1
1 b) · · ·ψr(a

−1
r b)

·
∑

u0,u1,...,ur∈Fq:∑r
i=0 b

−1aiui=1

ψ0(b
−1a0u0)ψ1(b

−1a1u1) · · ·ψr(b
−1arur )

=
∑

ψ0,ψ1,...,ψr∈F̂∗
q :

ψ
di
i =1, i=0,1,...,r

(ψ0ψ1 · · ·ψr )(b)ψ0(a
−1
0 )ψ1(a

−1
1 ) · · ·ψr(a

−1
r )J1(ψ0, ψ1, . . . , ψr )

and (7.45) follows again from Proposition 7.6.2.(i),(iii), while the estimate
(7.46) follows easily from (7.39) and (7.40). �

Corollary 7.7.5 With the same notation as in Theorem 7.7.4 we have

|Nf − qr| ≤ (d0 − 1)(d1 − 1) · · · (dr − 1)q
r
2 .
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Proof. Just note that M +M′ = |�| = (d0 − 1)(d1 − 1) · · · (dr − 1). �

Remark 7.7.6 Note that, both in Theorem 7.7.3 and in Theorem 7.7.4, if di = 1
for some i, then Nf = qr. This is obvious: for instance, suppose that n0 = 1.
Then, for any choice of x1, x2, . . . , xr ∈ Fq, setting

x0 = − 1

a0
[a1x

n1
1 + a2x

n2
2 + · · · + arx

nr
r − b]

yields a solution of (7.44).Moreover, since the exact formulas and the estimates
depend only on the numbers d0, d1, . . . , dr, one may assume that n0, n1, . . . , nr
are divisors of q− 1.

Corollary 7.7.7 Let p be a prime number, n0, n1, . . . , nr positive integers,
and a0, a1, . . . , ar, b ∈ Z. Then the number N(p) of (non-congruent) solutions
(x0, x1, . . . , xr ) ∈ Zr+1 of the congruence

a0x
n0
0 + a1x

n1
1 + · · · + arx

nr
r = b mod p

satisfies the condition

|N(p)− pr| ≤ (n0 − 1)(n1 − 1) · · · (nr − 1)pr/2.

In particular,

lim
p→+∞:
p prime

N(p) = +∞.

Proof. This follows immediately from Corollary 7.7.5 after observing that ni ≥
di for all i = 0, 1, . . . , r. �

We conclude this section with an exercise.

Exercise 7.7.8

(1) Prove that for every integer k ≥ 0

∑
x∈Fq

xk =
{
0 if k = 0 or (q− 1)� |k
−1 if k > 0 and (q− 1)|k

(here we assume 00 = 1).
Hint: For k > 0 use a generator α of F∗

q.
(2) Show that if f ∈ Fq[x1, x2, . . . , xn] and deg( f ) < n(q− 1) then∑

α1,α2,...,αn∈Fq
f (α1, α2, . . . , αn) = 0.

Hint: from (1) deduce the statement for a monomial.
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7.8 The FFT over a finite field 227

(3) Show that if f ∈ Fq[x1, x2, . . . , xn] and F = 1− f q−1 then

Nf =
∑

α1,α2,...,αn∈Fq
F (α1, α2, . . . , αn),

where Nf is seen as an element of Fq.
(4) (Warning’s Theorem [164]) Prove that if f ∈ Fq[x1, x2, . . . , xn] and

deg( f ) < n, then Nf is divisible by p.
Hint: from (2) and (3) it follows that Nf = 0 mod p.

(5) (Chevalley’s Theorem [39]) Show that if f ∈ Fq[x1, x2, . . . , xn] sat-
isfies f (0, 0, . . . , 0) = 0 and deg( f ) < n, then Nf ≥ 2. In particular,
f = 0 has a nontrivial solution.

Remark 7.7.9 Chevalley’s theorem was conjectured by E. Artin in 1935 and
immediately proved by Chevalley and generalized by Warning. The proof
sketched in the above exercise is due to Ax [16]. Warning, actually, proved
that Nf ≥ qn−deg( f ); see the monograph by Lidl and Niederreiter [96], where
these results are proved also for systems of polynomials.

7.8 The FFT over a finite field

In this section, following again [160], we describe the matrix form of sev-
eral algorithms for the additive Fourier transform over Fq, with q = ph, p ≥ 3
prime, and h ≥ 1. We generalize Rader’s algorithm discussed at the end of Sec-
tion 5.4. The original sources are [2] and [14].
The Fourier Transform over Fq is defined as in (2.15) by setting

f̂ (χ ) =
∑
x∈Fq

f (x)χ (x) (7.47)

for all f ∈ L(Fq) and χ ∈ F̂q. However, to keep notation similar to that in Sec-
tion 5.4, we avoid conjugation for χ when describing the matrix representing
(7.47). By means of Theorem 6.3.3, we fix a generator α of the cyclic group F∗

q

and we introduce the following ordering for the elements of Fq:

0, α0 = 1, α, α2, . . . , αq−2. (7.48)

Then, using the representation (7.5), we define the Fourier Matrix AFq of Fq by
setting

AFq =

⎛⎜⎜⎜⎝
1 1 · · · 1
1
... Cq−1

1

⎞⎟⎟⎟⎠ , (7.49)
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where

Cq−1 =
(
exp[2π iTr(αk+ j )/p]

)q−2

k, j=0 (7.50)

is the associated core matrix. Cq−1 has the following property: its (k, j)-entry
depends only upon k + j mod q− 1. A matrix with this property is called
skew circulant mod q− 1. In particular, Cq−1 is Hankel and therefore sym-
metric. Note also that in [51] it is given a different definition of skew-circulant
matrices, but we follow the terminology in [160]. Clearly, (7.49) represents the
matrix form of Rader’s algorithm over Fq. Nowwe describe three block decom-
positions of the core matrix Cq−1. First of all, we assume that h ≥ 2 so that
q− 1 = ph − 1 is not a prime number (for instance, it is divisible by p− 1).
We begin with a description of an analogue of the Cooley-Tukey algorithm
due to Agarwal and Tukey. Suppose that q− 1 = mn is a nontrivial (arbitrary)
factorization of q− 1. Denote by

B = 〈αm〉 (7.51)

the subgroup generated by αm. Clearly, B is cyclic of order n and we have the
coset decomposition

F∗
q =

m−1∐
k=0

αkB.

Now we choose a different ordering for Fq (in place of (7.48)): we first order
B by setting

1, αm, α2m, . . . , α(n−1)m (7.52)

and then we order Fq:

0,B, αB, . . . , αm−1B. (7.53)

The core matrix corresponding to this ordering has the form⎛⎜⎜⎜⎝
C(0, 0) C(0, 1) . . . C(0,m− 1)
C(1, 0) C(1, 1) . . . C(1,m− 1)

...
...

. . .
...

C(m− 1, 0) C(m− 1, 1) . . . C(m− 1,m− 1)

⎞⎟⎟⎟⎠ (7.54)

where C(r, r′), with 0 ≤ r, r′ ≤ m− 1, is the n× n matrix

C(r, r′) =
(
exp[2π iTr(αr+r

′+(s+s′ )m)/p]
)n−1

s,s′=0
. (7.55)

Note that C(r, r′) is skew-circulant mod n. It follows that (7.54) is a Hankel
(actually skew-circulant mod nm) matrix whose blocks are Hankel (actually
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skew-circulant mod n) matrices. A further property is presented in the following
proposition.

Proposition 7.8.1 Set

Sn =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1
1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ . (7.56)

If r + r′ = r1 + r′1 mod m and

�m = r + r′ − r1 − r′1 (7.57)

for some positive �, then

C(r, r′) = S�nC(r1, r
′
1).

Proof. From (7.57) we deduce that

r + r′ + (s+ s′)m = r1 + r′1 + (�+ s+ s′)m

so that

[C(r, r′)]s,s′ = [C(r1, r
′
1)]s+�,s′ = [S�nC(r1, r

′
1)]s,s′ ,

where s+ � must be considered mod n. �
Remark 7.8.2 Clearly, the matrices (7.50) and (7.54) are similar and the sim-
ilarity is realized by means of a permutation matrix (recall Corollary 5.3.2).
More precisely, by means of the permutation of F∗

q that transforms the ordered
sequence (7.48) into the ordered sequence (7.53). The easy details are left to
the reader and the same remark holds true for the block decomposition (7.59).

Now we give an analogue of the Good formula (Corollary 5.4.13).
Suppose, as before, that q− 1 = nm. We now also require that gcd(n,m) =

1. By Proposition 1.2.5 we have

Zmn
∼= Zm ⊕ Zn. (7.58)

More precisely, the generator of Zm is n and the generator of Zn is m (for
instance, take a = 1 in the proof of Proposition 1.2.5, or use Bezout’s identity
(1.2): 1 = um+ vn⇒ m = 1 mod n and n = 1 mod m). Setting A = 〈αn〉
and recalling that B = 〈αm〉 (cf. (7.51)), (7.58) yields the multiplicative decom-
position

F∗
q
∼= A× B
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with A (respectively B) multiplicative cyclic of order m (respectively n). Then,
we may replace the ordering (7.53) by

0,B, αnB, α2nB, . . . , α(m−1)nB,

where B is ordered again as in (7.52). With this new ordering, the core matrix
has the form⎛⎜⎜⎜⎝

C̃(0, 0) C̃(0, 1) . . . C̃(0,m− 1)
C̃(1, 0) C̃(1, 1) . . . C̃(1,m− 1)

...
...

...
C̃(m− 1, 0) C̃(m− 1, 1) . . . C̃(m− 1,m− 1)

⎞⎟⎟⎟⎠ (7.59)

where C̃(r, r′), with 0 ≤ r, r′ ≤ m− 1, is the n× n matrix

C̃(r, r′) =
(
exp[2π iTr(α(r+r′ )n+(s+s′ )m)/p]

)n−1

s,s′=0
.

The C̃s have the same properties of the Cs in (7.54). Moreover,

C̃(r, r′) = C̃(r1, r
′
1)

if r + r′ = r1 + r′1 modm. Setting T (r) = C̃(r, 0), matrix (7.59) takes the form:⎛⎜⎜⎜⎝
T (0) T (1) · · · T (m− 1)
T (1) T (2) · · · T (0)
...

...
...

T (m− 1) T (0) · · · T (m− 2)

⎞⎟⎟⎟⎠ .

This matrix is block skew-circulant mod m and each block is skew-circulant
mod n.
We consider now a particular case of (7.54). We take m = ph−1

p−1 and n =
p− 1. The matrix Sp−1 is as in (7.56). Set also ω = e2π i/p and ε = αm. Note
that nowB ∼= Z∗

p and ε ∈ F∗
p is a generator of this group (recall Corollary 6.3.5).

Theorem 7.8.3 (Auslander, Feigh, and Winograd) Define

ν : {0, 1, . . . , q− 1} → {0, 1, . . . , p− 2} ∪ {−∞}

by means of the relation{
Tr(αr ) = εν(r) if Tr(αr ) �= 0

ν(r) = −∞ if Tr(αr ) = 0

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.008
https://www.cambridge.org/core


7.8 The FFT over a finite field 231

for r = 0, 1, . . . , q− 1. Set also

S−∞
p−1 =

⎛⎜⎜⎜⎝
−1 −1 · · · −1
−1 −1 · · · −1
...

...
. . .

...
−1 −1 · · · −1

⎞⎟⎟⎟⎠ .

Then the matrix (7.54) may be factorized as

[Im ⊗C(p)]S,

where we use the notation in (5.27) and

S =

⎛⎜⎜⎜⎜⎝
S−ν(0)
p−1 S−ν(1)

p−1 · · · S−ν(m−1)
p−1

S−ν(1)
p−1 S−ν(2)

p−1 · · · S−ν(m)
p−1

...
...

...
S−ν(m−1)
p−1 S−ν(m)

p−1 · · · S−ν(2m−2)
p−1

⎞⎟⎟⎟⎟⎠
and

C(p) =
(
ωεk+ j

)p−2

k, j=0
.

Proof. First of all, recall that the trace is Fp-linear by Hilbert Satz 90 (cf. The-
orem 6.7.2). Therefore, since ε = αm ∈ Fp in (7.55) we have

Tr(αr+r
′+(s+s′ )m) = Tr(αr+r

′
εs+s

′
) = εs+s

′
Tr(αr+r

′
). (7.60)

We consider two cases.

First case: Tr(αr+r
′
) �= 0. Then Tr(αr+r

′
) = εν(r+r

′ ) so that (7.55) becomes

[C(r, r′)]s,s′ = ωεs+s′+ν(r+r′ )
.

On the other hand, since S−�
p−1 = (δi−�, j )

p−2
i, j=0, we have

[C(p)S−ν(r+r′ )
p−1 ]s,s′ =

p−1∑
t=0

ωεs+t δt−ν(r+r′ ),s′ = ωεs+s′+ν(r+r′ )
.

Second case: Tr(αr+r
′
) = 0. Then, bymeans of (7.60), equation (7.55) becomes

C(r, r′) =

⎛⎜⎜⎜⎝
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎞⎟⎟⎟⎠ .
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232 Character theory of finite fields

Moreover, since
∑

x∈Fp ω
x =∑p−1

k=0 ω
k = ωp−1

ω−1 = 0, we have

[C(p)S−∞
p−1]s,s′ = −

p−2∑
t=0

ωεs+t = −
∑
x∈F∗

p

ωx = 1.

It follows that

C(p)S−∞
p−1 =

⎛⎜⎜⎜⎝
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎞⎟⎟⎟⎠ = C(r, r′).

�
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8

Graphs and their products

This chapter is an introduction to (finite) graph theory with an emphasis on
spectral analysis of k-regular graphs. In Section 8.2 we study strongly regu-
lar graphs with a description of the celebrated Petersen graph and the Clebsch
graph: the latter, in particular, is also described in terms of number theory over
the Galois field F16. In the subsequent sections, we describe bipartite graphs
as well as three basic examples (the complete graph, the hypercube, and the
discrete circle) based on the theories developed in Chapter 4. Other explicit
examples can be found in Section 8.8, where we give a detailed exposition of
various notions of graph products, culminatingwith the study of the lamplighter
graph, of the replacement product, and of the zig-zag product, in Section 8.11,
Section 8.12, and Section 8.13, respectively. See also our first monograph [29].
In Chapter 9 we shall focus on more advanced topics such as the Alon-Milman-
Dodziuk theorem, the Alon-Boppana-Serre theorem, and explicit constructions
of expanders.

8.1 Graphs and their adjacency matrix

An undirected graph is a triple G = (X,E, r), where X is a nonempty set of
vertices, E is a set of edges, and r : E → P (X ) is a map from the edge set into
the power set ofX such that 0 < |r(e)| ≤ 2 (as usual, | · | denotes cardinality). If
e ∈ E satisfies r(e) = {x}, then we say that e is a loop based at x. We denote by
E0 = {e ∈ E : |r(e)| = 1} the set of all loops of G and denote byE1 = E \ E0 =
{e ∈ E : |r(e)| = 2} the set of remaining edges. Moreover, if there exist distinct
edges e, e′ ∈ E such that r(e) = r(e′), equivalently, if the map r is not injective,
we say that the graph G has multiple edges. On the other hand, if the map r is
injective, that is, G has no multiple edges, one says that the graph is simple.

235
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236 Graphs and their products

Thus, a simple (undirected) graph without loops can be regarded just as a pair
G = (X,E ), where X is the set of vertices and any edge e ∈ E is a two-subset
{x, y} of (distinct) elements of X (we identify e with r(e)).
A directed graph is a triple G = (X,E,�r), where X is a set of vertices, E is a

set of (oriented) edges, and�r : E → X × X , called an orientation of G, is a map
from the edge set into the Cartesian square of X . Writing �r(e) = (e−, e+), we
say that e− (respectively e+) is the initial (respectively terminal) vertex of the
oriented edge e ∈ E. Note that a directed graph G = (X,E,�r) can be viewed as
an undirected graph G = (X,E, r) by setting

r(e) = {e−, e+} (8.1)

for all e ∈ E. Clearly, e ∈ E is a loop if and only if e− = e+. Conversely, given
an undirected graph G = (X,E, r), for every e ∈ E1 we may arbitrarily choose
a labeling of the two elements in r(e) and write r(e) = {e−, e+}. This defines
an orientation �r : E → X × X by setting

�r(e) =
{
(x, x) if e ∈ E0 and r(e) = {x}
(e−, e+) if e ∈ E1 and r(e) = {e−, e+}.

Note that there are exactly 2|E1| different orientations on G. Moreover, the
undirected graph associated (via (8.1)) with the newly defined directed graph
G = (X,E,�r) is the original undirected graph G = (X,E, r).
From now on, unless otherwise specified, all graphs will be undirected.
Let G = (X,E, r) be an (undirected) graph.
Two vertices x and y are called neighbors or adjacent, and we write x ∼ y,

provided there exists e ∈ E such that r(e) = {x, y}. We then say that the edge e
joins the vertices x and y. Given a vertex x ∈ X , we denote by

N (x) = {y ∈ X : y ∼ x} ⊆ X

the neighborhood of x, by Ex = {e ∈ E : r(e) � x} the set of edges incident to
x, and by deg x = |Ex|, the number of edges incident to x, called the degree of
x. Note that a vertex x ∈ V belongs to N (x) if and only if there exists a loop
e ∈ E based at x (that is, r(e) = {x}). When deg(·) = k is constant, we say that
the graph is regular of degree k, or k-regular. Note that if G is simple then
|N (x)| = |Ex| = deg x.
If X and E are both finite we say that G is finite. Note that a simple graph

G = (X,E ) without loops is finite if (and only if) X is finite.
Let F = (Y,F, s) be another (undirected) graph.
F is called a subgraph of G provided Y ⊆ X , F ⊆ E, and r|F = s.
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8.1 Graphs and their adjacency matrix 237

F is said to be isomorphic to G if there exists a pair� = (φ, ϕ) of bijections
φ : X → Y and ϕ : E → F such that

s(ϕ(e)) = φ(r(e))

for all e ∈ E. One then writes � : G → F and calls it an isomorphism of the
graphs G and F . Moreover, if G and F are both directed, then � = (φ, ϕ) is a
(directed graphs) isomorphism of G and F if

(φ(e−), φ(e+)) = (ϕ(e)−, ϕ(e)+)

for all e ∈ E.
A (finite) path in G is a sequence p = (x0, e1, x1, e2, x2 . . . , em, xm), with

x0, x1, . . . , xm ∈ X and e1, e2, . . . , em ∈ E such that r(ei) = {xi−1, xi} for all
i = 1, . . . ,m. The vertices x0 and xm are called the initial and terminal ver-
tices of p, respectively, and one says that p connects them. The nonnega-
tive number |p| = m is called the length of the path p. When m = 0 one
calls p = (x0) the trivial path based at x0. If x0 = xm one says that the
path is closed and p is also called a cycle. The inverse of a path p =
(x0, e1, x1, e2, x2 . . . , em, xm) is the path p−1 = (xm, em, xm−1, . . . , x1, e1, x0);
note that |p−1| = |p|. Given two paths p = (x0, e1, x1, e2, x2 . . . , em, xm) and
p′ = (x′0, e

′
1, x

′
1, e

′
2, x

′
2 . . . , e

′
n, x

′
n) with xm = x′0 we define their composition

as the path p · p′ = (x0, e1, x1, e2, x2 . . . , em, xm = x′0, e
′
1, x

′
1, e

′
2, x

′
2 . . . , e

′
n, x

′
n);

note that |p · p′| = |p| + |p′|.
For x, y ∈ X we write x ≈ y if there exists a path connecting them: clearly,≈

is an equivalence relation on the set X of vertices of G. The equivalence classes
are called the connected components of G. One says that G is connected if there
exists a unique connected component, in other words, if any two vertices in X
are connected by a path. If this is the case, the geodesic distance of two vertices
x, y ∈ X , denoted d(x, y), is the minimal length of a path connecting them.
The diameter of a finite connected graph G, denoted D(G), is the maximal

distance of two vertices in G, in formulæ,

D(G) = max{d(x, y) : x, y ∈ X}.
Proposition 8.1.1 Let G = (X,E, r) be a finite connected k-regular graph.
Then

D(G) ≥ logk[(k − 1)|X | + 1]− 1.

Proof. Fix a base vertex x0 ∈ X and set Xj = {x ∈ X : d(x, x0) = j} for j =
0, 1, 2, . . . ,D = D(G) (note that we may have Xj0 = ∅ for some 0 < j0 ≤ D;
then Xj = ∅ for all j0 ≤ j ≤ D). We have |X0| = |{x0}| = 1 and, since G is
k-regular, |X1| ≤ k and, recursively, |Xj| ≤ |Xj−1|(k − 1) ≤ k(k − 1) j−1 < k j,
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238 Graphs and their products

for j ≥ 2. Indeed, each y ∈ Xj is joined with at least one vertex x ∈ Xj−1 and, in
turn, each such x ∈ Xj−1 is joined with at most k − 1 vertices in Xj. It follows
that

|X | = |X0 % X1 % X2 % · · · % XD| ≤ 1+ k + k2 + · · · + kD = kD+1 − 1

k − 1
.

We deduce that kD+1 ≥ (k − 1)|X | + 1 and, finally, D ≥ logk[(k − 1)|X | +
1]− 1. �

Corollary 8.1.2 Let (Gn = (Xn,En, rn))n∈N be a family of finite connected k-
regular graphs such that |Xn| →

n→∞ ∞. Then also D(Xn) →
n→∞ ∞. �

Let G = (X,E, r) be a finite graph. The adjacency matrix associated with G
is the X × X-matrix A = (A(x, y))x,y∈X defined by setting

A(x, y) = |r−1({x, y})|
for all x, y ∈ X . In other words, if x �= ywe have A(x, y) = |Ex ∩ Ey| equals the
number (possibly 0) of edges incident to both x and y, and A(x, x) is the number
(possibly 0) of loops based at x. Note that A is symmetric (A(x, y) = A(y, x) for
all x, y ∈ X), that A(x, y) �= 0 if and only if x ∼ y, and deg x =∑y∈X A(x, y).
Thus, G is simple (respectively without loops) if and only if A(x, y) ∈ {0, 1} for
all x, y ∈ X (respectively A(x, x) = 0 for all x ∈ X). Often, we shall identify the
matrix A with the corresponding linear operator A : L(X ) → L(X ), called the
adjacency operator associated with G, defined by setting

[A f ](x) =
∑
y∈Y

A(x, y) f (y) =
∑
y∈Y

A(y, x) f (y),

for all f ∈ L(X ) and x ∈ X . Note that Aδx =
∑

y∼x A(x, y)δy, for all x ∈ X .
Moreover, as A is symmetric, it is diagonalizable and its spectrum σ (A) =

{μ ∈ C : A− μI is not invertible} (that is, the set of its eigenvalues) is real
(σ (A) ⊆ R), and there exists an orthogonal basis of L(X ) made up of real-
valued eigenfunctions (see [91]). One refers to σ (A) as to the spectrum of the
graph G.

Remark 8.1.3 Warning that if G = (X,E,�r) is directed, in this book we
define its adjacency matrix as the adjacency matrix A of the associated undi-
rected graph G = (X,E, r) (cf. (8.1)). In other contexts, one sets A(x, y) =
|(�r)−1(x, y)| for all x, y ∈ X and therefore, in general, A is not symmetric. On
the contrary, in our setting, A is always symmetric!

We recall (cf. Proposition 2.1.1) thatW0 ≤ L(X ) is the space of constant func-
tions on X and W1 = { f ∈ L(X ) :

∑
x∈X f (x) = 0}, so that L(X ) =W0

⊕
W1

(cf. (2.4)).
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8.1 Graphs and their adjacency matrix 239

Proposition 8.1.4 LetG = (X,E, r) be a finite graph, with adjacency matrix A.
If G is k-regular, then the decomposition L(X ) =W0 ⊕W1 is A-invariant and
W0 is the eigenspace corresponding to the eigenvalue k. Conversely, if W0 is
an eigenspace of A, then the graph is regular and the degree is given by the
corresponding eigenvalue.

Proof. Suppose first that G is k-regular and let us show thatW0 andW1 are A-
invariant. Let f0 ∈W0 and x ∈ X . Then

[A f0](x) =
∑
y∈X

A(x, y) f0(y) =
∑
y∈X

A(x, y) f0(x) = deg x f0(x), (8.2)

showing that A f0 = k f0. Similarly, if f1 ∈W1 we have∑
x∈X

[A f1](x) =
∑
x∈X

∑
y∈X

A(x, y) f1(y)

=
∑
y∈X

∑
x∈X

A(x, y) f1(y)

(since
∑

x∈X A(x, y) = deg y = k) = k
∑
y∈X

f1(y) = 0,

showing that A f1 ∈W1.
Conversely, assume that a nontrivial constant function f0 ≡ c is an eigen-

vector of A, with eigenvalue α. Then, as in (8.2), [A f0](x) = (deg x)c, and as
A f0 = α f0 ≡ αc we deduce that deg x = α for all x ∈ X . �

Proposition 8.1.5 Let G = (X,E, r) be a finite k-regular graph. Let μ0 ≥
μ1 ≥ · · · ≥ μ|X |−1 be the eigenvalues of the adjacency matrix A of G. Then

(i) k is an eigenvalue and its multiplicity equals the number of connected
components of G; in particular, G is connected if and only if the multi-
plicity of k is equal to 1;

(ii) |μi| ≤ k for i = 0, 1, . . . , |X | − 1, so that μ0 = k.

Proof.

(i) It follows from (8.2) that if f ∈ L(X ) is constant on each connected
component of G, then A f = k f . This shows that k is an eigenvalue of
A and that its multiplicity is, at least, the number of connected compo-
nents of G (the characteristic functions of these connected components
are, clearly, linearly independent). Conversely, suppose that A f = k f
with f ∈ L(X ) non-identically zero and real-valued. Let X0 ⊂ X be a
connected component of G and suppose that | f |, restricted to X0, attains
its maximum at the point x0 ∈ X0, i.e. | f (x0)| ≥ | f (x)| for all x ∈ X0.We
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240 Graphs and their products

may suppose, up to passing to − f , that f (x0) > 0 so that f (x0) ≥ f (x)
for all x ∈ X0. Then∑
x∈X0

A(x0, x)[ f (x0)− f (x)] =
∑
x∈X0

A(x0, x) f (x0)−
∑
x∈X0

A(x0, x) f (x)

= k f (x0)− k f (x0) = 0.

Since A(x0, x) ≥ 0 and f (x0)− f (x) ≥ 0 for all x ∈ X0, we deduce that
f (x) = f (x0) for all x ∼ x0. By induction on the geodesic distance from
x0, we deduce that f (x) = f (x0) for all x ∈ X0, that is, f is constant on
X0. This shows that f is constant on the connected components of X .
In particular, the multiplicity of k is at most, and therefore equal to, the
number of connected components of G.

(ii) Let μ be an eigenvalue and denote by f ∈ L(X ) a corresponding (non-
trivial) real-valued eigenfunction. Suppose that | f | attains its maximum
at the point x0 ∈ X , i.e. | f (x0)| ≥ | f (x)| for all x ∈ X . As before, up to
passing to − f , we may assume that f (x0) > 0 so that f (x0) ≥ | f (x)|
for all x ∈ X . Then we have

|μ| f (x0) = |μ f (x0)| = |
∑
x∈X

A(x0, x) f (x)|

≤
∑
x∈X

A(x0, x)| f (x)|

≤
(∑
x∈X

A(x0, x)

)
f (x0),

= k f (x0),

so that |μ| ≤ k. �

Proposition 8.1.6 Let G = (X,E, r) be a finite graph and denote by A =
(A(x, y))x,y∈X the associated adjacency matrix. Then, denoting by A� =(
A(�)(x, y)

)
x,y∈X , � ∈ N, the �-th power of A (with the convention that A0 = I,

the identity matrix; cf. Section 2.1), we have

A(�)(x, y) = the number of paths of length � in G connecting x and y

for all x, y ∈ X.

Proof. Let x, y ∈ X . If � = 0 the statement follows from the fact that there is
exactly one (respectively, no) path of length 0, the trivial path at x, connecting
x and y for x = y (respectively, x �= y). Now, every path

p(x, y) = (x0 = x, e1, x1, e2, x2, . . . , e�, x� = z, e�+1, x�+1 = y)
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8.2 Strongly regular graphs 241

of length �+ 1 in G connecting x to y is the composition of the path p(x, z) =
(x0 = x, e1, x1, e2, x2, . . . , e�, x� = z) of length � connecting x to z, a neighbor
of y, and the edge e�+1 ≡ (z, e�+1, y). By induction, the number of such paths
p(x, z) equals A(�)(x, z), and the number of edges e ≡ (z, e, y) equals, by defini-
tion, A(z, y). As a consequence, the number of paths of length �+ 1 connecting
x to y is given by∑

e∈E:
r(e)={z,y}

A(�)(x, z) =
∑
z∈X

A(�)(x, z)A(z, y) = A(�+1)(x, y).

�

8.2 Strongly regular graphs

This section contains a series of exercises on a remarkable family of regular
graphs.

Definition 8.2.1 A finite simple graph G = (X,E ) without loops is called
strongly regular of parameters (v, k, λ, μ) if

(i) it is regular of degree k and |X | = v;
(ii) for all {x, y} ∈ E there exist exactly λ vertices adjacent to both x and y;
(iii) for all x, y ∈ X with x �= y and {x, y} /∈ E there exist exactly μ vertices

adjacent to both x and y.

Note that, in the above definition, 0 ≤ λ ≤ k − 1 and 0 ≤ μ ≤ k. Moreover,
if μ > 0 then G is connected.

Exercise 8.2.2 Let G = (X,E ) be a finite simple graph without loops and set

|X | = v . Denote by A its adjacency matrix and set J =

⎛⎜⎝1 · · · 1
...

...
1 · · · 1

⎞⎟⎠ (the

v × v matrix with all 1s). Show that G is strongly regular with parameters
(v, k, λ, μ) if and only if A satisfies the equations:

AJ = kJ (8.3)

and

A2 + (μ− λ)A+ (μ− k)I = μJ. (8.4)

Hint: (8.3) is equivalent to k-regularity; (8.4) may be written in the form

A2 = kI + λA+ μ(J − I − A)

and one may use Proposition 8.1.6.
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242 Graphs and their products

Exercise 8.2.3 Let G be a connected, strongly regular graph with parameters
(v, k, λ, μ).

(1) Show that the adjacency matrix A of G has exactly three eigenvalues,
namely:
� k with multiplicity 1,
� θ = λ−μ+√

�

2 ,
� τ = λ−μ−√

�

2 ,
where � = (λ− μ)2 + 4(k − μ).
Hint: use Proposition 8.1.6; apply (8.4) and use the fact that nonconstant
eigenvectors f of A satisfy J f = 0.

(2) Show that the multiplicities of θ and τ are

mθ = 1

2

[
(v − 1)− 2k + (v − 1)(λ− μ)√

�

]

mτ = 1

2

[
(v − 1)+ 2k + (v − 1)(λ− μ)√

�

]
.

Hint: mθ + mτ = v − 1 and 0 = Tr(A) = θmθ + τmτ + k.

Exercise 8.2.4 Let m ≥ 4 and denote by X the set of all 2-subsets of
{1, 2, . . . ,m}. The triangular graph T (m) is the finite graph with vertex set
X and such that two distinct vertices are adjacent if they are not disjoint.
Show that T (m) is strongly regular with parameters v = (m2), k = 2(m− 2),

λ = m− 2, and μ = 4.

Exercise 8.2.5 LetG = (X,E ) be a finite simple graphwithout loops. The com-
plement of G is the graph G with vertex set X and edge set E = {{x, y} : x, y ∈
X, x �= y, {x, y} /∈ E}.

(1) Show that if G is strongly regular with parameters (v, k, λ, μ), then G
(which is not necessarily connected!) is strongly regular with parame-
ters (v, v − k − 1, v − 2k + μ− 2, v − 2k + λ).

(2) From (1) deduce that the parameters of a strongly regular graph satisfy
the inequality v − 2k + μ− 2 ≥ 0.

(3) Suppose that G is strongly regular. Show that G and G are both con-
nected if and only if 0 < μ < k < v − 1. If this is the case, one says
that G is primitive.
Hint: show that μ = 0 implies λ = k − 1 and write μ < k in the form
v − 2k + μ− 2 < (v − k − 1)− 1.
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8.2 Strongly regular graphs 243

The complement of the triangle graph T (5) (see Exercise 8.2.4) is the cele-
brated Petersen graph (see Figure 8.1). The monograph [73] is entirely devoted
to this graph, which turned out to serve as a counterexample to several impor-
tant conjectures.

{4,5}

{1,4}

{1,3}

{2,5}

{2,3}

{1,2}

{3,5}

{2,4}

{3,4}

{1,5}

Figure 8.1. The Petersen graph.

Exercise 8.2.6 The Clebsch graph (see Figure 8.2) is defined as follows. The
vertex set X consists of all subsets of even cardinality of {1, 2, 3, 4, 5}. More-
over, two vertices A,B ∈ X are adjacent if |A& B| = 4 (here & denotes the
symmetric difference of two sets). Show that it is a (16, 5, 0, 2) strongly regu-
lar graph.

In the following, we shall present another description of the Clebsch graph
by using methods of number theory. An edge coloring of a graph G = (X,E )
is a map c : E → C, where C is a set of colors. A monochromatic triangle in
G is a set of three vertices x, y, z such that {x, y}, {y, z}, {z, x} ∈ E and have the
same color. In the following exercise, we construct a very important coloring
of the complete graph K16, due to Greenwood and Gleason [68].

Exercise 8.2.7 Let F16[x] denote the ring of polynomials in one indeterminate
over the field F16.

(1) Show that

x15 + 1 = (x4 + x+ 1)(x11 + x8 + x7 + x5 + x3 + x2 + x+ 1).

(2) Show that the polynomial p(x) = x4 + x+ 1 is irreducible over F2. Let
α ∈ F∗

16 be a root of p. Show thatα is a generator ofF∗
16 and deduce from
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∅

45

14

13

25

23

1235

2345

1245

1345

1234

12

35

24

34

15

Figure 8.2. The Clebsch graph: for 1 ≤ i < j < h < k ≤ 5 the string i j (respectively
i jhk) indicates the subset {i, j} (respectively {i, j, h, k, }). See also Figure 8.3.

Proposition 6.2.5 that every element ofF16 may be uniquely represented
in the form

ε0 + ε1α + ε2α
2 + ε3α

3, (8.5)

where εi ∈ {0, 1} for 0 ≤ i ≤ 3.
(3) Let α be as in (2). Represent each element αk, k = 0, 1, . . . , 14, in the

form (8.5) and show that the five cubes inF∗
16 coincide with the elements

1, α3, α3 + α2, α3 + α, and α3 + α2 + α + 1.

Also show that the sum of two cubes in F∗
16 is not a cube.

Hint: for instance, 1+ α3 = α14 in F∗
16.

(4) Consider the elements of F16 as the vertices of K16 (the complete graph
on 16 vertices (see Section 8.4)). Color the edges ofK16 in the following
way: if a, b ∈ F16, a �= b and a− b = αm, then
� if m ≡ 0 mod 3 (i.e. a− b is a cube) the color of {a, b} is red;
� if m ≡ 1 mod 3 the color of {a, b} is blue;
� if m ≡ 2 mod 3 the color of {a, b} is green.
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0

x7

x

x10

x13

x4

x9

x3

x12

x6

1

x2

x11

x5

x8

x14

Figure 8.3. The Clebsch graph (cf. Figure 8.2): now the vertices are identified with
the elements of F16. Moreover, F16 = {0, 1, x, x2, x3, . . . , x14}, where x is a generator

of the cyclic group F∗
16.

Show that, with this coloring, K16 does not contain a monochromatic
triangle.
Hint: show that if it contains a monochromatic triangle then it contains
a red monochromatic triangle and then apply (3).

(5) Show that the graph (F16,E ), where E is the set of all red edges in (4),
is isomorphic to the Clebsch graph (cf. Exercise 8.2.6).

Another important example of a strongly regular graph, namely the Paley
graph, will be discussed in Exercise 9.4.5. For more on strongly regular graphs
we refer to the monographs by van Lint and Wilson [97] and Godsil and Royle
[65].

8.3 Bipartite graphs

Definition 8.3.1 A graph G = (X,E, r) is called bipartite if there exists a non-
trivial partition X = X0

∐
X1 of the set of vertices such that every edge e ∈ E

joins a (unique) vertex in X0 with a (unique) vertex in X1 (that is, |r(e) ∩ X0| =
1 = |r(e) ∩ X1| for all e ∈ E). The sets X0 and X1 are called partite sets (cf.
Figure 8.4).
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Note that if a bipartite graph is connected, then the (nontrivial) partition of
the set of vertices is unique. Moreover, any bipartite graph has necessarily no
loops.

•

•

•

•

•

y

x

z

v

u

Figure 8.4. The bipartite graph G = (X,E ) with vertex set X = X0
∐
X1, where

X0 = {x, y} and X1 = {u, v, z}, and edge set E = {{x, u}, {x, v}, {y, v}, {y, z}}.

Exercise 8.3.2 Let G = (X,E, r) be a graph. Show that the following condi-
tions are equivalent:

(a) G is bipartite;
(b) G is bicolorable, i.e. there exists a map φ : X → {0, 1} such that x ∼ y

infers φ(x) �= φ(y);
(c) G does not contain cycles of odd length.

Exercise 8.3.3 Let G = (X,E, r) be a finite bipartite graph with X = X0
∐
X1

its partite sets partition. Consider the decomposition L(X ) = L(X0)⊕ L(X1).
Show that if A denotes the adjacency matrix of G then we have:

(1) A [L(X0)] ⊆ L(X1) (respectively A [L(X1)] ⊆ L(X0));
(2) define ε : L(X ) → L(X ) (respectively τ : L(X ) → L(X )) by setting

[ε f ](x) =
{
f (x) if x ∈ X0

− f (x) if x ∈ X1
(respectively, τ f = −ε f )

for all f ∈ L(X ) and x ∈ X . Show that (i) Aε = τA, (ii) ε2 = τ 2 = I,
and (iii) τε = ετ = −I.

The following provides another example of a structural (geometrical) prop-
erty that reflects on the spectral theory of the graph.

Proposition 8.3.4 Let G = (X,E, r) be a finite connected k-regular graph and
denote by A the corresponding adjacency matrix. Then the following conditions
are equivalent:
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(a) G is bipartite;
(b) the spectrum of A is symmetric with respect to 0;
(c) −k is an eigenvalue of A.

Proof. Suppose that G is bipartite and let X = X0
∐
X1 be the corresponding

partite sets partition. Let λ ∈ σ (A) and denote by f ∈ L(X ) a corresponding
eigenfunction, so that, A f = λ f . Consider the function g= ε f ∈ L(X ) (cf.
Exercise 8.3.3). Then we have (cf. Exercise 8.3.3):

Ag= Aε f = τA f = λτ f = −λε f = −λg.

It follows that−λ is an eigenvalue (with eigenfunction g). This shows that σ (A)
is symmetric with respect to 0, proving the implication (a)⇒ (b).

(b)⇒ (c) follows immediately from Proposition 8.1.5.(i).
(c)⇒ (a): suppose that A f = −k f with f ∈ L(X ) nontrivial and real-valued.

Denote by x0 ∈ X a maximum point for | f |; then, up to switching f to − f ,
we may suppose that f (x0) > 0. Then the equality −k f (x0) = [A f ](x0) =∑

y∈X A(x0, y) f (y) may be rewritten
∑

y:y∼x0 A(x0, y)[ f (x0)+ f (y)] = 0. Since
f (x0)+ f (y) ≥ 0, we deduce f (y) = − f (x0) for all y ∼ x0. Set Xj = {y ∈
X : f (y) = (−1) j f (x0)} for j = 0, 1. Arguing as in the proof of Proposition
8.1.5.(i), and using induction on the geodesic distance from x0, we deduce
that indeed X = X0

∐
X1 is a partite set decomposition, showing that X is

bipartite. �

Exercise 8.3.5 The complete bipartite graph Kn,m = (Xn,m,En,m) on n+ m
vertices, n,m ≥ 1, is the (finite, simple, and without loops) graph whose vertex
set Xn,m = X % Y is the disjoint union of a set X of cardinality n, and another
set Y of cardinality m, and edge set En,m = {{x, y} : x ∈ X, y ∈ Y }. Show that
the adjacency matrix of Kn,m has the following eigenvalues:

� 0 with multiplicity n+ m− 2
�

√
nm with multiplicity 1

� −√
nm with multiplicity 1.

8.4 The complete graph

Definition 8.4.1 The complete graph on n vertices, n ≥ 1, is the (finite, simple,
and without loops) graph Kn = (Xn,En) with vertex set Xn = {1, 2, . . . , n} and
edge set En = {{x, y} : x, y ∈ Xn, x �= y}, that is, two vertices are connected if
and only if they are distinct (cf. Figure 8.5).
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•

•

• •

•

• •

••

• •

• •
•

Figure 8.5. The complete graphs K2, K3, K4, and K5.

Note that Kn is regular: indeed, each vertex has degree n− 1.
The adjacency matrix A of Kn is given by

A(x, y) =
{
1 if x �= y

0 if x = y.

The graph Kn is always connected and it is bipartite if and only if n = 2.
Moreover (cf. Proposition 8.1.4), settingW0 = { f ∈ L(Xn) : f is constant} and
W1 = { f ∈ L(Xn) :

∑
y∈Xn f (y) = 0}, we have, for f ∈W0,

[A f ](x) =
∑
y∈Xn

A(x, y) f (y) = (n− 1) f (x)

and, for f ∈W1,

[A f ](x) =
∑
y∈Xn

A(x, y) f (y) =
∑
y∈Xn
y�=x

f (y) =
⎛⎝∑
y∈Xn

f (y)

⎞⎠− f (x) = − f (x)

for all x ∈ Xn.
We deduce that (cf. Proposition 8.1.4):

� W0 is an eigenspace for A corresponding to the eigenvalue (n− 1), whose
multiplicity is equal to dimW0 = 1;

� W1 is an eigenspace for A corresponding to the eigenvalue −1, whose multi-
plicity is equal to dimW1 = n− 1.

8.5 The hypercube

Definition 8.5.1 The n-dimensional hypercube, n ∈ N, is the (finite, simple,
and without loops) graph Qn = (Xn,En) with vertex set Xn = {0, 1}n and edge
set En = {{x, y} : d(x, y) = 1}, where

d(x, y) = |{i : xi �= yi, 1 ≤ i ≤ n}|
is the Hamming distance of x= (x1, x2, . . . , xn) and y= (y1, y2, . . . , yn) ∈ Xn
(cf. Figure 8.6).
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•

•

•

••

•

• •

000 100

010 110

001 101

011 111

Figure 8.6. The 3-dimensional hypercube Q3.

It is clear from the definition that the adjacency matrix A = (A(x, y))x,y∈Xn of
Qn is given by

A(x, y) =
{
1 if d(x, y) = 1

0 otherwise,

for all x, y ∈ Xn.
We observe that Xn, equipped with the addition operation (that is, (x+ y)i =

xi + yi mod 2, for all x, y ∈ Xn and 1 ≤ i ≤ n), is an Abelian group, with iden-
tity element 0 = (0, 0, . . . , 0), isomorphic to Zn

2. The characters (cf. Defini-
tion 2.3.1) of such a group are given by (cf. Proposition 2.3.3) the functions
χx ∈ L(Xn), x ∈ Xn, defined by setting

χx(y) = (−1)x·y (8.6)

for all y ∈ Xn, where x · y =
∑n

i=1 xiyi.

Exercise 8.5.2 Show that A ∈ End(L(Xn)) satisfies the equivalent conditions in
Theorem 2.4.10 (warning: the notation has changed), namely: A is Zn

2-invariant
and it is the convolution operator with kernel h ∈ L(Xn) defined by

h(x) =
{
1 if d(x, 0) = 1

0 otherwise,
(8.7)

for all x ∈ Xn, so that its eigenfunctions are exactly the characters χx, x ∈ Zn
2.

For x = (x1, x2, . . . , xn) ∈ Xn we define w(x) = |{ j : x j = 1}| the weight of
x. Note that d(x, y) = w(x− y) for all x, y ∈ Xn.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.009
https://www.cambridge.org/core


250 Graphs and their products

Keeping in mind Corollary 2.4.11, the following provides a complete list of
the eigenvalues of A.

Proposition 8.5.3 The Fourier transform of the function h ∈ L(Xn) in (8.7) is
given by

ĥ(x) = n− 2w(x) (8.8)

for all x ∈ Xn.

Proof. Let x ∈ Xn. Then we have

ĥ(x) = 〈h, χx〉
(by (8.6)) =

∑
y∈Xn

h(y)(−1)x·y

(by (8.7)) =
n∑
j=1

(−1)x j

=
∑
j:x j=1

(−1)x j +
∑
j:x j=0

(−1)x j

= −w(x)+ (n− w(x))

= n− 2w(x). �

Note that, according to Proposition 8.3.4, the spectrum of A is symmetric
with respect to 0, as Qn is bipartite: its partite set partition is Xn = {x ∈ Xn :
w(x) is odd}∐{x ∈ Xn : w(x) is even}.
We now determine the multiplicities of the eigenvalues (8.8) of A. It is clear

that, for 0 ≤ k ≤ n, the eigenspace associated with the eigenvalue n− 2k is the
subspace

Vk = 〈χx : w(x) = k〉 ≤ L(Xn).

Moreover, its dimension is given by dim(Vk ) = |{x ∈ Xn : w(x) = k}| = (nk).
8.6 The discrete circle

Definition 8.6.1 The discrete circle (or cycle graph) on n ≥ 3 vertices, is the
(finite, simple, and without loops) graph Cn = (Xn,En), where Xn = Zn and
x, y ∈ Xn are adjacent if x− y = ±1 (cf. Figure 8.7).
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• •

•

••

•

3 2

1

0n− 1

n− 2

Figure 8.7. The discrete circleCn.

Note that Cn is 2-regular and it is bipartite if and only if n is even. The asso-
ciated adjacency matrix is circulant (see Exercise 2.4.16) and is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0 1
1 0 1 0 · · · 0 0 0
0 1 0 1 · · · 0 0 0
...

. . .
...

0 0 0 0 · · · 1 0 1
1 0 0 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Exercise 8.6.2 Show that A ∈ End(L(Xn)) satisfies the equivalent conditions in
Theorem 2.4.10 (warning: the notation has changed), namely: A is Zn-invariant
and it is the convolution operator with kernel h = δ1 + δ−1 ∈ L(Xn), so that its
eigenfunctions are exactly the characters χx, x ∈ Zn.

Recall (cf. Definition 2.2.1) that the characters of Zn are the functions χx,
x ∈ Zn, defined by

χx(y) = ωxy

for all y ∈ Zn, where ω = exp( 2π in ). Moreover (cf. Exercise 2.4.4), the Fourier
transform of a Dirac δx, x ∈ Zn, is given by δ̂x(y) ≡ δ̂x(χy) = χy(x) for all y ∈
Zn. By linearity we have, for all y ∈ Zn,

ĥ(y) = δ̂1(y)+ δ̂−1(y) = χ1(y)+ χ−1(y)

= exp(−2πyi

n
)+ exp(

2πyi

n
)

= 2 cos(
2πy

n
).
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We remark that ĥ(y) = ĥ(y′), y, y′ ∈ Zn, if and only if y = ±y′. From Corol-
lary 2.4.11 and the above remark, we deduce that the eigenvalues of A are
exactly the numbers

2 cos(
2πy

n
), y = 0, 1, . . . ,

[n
2

]
. (8.9)

We now determine their multiplicities, arguing separately on the parity of n.
If n is even, then the eigenvalues (8.9) corresponding to y = 0 and y = [ n2 ] =

n
2 (these are 2 and −2, respectively) have multiplicity one, and all others have
multiplicity two. Note that, according to Proposition 8.3.4, the spectrum of A
is symmetric with respect to 0 as, in this case, Cn is bipartite.
If n is odd, then the eigenvalue (8.9) corresponding to y = 0 (namely, 2) has

multiplicity one, and all others have multiplicity two. Moreover, in this case,
Cn is not bipartite.

Exercise 8.6.3 (The 2-regular segment) For n ≥ 2 let Gn = (Xn,En, rn)
denote the simple graph (with loops!) where: Xn = {0, 1, 2, . . . , n− 1},
En = %n−2

i=0 {i, i+ 1} % {0} % {n− 1}, and rn : En → P (Xn) is the restriction to
En of the identity map on P (Xn). This is called the 2-regular segment on n ≥ 1
vertices (cf. Figure 8.8).

••••
0 1 2

•
n− 2 n− 1

Figure 8.8. The 2-regular segment Gn.

Show that the eigenvalues of Gn are

2 cos
kπ

n
, k = 0, 1, . . . , n− 1. (8.10)

Hint: see [29, Exercise A1.0.15] as well as the books by Feller [61] and Karlin
and Taylor [84].

8.7 Tensor products

In this section we introduce some notation and preliminary results that we shall
use both in the present chapter as well as in other parts of the book. For a similar
approach see also the beginning of [124, Chapter 5]. This section is in the same
spirit of Section 2.1 and contains some complements to that section. It is also
connected with Section 5.3, where the Kroncecker products of matrices are
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introduced, and it will be generalized in Section 5.3, where we study tensor
products of representations.
Let X andY be two finite sets. The tensor product of two functions f ∈ L(X )

and g ∈ L(Y ) is the function f ⊗ g ∈ L(X × Y ) defined by setting

( f ⊗ g)(x, y) = f (x)g(y) (8.11)

for all (x, y) ∈ X × Y . This way, we have the natural identification δ(x,y) = δx ⊗
δy, so that the standard basis of L(X × Y ) may be written in the form

{δx ⊗ δy : x ∈ X, y ∈ Y }.
It is also easy to check that, for f , f ′ ∈ L(X ) and g, g′ ∈ L(Y ), we have:

〈 f ⊗ g, f ′ ⊗ g′〉L(X×Y ) = 〈 f , f ′〉L(X ) · 〈g, g′〉L(Y ). (8.12)

If V is a subspace of L(X ) andW a subspace of L(Y ) then their tensor product
V ⊗W is the subspace of L(X × Y ) generated by all products f ⊗ gwith f ∈ V
and g ∈W .
Now suppose that A ∈ End(L(X )) and B ∈ End(L(Y )) are linear operators.

We define their tensor product A⊗ B ∈ End(L(X × Y )) by setting

(A⊗ B)( f ⊗ g) = A f ⊗ Bg (8.13)

for all f ∈ L(X ) and g ∈ L(Y ) (and then extending by linearity). It is easy to
check that this definition is well posed. Indeed, we now derive the matrix rep-
resenting A⊗ B. Suppose that (a(x, x′))x,x′∈X (respectively, (b(y, y′))y,y′∈Y ) is
the matrix representing A (respectively, B) with respect to the standard basis of
L(X ) (respectively, of L(Y )), see (2.2). Then, for all x, x′ ∈ X and y, y′ ∈ Y ,{

[A⊗ B] (δx′ ⊗ δy′ )
}
(x, y) = {(Aδx′ )⊗ (Bδy′ )

}
(x, y) (by (8.13))

= (Aδx′ )(x) · (Bδy′ )(y) (by (8.11))

= a(x, x′)b(y, y′) (by (2.1)).

This shows that the matrix representing A⊗ Bwith respect to the standard basis
of L(X × Y ) is (

a(x, x′)b(y, y′)
)
(x,y),(x′,y′ )∈X×Y.

It is easy to see that this is a coordinate-free description of the Kro-
necker product introduced in Section 5.3: just take X = {1, 2, . . . , n} and Y =
{1, 2, . . . ,m}. We leave it to the reader to check the details.
TheKronecker sum ofA andB is the operatorA⊗ IY + IX ⊗ B ∈ End(L(X ×

Y )); see the monograph by Lancaster and Tismenetsky [91]. Clearly, this sum
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is represented by the matrix(
a(x, x′)δy(y′)+ δx(x

′)b(y, y′)
)
(x,y),(x′,y′ )∈X×Y .

Now suppose that both A and B are symmetric, that is, a(x, x′) = a(x′, x) and
b(y, y′) = b(y′, y) for all x, x′ ∈ X and y, y′ ∈ Y . Then also A⊗ B and A⊗ IY +
IX ⊗ B are symmetric. Recall that symmetric matrices are diagonalizable and
have real eigenvalues. Let us denote by

� λ0, λ1, . . . , λ|X |−1 (respectively, μ0, μ1, . . . , μ|Y |−1) the eigenvalues of A
(respectively, of B);

� { f0, f1, . . . , f|X |−1} (respectively, {g0, g1, . . . , g|Y |−1}) an orthonormal basis
of (real-valued) eigenvectors for A (respectively, for B)

so that

A fi = λi fi and Bgj = μ jg j (8.14)

for all i = 0, 1, . . . , |X | − 1 and j = 0, 1, . . . , |Y | − 1. The proof of the follow-
ing proposition is immediate.

Proposition 8.7.1 The set { fi ⊗ gj : i = 0, 1, . . . , |X | − 1, j = 0, 1, . . . ,
|Y | − 1} is an orthonormal basis of (real-valued) eigenvectors for both
A⊗ B and A⊗ IY + IX ⊗ B. Moreover, for all i = 0, 1, . . . , |X | − 1 and
j = 0, 1, . . . , |Y | − 1,

[A⊗ B]( fi ⊗ gj ) = λiμ j( fi ⊗ gj )

and

[A⊗ IY + IX ⊗ B]( fi ⊗ gj ) = (λi + μ j )( fi ⊗ gj );

in particular, the eigenvalues of A⊗ B are the λiμ js while those of A⊗ IY +
IX ⊗ B are the (λi + μ j )s.

More generally, ifF is a two variable complex polynomial, then the eigenval-
ues ofF (A,B) (here the powers ofmatrices are the usual powers, while the other
products (respectively, sums) involved are tensor products (respectively, Kro-
necker sums)) are F (λi, μ j ), i = 0, 1, . . . , |X | − 1 and j = 0, 1, . . . , |Y | − 1
(this is Stephanov’s theorem [153]: see the monograph by Lancaster and Tis-
menetsky [91, Theorem 1, Section 12.2]).
Recall (cf. Proposition 2.1.1) that W0 is the space of constant functions on

X and W1 = { f ∈ L(X ) :
∑

x∈X f (x) = 0}. We also denote by JY the matrix
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( j(y, y′))y,y′∈Y with j(y, y′) = 1 for all y, y′ ∈ Y . This way, for f ∈ L(Y ) we have

JY f =
⎛⎝∑

y∈Y
f (y)

⎞⎠1Y . (8.15)

Proposition 8.7.2 Let A : L(X ) → L(X ) and B : L(Y ) → L(Y ) be two linear
operators and suppose that the decomposition L(Y ) =W0(Y )⊕W1(Y ) is B-
invariant. Then the decomposition

L(X × Y ) = [L(X )⊗W0(Y )]⊕ [L(X )⊗W1(Y )]

is invariant for A⊗ JY + IX ⊗ B. Moreover,

W1(X × Y ) = [W1(X )⊗W0(Y )]⊕ [L(X )⊗W1(Y )]. (8.16)

Proof. Just note thatW0(Y ) andW1(Y ) are JY -invariant (JY − IY is the adjacency
matrix of the complete graph with vertex set Y ; see Section 8.4). Also, (8.16)
follows immediately after observing thatW0(X × Y ) =W0(X )⊗W0(Y ). �

Following [128] we introduce a notation for the decomposition (8.16) (see
also the generalizations in [28] and [44]).
For f ∈W1(X × Y ) we define f ‖ ∈ L(X × Y ) by setting

f ‖(x, y) = 1

|Y |
∑
z∈Y

f (x, z)

for all (x, y) ∈ X × Y . Clearly, f ‖ does not depend on y ∈ Y , and f ‖ ∈W1(X )⊗
W0(Y ). Moreover, setting

f⊥ = f − f ‖,

so that

f = f ‖ + f⊥,

we have f⊥ ∈ L(X )⊗W1(Y ).
Another useful notation is the following. For f ∈ L(X × Y ) and x ∈ X we

define fx ∈ L(Y ) by setting

fx(y) = f (x, y)

for all y ∈ Y . Then
f =

∑
x∈X

δx ⊗ fx. (8.17)
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Moreover, setting

f ‖x = 1

|Y |JY fx and f⊥x = fx − f ‖x (8.18)

we have

f ‖ =
∑
x∈X

δx ⊗ f ‖x (8.19)

and

f⊥ =
∑
x∈X

δx ⊗ f⊥x . (8.20)

Finally, following again [128], we define C : L(X × Y ) → L(X ) by setting

[C f ](x) =
∑
y∈Y

f (x, y) (8.21)

for all f ∈ L(X × Y ) and x ∈ X . Note the similarity between f ‖ and C f : how-
ever, the former is a function of two variables (constant with respect to the
second variable), while the latter is a function of a single variable. Moreover,
f ‖ is normalized. Their relationship is expressed in (iv) of the following lemma.

Lemma 8.7.3

(i) C(δx ⊗ δy) = δx for all (x, y) ∈ X × Y;
(ii) C|W1(X×Y ) is a linear operator fromW1(X × Y ) onto W1(X );
(iii) (C f )⊗ 1Y = (IX ⊗ JY ) f for all f ∈ L(X × Y );
(iv) C f ‖ = C f for all f ∈ L(X × Y ).

Proof.

(i) For x, z ∈ X and y ∈ Y we have

[C(δx ⊗ δy)](z) =
∑
t∈Y

(δx ⊗ δy)(z, t ) = δx(z).

(ii) This is clear.
(iii) Using (8.17) we have, for all f ∈ L(X × Y ),

(IX ⊗ JY ) f = (IX ⊗ JY )
∑
x∈X

(δx ⊗ fx)

(by (8.15)) =
∑
x∈X

δx ⊗
⎡⎣⎛⎝∑

y∈Y
f (x, y)

⎞⎠ 1Y

⎤⎦
=
∑
x∈X

([C f ](x)δx)⊗ 1Y

= (C f )⊗ 1Y .
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8.7 Tensor products 257

(iv) It is a simple computation: for f ∈ L(X × Y ) and x ∈ X we have

[C f ‖](x) =
∑
y∈Y

f ‖(x, y) =
∑
y∈Y

1

|Y |
∑
z∈Y

f (x, z) =
∑
z∈Y

f (x, z) = [C f ](x).

�

Lemma 8.7.4 Let f ∈W1(X × Y ). Then

f ‖ = 1

|Y | (IX ⊗ JY ) f = 1

|Y | (C f )⊗ 1Y .

Proof. Using again (8.17) we have

(IX ⊗ JY ) f = (IX ⊗ JY )
∑
x∈X

δx ⊗ fx

=
∑
x∈X

δx ⊗ (JY fx)

(by (8.18)) = |Y |
∑
x∈X

δx ⊗ f ‖x

(by (8.19)) = |Y | f ‖.
The second equality follows from Lemma 8.7.3.(iii). �

We use the notation YX to denote the space of all maps f : X → Y and refer
to it as to an exponential set. Clearly,

YX = Y × Y × · · · × Y︸ ︷︷ ︸
|X | times

.

We introduce a coordinate-free description of the tensor product

L
(
YX
) = L(Y )⊗ L(Y )⊗ · · · ⊗ L(Y )︸ ︷︷ ︸

|X | times

.

Given φx ∈ L(Y ), x ∈ X , we define the tensor product of the family (φx)x∈X as
in (8.11) by setting: (⊗

x∈X
φx

)
( f ) =

∏
x∈X

φx( f (x)),

for all f ∈ YX . Analogously, given Ax ∈ End(L(Y )), x ∈ X , the tensor product
of the corresponding family of operators is defined as in (8.13) by setting:(⊗

x∈X
Ax

)(⊗
x∈X

φx

)
=
⊗
x∈X

Axφx, (8.22)
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258 Graphs and their products

for all tensors
(⊗

x∈X φx
)
(and then extended by linearity). Finally, note that for

every f ∈ YX we have

δ f =
⊗
x∈X

δ f (x). (8.23)

8.8 Cartesian, tensor, and lexicographic products of graphs

In this section we give a detailed definition of three basic notions of graph
products. See Remark 8.8.2 for a shorter description.
Recall that we use the symbol ∼ to denote the adjacency relation of vertices

in a given graph.

Definition 8.8.1 Let G = (X,E, r) and F = (Y,F, s) be two finite graphs.

(i) The Cartesian product of G and F is the graph G�F = (X ×
Y,E�F, r�s) where the edge set is

E�F= (E × Y ) % (X × F )

and r�s : E�F → P (X × Y ) is defined by setting

[r�s](e, y) = r(e)× {y} and [r�s](x, f ) = {x} × s( f )

for all e ∈ E, y ∈ Y , x ∈ X , and f ∈ F (cf. Figure 8.9).
Note that if G and F are both directed, then G�F is also directed

after defining the orientation �r��s : E�F → X × Y by setting

[�r��s](e, y) = ((e−, y), (e+, y)) and [�r��s](x, f ) = ((x, f−), (x, f+))

for all e ∈ E, y ∈ Y , x ∈ X , and f ∈ F .
Finally note that if G and F are both simple (respectively, without

loops), then G�F is also simple, with edge set

E�F=
{{
(x, y), (x′, y′)

} ⊆ X × Y :
[
x ∼ x′and y = y′

]
or
[
x = x′and y ∼ y′

]}
(respectively, without loops).

(ii) Equip G and F with arbitrary orientations �r and �s, respectively: dif-
ferent orientations will produce isomorphic graph products (exercise).
Also, we denote, as usual, by E0 ⊆ E (respectively, F0 ⊆ F) the set of
all loops of G (respectively, F) and E1 = E \ E0 (respectively, F1 =
F \ F0). Let also (E1 × F1)e and (E1 × F1)o be two disjoint copies of
the Cartesian product of the edge subsets E1 and F1 (“e” stands for even
and “o” for odd).
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Figure 8.9. An example of Cartesian product of graphs.

The tensor product of G and F is the (undirected) graph G ⊗ F =
(X × Y,E ⊗ F,�r ⊗ �s) where

E ⊗ F = ((E × F ) \ (E1 × F1)) % (E1 × F1)e % (E1 × F1)o

≡ (E0 × F0) % (E0 × F1) % (E1 × F0) % (E1 × F1)e % (E1 × F1)o

and

[�r ⊗ �s](e, f ) =

⎧⎪⎪⎨⎪⎪⎩
r(e)× s( f ) if (e, f ) ∈ (E × F ) \ (E1 × F1)

{(e−, f−), (e+, f+)} if (e, f ) ∈ (E1 × F1)e

{(e−, f+), (e+, f−)} if (e, f ) ∈ (E1 × F1)o

for all (e, f ) ∈ E ⊗ F (cf. Figure 8.10). Note that, if G and F have no
loops, then one has |E ⊗ F| = 2|E| · |F|.

The tensor product G ⊗ F admits the natural orientation �t : E ⊗
F → X × Y defined by setting

�t(e, f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

((x, y), (x, y)) if (e, f ) ∈ E0 × F0

((e−, y), (e+, y)) if (e, f ) ∈ E1 × F0

((x, f−), (x, f+)) if (e, f ) ∈ E0 × F1

((e−, f−), (e+, f+)) if (e, f ) ∈ (E1 × F1)e

((e−, f+), (e+, f−)) if (e, f ) ∈ (E1 × F1)o

for all (e, f ) ∈ E ⊗ F .
Moreover, if G and F are both simple (respectively, without loops),

then G ⊗ F is also simple, with edge set

E ⊗ F =
{{

(x, y), (x′, y′)
} ⊆ X × Y : x ∼ x′ and y ∼ y′

}
(respectively, without loops).
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Figure 8.10. An example of tensor product of graphs.

(iii) Equip G with an arbitrary orientation �r: different orientations will pro-
duce isomorphic graph products (exercise). The lexicographic prod-
uct (or composition) of G and F is the (undirected) graph G ◦ F =
(X × Y,E ◦ F,�r ◦ s) where

E ◦ F = (E × Y × Y ) % (X × F )

and

[�r ◦ s](e, y, y′) = {(e−, y), (e+, y′)} and [�r ◦ s](x, f ) = {x} × s( f )

for all e ∈ E, y, y′ ∈ Y , x ∈ X , and f ∈ F (cf. Figure 8.11).
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Figure 8.11. An example of lexicographic product of graphs.

Note that if also the second graph F is directed, say with an orienta-
tion �s, then G ◦ F admits the orientation�t : E ◦ F → X × Y defined by
setting

�t(e, y, y′) = ((e−, y), (e+, y′)) and �t(x, f ) = ((x, f−), (x, f+))

for all e ∈ E, y, y′ ∈ Y , x ∈ X , and f ∈ F .
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8.8 Cartesian, tensor, and lexicographic products of graphs 261

Also, we may regard the Cartesian product G�F as a subgraph of
G ◦ F (via the injection E × Y � (e, y) �→ (e, y, y) ∈ E × Y × Y ).

Finally note that if G and F are both simple (respectively, without
loops), then G ◦ F is also simple, with edge set

E ◦ F =
{{

(x, y), (x′, y′)
} ⊆ X × Y :

[
x ∼ x′

]
or
[
x = x′and y ∼ y′

]}
(respectively, without loops).

Remark 8.8.2 Summarizing, in all these products the vertex set is X × Y . In
the Cartesian product, two vertices (x, y) and (x′, y′) are adjacent if and only if
one of the following two conditions is satisfied: x ∼ x′ and y = y′, or x = x′ and
y ∼ y′. In the tensor product they are adjacent if and only if x ∼ x′ and y ∼ y′.
Finally, in the lexicographic product they are adjacent if and only if one of the
following two conditions is satisfied: x ∼ x′ (edge of the first type), or x = x′

and y ∼ y′ (edge of the second type). The more involved definitions given above
are necessary in order to keep into account possible multiple edges and loops,
as well as orientability.

Now denote by A (respectively, B) the adjacency matrix of G (respectively,
F) and suppose that λ0 ≥ λ1 ≥ · · · ≥ λ|X |−1 (respectively, μ0 ≥ μ1 ≥ · · · ≥
μ|Y |−1) are the eigenvalues of A (respectively, of B). Let { f0, f1, . . . , f|X |−1} ⊂
L(X ) (respectively, {g0, g1, . . . , g|Y |−1} ⊂ L(Y )) be an orthonormal basis of
eigenvectors, as in (8.14). Recall that JY denotes the matrix ( j(y, y′))y,y′∈Y with
j(y, y′) = 1 for all y, y′ ∈ Y .
Proposition 8.8.3

(i) The adjacency matrix of G�F is A⊗ IY + IX ⊗ B, and its eigenvalues
are λi + μ j , i = 0, 1, . . . , |X | − 1; j = 0, 1, . . . , |Y | − 1.

(ii) The adjacency matrix of G ⊗ F is A⊗ B, and its eigenvalues are λiμ j ,
i = 0, 1, . . . , |X | − 1; j = 0, 1, . . . , |Y | − 1.

(iii) The adjacency matrix of G ◦ F is A⊗ JY + IX ⊗ B. Moreover, if F is
k-regular, then its eigenvalues are:
� λi|Y | + k, i = 0, 1, . . . , |X | − 1;
� μ j , j = 1, . . . , |Y | − 1, each of them with multiplicity |X |.

Proof.

(i) By definition, we have

AG�F
(
(x, y), (x′, y′)

) = A(x, x′)δy,y′ + δx,x′B(y, y
′)

for all x, x′ ∈ X and y, y′ ∈ Y , proving the statement relative to the adja-
cency matrix. For the eigenvalues we apply Proposition 8.7.1.
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(ii) We now have

AG⊗F
(
(x, y), (x′, y′)

) = A(x, x′)B(y, y′)

for all x, x′ ∈ X and y, y′ ∈ Y , and Proposition 8.7.1 applies again.
(iii) In this final case we have

AG◦F
(
(x, y), (x′, y′)

) = A(x, x′)+ δx,x′B(y, y
′)

= A(x, x′)JY (y, y′)+ δx,x′B(y, y
′)

for all x, x′ ∈ X and y, y′ ∈ Y , proving the statement relative to the adja-
cency matrix. Suppose now that F is k-regular so that μ0 = k, g0 ∈
W0(Y ), and gj ∈W1(Y ) for all j = 1, 2, . . . , |Y | − 1. Then JY g0 = |Y |g0
while JY g j = 0 for j = 1, 2, . . . , |Y | − 1. Therefore,

[A⊗ JY + IX ⊗ B] ( fi ⊗ g0) = (λi|Y | + k)( fi ⊗ g0)

for i = 0, 1, 2 . . . , |X | − 1, while

[A⊗ JY + IX ⊗ B] ( fi ⊗ gj ) = μ j( fi ⊗ gj )

for i = 0, 1, 2 . . . , |X | − 1 and j = 1, 2, . . . , |Y | − 1.

�

Remark 8.8.4 In [44], in the framework of the theory of Markov chains,
the matrices A⊗ IY + IX ⊗ B and A⊗ JY + IX ⊗ B are called the crossed and
nested products, respectively, and are combined to get a further generalization,
called the crested product of the given Markov chains.

Corollary 8.8.5 Suppose that G is h-regular and F is k-regular. Then

(i) G�F is (h+ k)-regular, G ⊗ F is hk-regular, and G ◦ F is (|Y |h+ k)-
regular.

(ii) G�F is connected if and only if G and F are both connected; G ⊗ F is
connected if and only if both factors are connected and at least one of
them is nonbipartite; G ◦ F is connected if and only if G is connected.

(iii) Assuming that it is connected, the graph G�F is bipartite if and only
if both G and F are bipartite. Similarly, assuming that it is connected,
the graph G ⊗ F is bipartite if and only if at least one of the factors is
bipartite. Finally, assuming that it is connected, the graph G ◦ F is not
bipartite.

Proof. We have λ0 = h (respectively, μ0 = k), A f0 = h f0, and f0 is a nonzero
constant function (respectively, Bg0 = kg0 and g0 is a nonzero constant
function).
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(i) The function f0 ⊗ g0 ∈ L(X × Y ) is constant and it is a nontrivial eigen-
vector of
� A⊗ IY + IX ⊗ B, with eigenvalue h+ k;
� A⊗ B, with eigenvalue hk;
� A⊗ JY + IX ⊗ B, with eigenvalue |Y |h+ k.
In order to show regularity and determine the corresponding degree, we
use the last statement in Proposition 8.1.4.

(ii) By virtue of Proposition 8.1.5, the graph G�F is connected if and only
if λ0 + μ0 > λi + μ j for all (i, j) �= (0, 0), that is if and only if λ0 > λ1

and μ0 > μ1, and this is equivalent to saying that G and F are both
connected.

Similarly, G ⊗ F is connected if and only if

λ0μ0 > λiμ j for all (i, j) �= (0, 0). (8.24)

If both factors are connected and at least one of them, say G, is non-
bipartite, by Proposition 8.3.4 we have h = λ0 > λ1 ≥ · · · λ|X |−1 > −h
and k = μ0 > μ1 ≥ · · ·μ|Y |−1 ≥ −k; an elementary case-by-case anal-
ysis shows that (8.24) is satisfied. Conversely, if one of the graphs, say
G, is not connected then λ1 = λ0 = h so that λ1μ0 = λ0μ0 and (8.24) is
not verified; if both graphs are connected and bipartite then λ|X |−1 = −h
and μ|Y |−1 = −k, so that λ|X |−1μ|Y |−1 = (−h)(−k) = hk = λ0μ0 and,
again, (8.24) is not verified.

Finally, observe that the eigenvalues of G ◦ F are

h|Y | + k = λ0|Y | + μ0 ≥ λ1|Y | + μ0 ≥ · · · ≥ λ|X |−1|Y |
+ μ0 ≥ μ1 ≥ μ2 ≥ μ|Y |−1

and G ◦ F is connected if and only if the multiplicity of the eigenvalue
h|Y | + k is one, and this happens if and only if themultiplicity of h = λ0

is one, that is, if and only if G is connected.
(iii) We again apply Proposition 8.3.4. The number −(h+ k) is an eigen-

value of the adjacency matrix of G�F if and only if λ|X |−1 = −h and
μ|Y |−1 = −k. Similarly, −hk is an eigenvalue of the adjacency matrix
of G ⊗ F if and only if λ|X |−1 = −h or μ|Y |−1 = −k. Finally, since

μ|Y |−1 ≥ −μ0 = −k > − (h|Y | + k) ,

the number − (h|Y | + k) cannot be an eigenvalue of the adjacency
matrix of G ◦ F . �

Exercise 8.8.6 Give a direct combinatorial (i.e. not spectral) proof of Corollary
8.8.5.
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Exercise 8.8.7 (The Hamming graph) Let n,m be two positive integers. The
Hamming graphHn,m+1 = (Xn,m+1,En,m+1) is the (finite simple without loops)
graph with vertex set

Xn,m+1 = {0, 1, . . . ,m}n = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ {0, 1, . . . ,m}}
and two vertices (x1, x2, . . . , xn) and (y1, y2, . . . , yn) ∈ Xn,m+1 are adjacent if
there exists 1 ≤ j ≤ n such that x j �= y j and xi = yi for all i �= j. TheHamming
distance between two vertices (x1, x2, . . . , xn) and (y1, y2, . . . , yn) is given by

d((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = |{ j : x j �= y j}|.
Note thatHn,2 (i.e.m = 1) coincides with the n-dimensional hypercube Qn (cf.
Section 8.5).

(1) Show thatHn,m+1 is an nm-regular graph.Moreover, show that theHam-
ming distance coincides with the geodesic distance on the graph.

(2) Show that Hn,m+1 is the Cartesian product of n copies of the complete
graph Km+1 (with vertices {0, 1, . . . ,m}), that is, its adjacency matrix is

n∑
j=1

Im+1 ⊗ · · · ⊗ Im+1 ⊗ A⊗ Im+1 ⊗ · · · ⊗ Im+1,

where Im+1 is the (m+ 1)× (m+ 1) identity matrix and A (in the j-th
position) is the adjacency matrix of Km+1.

(3) For i = (i1, i2, . . . , in) ∈ {0, 1}n set w(i) = |{k : ik = 1}| (the weight of
i). Recalling the spectral decomposition (see Proposition 8.1.4 and Sec-
tion 8.4)

L(Km+1) =W0 ⊕W1

for 0 ≤ � ≤ n, we set

V� =
⊕

w(i)=�

Wi1 ⊗Wi2 ⊗ · · · ⊗Win .

In other words, V� is the subspace spanned by all tensor products
f1 ⊗ f2 ⊗ · · · ⊗ fn where � (respectively, the remaining n− �) of the
f js belong toW1 (respectively,W0). Show that

L(Xn,m+1) = ⊕n
�=0V�

is the spectral decomposition relative to the adjacencymatrix ofHn,m+1,
that the eigenvalue corresponding to V� is nm− �(m+ 1), and that
dimV� = m�

(n
�

)
.
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8.9 Wreath product of finite graphs

This section is based on [45]: in particular, for simplicity, we only consider
(finite) simple graphs without loops.
Let X be a finite set and F = (Y,F ) a finite simple graph without loops. We

endow the exponential set YX with a graph structure, denoted FX , by declaring
that two vertices f , f ′ ∈ YX are adjacent (and, as usual, we write f ∼ f ′) if
there exists x ∈ X such that f (z) = f ′(z) for all z ∈ X \ {x} and f (x) ∼ f ′(x) in
F . Note that FX is simple and without loops; moreover, if |X | = 2 it coincides
with the Cartesian squareF�F . Denote by B the adjacency operator ofF (that
is, Bδy =

∑
y′∼y δy′ = 1N (y) for all y ∈ Y ) and by B the adjacency operator of

FX (that is, Bδ f =
∑

f ′∼ f δ f ′ = 1N ( f ) for all f ∈ YX ). Also, for all x, x′ ∈ X
we define the linear operator Bx,x′ : L(Y ) → L(Y ) by setting

Bx,x′ =
{
B if x = x′

IY if x �= x′.

We now generalize Proposition 8.8.3.(i).

Proposition 8.9.1 The adjacency operator B of FX has the expression

B =
∑
x∈X

⊗
x′∈X

Bx,x′ .

Proof. Let f ∈ YX and let us show that

Bδ f =
(∑
x∈X

⊗
x′∈X

Bx,x′

)
δ f . (8.25)

For x, x′ ∈ X define 1x,x′ ∈ L(Y ) by setting

1x,x′ =
{
1N ( f (x)) if x = x′

δ f (x′ ) if x �= x′.
(8.26)

Note that setting

Nx( f ) = {
f ′ ∈ YX : [ f ′(x′) = f (x′) for x �= x′] and [ f ′(x) ∼ f (x)]

}
(8.27)

for all x ∈ X , in the graph FX we have the partition

N ( f ) =
∐
x∈X

Nx( f ) (8.28)
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and the map α : N ( f (x)) → Nx( f ) defined by

α(y)(x′) =
{
y if x′ = x

f (x′) if x′ �= x
(8.29)

for all y ∈ N ( f (x)) and x′ ∈ X , is a bijection. Then, on the one hand, we have

Bδ f = 1N ( f )

(by (8.28)) =
∑
x∈X

1Nx( f )

=
∑
x∈X

∑
f ′∈Nx( f )

δ f ′

(by (8.23)) =
∑
x∈X

∑
f ′∈Nx( f )

⊗
x′∈X

δ f ′(x′ )

=
∑
x∈X

∑
f ′∈Nx( f )

⎡⎣⎛⎝ ⊗
x′∈X\{x}

δ f ′(x′ )

⎞⎠⊗ δ f ′(x)

⎤⎦
(by (8.27)) =

∑
x∈X

∑
f ′∈Nx( f )

⎡⎣⎛⎝ ⊗
x′∈X\{x}

δ f (x′ )

⎞⎠⊗ δ f ′(x)

⎤⎦
=
∑
x∈X

⎡⎣⎛⎝ ⊗
x′∈X\{x}

δ f (x′ )

⎞⎠⊗
⎛⎝ ∑

f ′∈Nx( f )

δ f ′(x)

⎞⎠⎤⎦
=
∑
x∈X

⎡⎣⎛⎝ ⊗
x′∈X\{x}

δ f (x′ )

⎞⎠⊗
⎛⎝ ∑
y∈N ( f (x))

δα(y)(x)

⎞⎠⎤⎦
(by (8.29)) =

∑
x∈X

⎡⎣⎛⎝ ⊗
x′∈X\{x}

δ f (x′ )

⎞⎠⊗
⎛⎝ ∑
y∈N ( f (x))

δy

⎞⎠⎤⎦
=
∑
x∈X

⎡⎣⎛⎝ ⊗
x′∈X\{x}

δ f (x′ )

⎞⎠⊗ 1N ( f (x))

⎤⎦
(by (8.26)) =

∑
x∈X

⊗
x′∈X

1x,x′ .

(8.30)

Moreover,

Bx,x′δ f (x′ ) =
{
Bδ f (x) if x = x′

IY δ f (x′ ) if x �= x′
= 1x,x′ , (8.31)
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8.9 Wreath product of finite graphs 267

so that, on the other hand, keeping in mind (8.23), we have(⊗
x′∈X

Bx,x′

)
δ f =

[(⊗
x′∈X

Bx,x′

)(⊗
x′∈X

δ f (x′ )

)]

( by (8.22)) =
[(⊗

x′∈X
Bx,x′δ f (x′ )

)]
(by (8.31)) =

⊗
x′∈X

1x,x′ .

(8.32)

Summing up (over x ∈ X) in (8.32), and comparing it with (8.30), we finally
deduce (8.25). �

Exercise 8.9.2 Show that the set of all eigenvalues of the adjacency operator B
of FX is given by {∑

x∈X
μξ (x) : ξ ∈ {0, 1, . . . , |Y | − 1}X

}
,

whereμ0, μ1, . . . , μ|Y |−1 are the eigenvalues ofF . Deduce, as a particular case,
the set of all eigenvalues of the hypercube (cf. Section 8.5) and of the Hamming
graph (cf. Exercise 8.8.7).

Let now G = (X,E ) and F = (Y,F ) be two finite simple graphs without
loops.

Definition 8.9.3 The wreath product of G and F is the graph G ' F =(
YX × X, E

)
where the edge set is

E =
{{

( f , x), ( f ′, x′)
} ⊆ YX × X :

[
x = x′ and f ′ ∈ Nx( f )

]
or
[
x ∼ x′ and f = f ′

]}
,

whereNx( f ) ⊆ YX is as in (8.28). Moreover,
{
( f , x), ( f ′, x′)

} ∈ E is called an
edge of the first type (respectively, edge of the second type) provided x = x′ and
f ′ ∈ Nx( f ) (respectively, x ∼ x′ and f = f ′).

Remark 8.9.4 Note that, modulo the map YX × X � ( f , x) �→ (x, f ) ∈ X ×
YX , the wreath product G ' F can be viewed as a subgraph of the Cartesian
product G�FX , and therefore of the lexicographic product G ◦ FX. Indeed, the
set of all edges of the first type in G ' F forms a subset of those edges of the
Cartesian product that are given by the less restrictive condition x = x′ and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.009
https://www.cambridge.org/core


268 Graphs and their products

f ∼ f ′; the set of all edges of the second type in G ' F are defined by the anal-
ogous condition in the Cartesian product (but they form a subset of the edges
of the first type in the lexicographic product).

Theorem 8.9.5 The adjacency operator of the wreath product G ' F has the
expression ∑

x∈X

[(⊗
x′∈X

Bx,x′

)⊗
�x

]
+ IYX ⊗ A, (8.33)

where�x ∈ End(L(X )) is defined by setting�x(δx′ ) = δx(x′)δx for all x, x′ ∈ X.

Proof. Let us show that the first summand in (8.33) takes into account all edges
of the first type. Indeed, arguing as in the proof of Proposition 8.9.1, for z ∈ X
and f ∈ YX , we have:{∑

x∈X

[(⊗
x′∈X

Bx,x′

)⊗
�x

]}
(δ f ⊗ δz) =

∑
x∈X

[(⊗
x′∈X

Bx,x′

)
(δ f )

⊗
�x(δz)

]

=
(⊗
x′∈X

Bz,x′

)
(δ f )

⊗
δz

(by (8.32)) =
(⊗
x′∈X

1z,x′

)⊗
δz,

where the last expression is precisely the characteristic function of the set of all
vertices adjacent to ( f , z) by an edge of the first type.
Finally, the term IYX ⊗ A takes into account all edges of the second type;

compare it with the expression of the adjacency matrix of the Cartesian product
in Proposition 8.8.3.(i). �

In [45], D’Angeli and Donno introduced and used (8.33) as a definition of
wreath product of matrices.

8.10 Lamplighter graphs and their spectral analysis

This section is based on ourmonograph [34] and the paper [136], but the version
of the lamplighter that we analyze is the one described in [45, 58, 59].
Let G = (X,E ) be a finite simple graph without loops.

Definition 8.10.1 The lamplighter graph associated with G is the finite graph
L = (X , E ) with vertex set

X = {0, 1}X × X = {(ω, x) : ω ∈ {0, 1}X , x ∈ X
}
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8.10 Lamplighter graphs and their spectral analysis 269

and edge set

E =
{{

(ω, x), (θ, y)
}
:
[
x = y, ω(z) = θ (z) for all z �= x and ω(x) �= θ (x)

]
or
[
x ∼ y and ω = θ

]}
.

Clearly, L coincides with the wreath product G ' K2, where K2 is the complete
graph on two vertices (cf. Figure 8.5).

Remark 8.10.2 Another description of the lamplighter graph is the following.
We associate with each vertex x ∈ X a lamp that may be either on or off. A con-
figuration of the lamps is a map ω : X → {0, 1}: the value ω(x) = 1 (respec-
tively, ω(x) = 0) indicates that the lamp at x is on (respectively, off). A vertex
of the lamplighter is a pair (ω, x) consisting of a configuration of the lamps
and a vertex of X . Two vertices (ω, x) and (θ, y) of the lamplighter graph are
adjacent if and only if one of these two conditions are satisfied:

x ∼ y and ω = θ (a walk edge);
x = y and ω and θ differ exactly in x (a switch edge).

(8.34)

This is the so-called walk or switch lamplighter: the neighbors of the vertex
(ω, x) may be obtained by either walking to a neighbor of x in G and leaving
all the lamps at their current states, or remaining at x but changing the state of
the lamp at x.
Finally note that two configurations ω and θ may be added: (ω + θ )(x) =

ω(x)+ θ (x) mod 2.

In the literature, several variations on this construction have been analyzed;
see [136], and, for infinite lamplighters and their spectral computations [17, 69,
70, 94].
LetA ∈ End(L(X )) denote the adjacency operator associated with the lamp-

lighter graph L, so that

[A�](ω, x) =
∑

(θ,y)∼(ω,x)

�(θ, y),

for all� ∈ L(X ) and (ω, x) ∈ X . Since L(X ) ≡ L
({0, 1}X)⊗ L(X ), it is useful

to determine the A-image of a tensor product of functions: if F ∈ L
({0, 1}X)

and f ∈ L(X ) we have

[A(F ⊗ f )](ω, x) = F (ω + δx) f (x)+ F (ω)
∑
y∼x

f (y) (8.35)
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for all (ω, x) ∈ {0, 1}X × X . Indeed, the first term corresponds to a switch at x
(δx is regarded as the configuration with only the lamp at x on) and the second
to a walk from x.
With each θ ∈ {0, 1}X we associate the linear operator Aθ : L(X ) → L(X )

defined by setting

[Aθ f ](x) = (−1)θ (x) f (x)+
∑
y∼x

f (y) (8.36)

for all f ∈ L(X ) and x ∈ X , and the character χθ ∈ Ẑ2
X ≡ {̂0, 1}X ⊆ L({0, 1}X )

defined by setting

χθ (ω) = (−1)
∑

x∈X θ (x)ω(x)

for all ω ∈ {0, 1}X (cf. Section 8.5).

Theorem 8.10.3 For all θ ∈ {0, 1}X and f ∈ L(X ) we have:

A(χθ ⊗ f ) = χθ ⊗ Aθ f . (8.37)

Suppose also that λθ,1, λθ,2, . . . , λθ,h(θ ) are the distinct eigenvalues of Aθ

and Vθ, j is the eigenspace of Aθ corresponding to the eigenvalue λθ, j , j =
1, . . . , h(θ ). Then {

λθ, j : θ ∈ {0, 1}X , j = 1, 2, . . . , h(θ )
}

are the eigenvalues of A (not necessarily distinct) and Wθ, j = {χθ ⊗ f : f ∈
Vθ, j} is the eigenspace of A corresponding to λθ, j .

Proof. Applying (8.35) we get

[A(χθ ⊗ f )] (ω, x) = χθ (ω + δx) f (x)+ χθ (ω)
∑
y∼x

f (y)

= χθ (ω)

[
(−1)θ (x) f (x)+

∑
y∼x

f (y)

]
= [χθ ⊗ Aθ f ] (ω, x).

(8.38)

The other statements follow easily from (8.37). �

8.11 The lamplighter on the complete graph

This section is based on [45]. See also [34] and [136] for another version of the
following construction.
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8.11 The lamplighter on the complete graph 271

Given a finite set X , we denote, as usual, by W0(X ) the space of constant
functions on X andW1(X ) = { f ∈ L(X ) :

∑
x∈X f (x) = 0}. Then (cf. Proposi-

tion 2.1.1), we have the decomposition

L(X ) =W0(X )⊕W1(X ). (8.39)

Let now Kn = (X,E ) be the complete graph on n vertices so that X =
{1, 2, . . . , n} and E = {{x, y} : x, y ∈ X, x �= y}). The eigenspaces of the adja-
cency operator on the complete graph on n vertices are W0(X ) and W1(X ),
with corresponding eigenvalues n− 1 and −1, respectively; see Section 8.4.
Let L = (X , E ) be the associated lamplighter graph. Let θ ∈ {0, 1}X and
set

Xθ = {x ∈ X : θ (x) = 0}.

For f ∈ L(X ) and x ∈ X , equation (8.36) becomes:

[Aθ f ] (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (x)+ ∑

y∈Xθ :
y�=x

f (y)+ ∑
y∈X\Xθ

f (y) if x ∈ Xθ

− f (x)+ ∑
y∈Xθ

f (y)+ ∑
y∈X\Xθ :
y�=x

f (y) if x ∈ X \ Xθ .
(8.40)

Let f ∈ L(X ). If

f |Xθ
∈W1(Xθ ) and f |X\Xθ

≡ 0 (8.41)

then (8.40) becomes

[Aθ f ] (x) =

⎧⎪⎪⎨⎪⎪⎩
f (x)+ ∑

y∈Xθ :
y�=x

f (y) if x ∈ Xθ

∑
y∈Xθ

f (y) if x ∈ X \ Xθ

=
∑
y∈Xθ

f (y) = 0 (in both cases).

Therefore, the space of all functions satisfying the conditions in (8.41) consti-
tutes an Aθ -eigenspace with eigenvalue 0.

Similarly, if

f |X\Xθ
∈W1(X \ Xθ ) and f |Xθ

≡ 0 (8.42)
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then

[Aθ f ] (x) =

⎧⎪⎪⎨⎪⎪⎩
∑

y∈X\Xθ

f (y) if x ∈ Xθ

− f (x)+ ∑
y∈X\Xθ :
y�=x

f (y) if x ∈ X \ Xθ

=
{
0 if x ∈ Xθ

−2 f (x) if x ∈ X \ Xθ

= −2 f (x) (in both cases).

Therefore, the space of all functions satisfying the conditions in (8.42) consti-
tutes an Aθ -eigenspace with eigenvalue −2.

Finally, suppose that |Xθ | = k with 0 ≤ k ≤ n, and let f = α1Xθ
+ β1X\Xθ

,
for some α, β ∈ C. From (8.40) it follows that

[Aθ f ] (x) =
{
kα + (n− k)β if x ∈ Xθ

kα + (n− k − 2)β if x ∈ X \ Xθ .

Note that if k = 0 (respectively, k = n), that is, Xθ = ∅ (respectively, Xθ = X),
then f is constant and is an Aθ -eigenvector with eigenvalue n− 2 (respectively,
n). When 1 ≤ k ≤ n− 1, elementary calculations show that the eigenvalues of

the matrix
(
k n−k
k n−k−2

)
are λ(k)

± = n−2±
√

(n−2)2+8k
2 and the corresponding eigenvec-

tors are
(
1, ω(k)

±
)T

, where ω
(k)
± = λ

(k)
±

2+λ
(k)
±
.

We then define the one-dimensional Aθ -eigenspaces (subspaces of L(X ))

W±
θ = { f = α1Xθ

+ ω
(k)
± α1X\Xθ

: α ∈ C},
for 1 ≤ |Xθ | ≤ n− 1, and

W0 = { f = α1X : α ∈ C},
if |Xθ | = 0, n.
We also define the following subspaces of L(X ):

W0;0 = span(1⊗ f : f ∈W0),

Wn;0 = span((−1)⊗ f : f ∈W0),

where 1(ω) = 1 and [−1](ω) = (−1)
∑

x∈X ω(x), for all ω ∈ {0, 1}X , and, for 1 ≤
k ≤ n− 1,

W±
k;0 = span(χθ ⊗ f : |Xθ | = k, f ∈W±

θ ),

Wk;1 = span(χθ ⊗ f : |Xθ | = k, f |Xθ
∈W1(Xθ ) and f |X\Xθ

≡ 0),

Wk;2 = span(χθ ⊗ f : |Xθ | = k, f |Xθ
≡ 0 and f |X\Xθ

∈W1(X \ Xθ )).
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Exercise 8.11.1 Show that

(1) W0;0 is the A-eigenspace with eigenvalue n− 2;
(2) Wn;0 is the A-eigenspace with eigenvalue n;
(3) W±

k;0 is theA-eigenspace with eigenvalue λ
(k)
± , for k = 1, 2, . . . , n− 1;

(4)
⊕n

k=1 Wk;1 is the A-eigenspace with eigenvalue 0;
(5)

⊕n−1
k=0 Wk;2 is the A-eigenspace with eigenvalue −2.

8.12 The replacement product

In this section, based on [58], we introduce the replacement product. This is a
natural construction but it is worthwhile to introduce specific notation in order
to get a precise description of it. This notation will also be used for the zig-zag
product (cf. Section 8.13).
Let G = (X,E, r) be a finite d-regular graph possibly with multiple edges

and loops.
Let x and y be two distinct vertices in X . Recall that Ex denotes the set of

edges incident to x. This way, Ex ∩ Ey is the set of edges joining x and y (note
that x �∼ y if and only if Ex ∩ Ey = ∅).

Set [d] = {1, 2, . . . , d}. Then for each x ∈ X we (arbitrarily) choose a bijec-
tive labelling of the edges incident to x using [d] as the set of labels, that is, a
bijection hx : Ex → [d]. We refer to (hx)x∈X as to the (edge) labelling of G and
we say that G is a labelled graph. Given a vertex x ∈ X and an edge e ∈ E such
that r(e) � x, the label h = hx(e) is called the color of the edge e near x and
we also say that e is the h-edge near x. Note that, unless otherwise specified,
if x, y ∈ X are distinct and adjacent, and e ∈ Ex ∩ Ey, then there is no relation
between the color hx(e) of e near x and the color hy(e) of e near y. Moreover, if
r(e) = {x}, that is, e is a loop at x, then e has only the color hx(e) near x.

Definition 8.12.1 The rotation map

RotG : X × [d] −→ X × [d]

associated with the labelling (hx)x∈X is the (bijective) map defined by setting

RotG (x, i) = (y, j) where e = h−1
x (i), r(e) = {x, y}, and j = hy(e), (8.43)

for all x ∈ X and i ∈ [d].

In other words, if e = h−1
x (i) ∈ E is a loop at x, then RotG (x, i) = (x, i), while

if r(e) = {x, y}, with y �= x, then RotG (x, i) = (y, j), where j is the color of e
near y. Note that

E = (X × [d])/ ≈ (8.44)
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where ≈ is the equivalence relation defined by setting (x, i) ≈ (x, i) and

(x, i) ≈ (y, j) if (y, j) = RotG (x, i)

for all x, y ∈ X and i, j ∈ [d].
With the rotation map RotG we associate the permutation matrix RG indexed

by X × [d] defined by setting, for all (x, i), (y, j) ∈ X × [d],

RG
(
(x, i), (y, j)

) = {1 if RotG (x, i) = (y, j)

0 otherwise.
(8.45)

In the following proposition, we show the connection between the permu-
tation matrix RG and the adjacency matrix A = AG of G. We use the operator
C in (8.21) and we think of RG (respectively, A) as a linear endomorphism of
L(X × [d]) (respectively, L(X )).

Proposition 8.12.2 For all f ∈ L(X ) one has

CRG ( f ⊗ 1[d] ) = A f .

Proof. Clearly, for (x, i) ∈ X × [d] we have

RG (δy ⊗ δ j ) = δx ⊗ δi

where (y, j) = RotG (x, i). Then

RG (δx ⊗ 1[d] ) =
∑
i∈[d]

RG (δx ⊗ δi) =
∑
i∈[d]

∑
(y, j)∈X×[d]:

RotG (y, j)=(x,i)

δy ⊗ δ j

so that

CRG (δx ⊗ 1[d] ) =
∑
i∈[d]

∑
(y, j)∈X×[d]:

RotG (y, j)=(x,i)

C(δy ⊗ δ j )

(by Lemma 8.7.3.(ii)) =
∑
i∈[d]

∑
(y, j)∈X×[d]:

RotG (y, j)=(x,i)

δy

=
∑
y∈X :

x∼y in G

δy

= Aδx.

The general result follows by linearity. �

Exercise 8.12.3 Show that if X is a finite nonempty set, then a map Rot : X ×
[d] −→ X × [d] is the rotation map of a labelled d-regular graph with vertex
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set X if and only if Rot ◦ Rot is the identity map. Moreover, loops correspond
to fixed-points of Rot.
Hint: Suppose Rot ◦ Rot is the identity map. For x ∈ X set Ex = {Rot(x, i) : i ∈
[d]} and define E = (∪x∈XEx

)
/ ≈, where≈ is as in (8.44). Moreover, r : E →

P (X ) is defined by setting r[Rot(x, i)] = {x, y}, where Rot(x, i) = (y, j), for all
x ∈ X and i ∈ [d].

Definition 8.12.4 Let G = (X,E, rG ) be a d-regular graph and F = (Y,F, rF )
a k-regular graph with Y = [d]. Assume that in both graphs we have defined
a labelling and a rotation map as in Definition 8.12.1. Then their replacement
product is the (k + 1)-regular graph G r©F with vertex set X × [d] and the rota-
tion map defined by setting, for x ∈ X , i ∈ [d], and j ∈ [k + 1],

RotG r©F ((x, i), j) =
{
((x,m), h) if j ∈ [k] and RotF (i, j) = (m, h)

(RotG (x, i), j) if j = k + 1.

Exercise 8.12.5 Show that RotG r©F ◦ RotG r©F is the identity map so that, by
Exercise 8.12.3, the definition of replacement product is well posed.

Remark 8.12.6 Actually, to define the replacement product it is not necessary
to label F . The definition may be modified by saying that (x, i), (z,m) ∈ X ×
[d] are adjacent in G r©F if

x ∼ z and RotG (x, i) = (z,m) (edges of the first type)

or

x = z and i ∼ m in F (edges of the second type).

(8.46)

Clearly, each vertex is incident to exactly one edge of the first type and to k
edges of the second type. Note also that the replacement product is a subgraph
of the lexicographic product (cf. Definition 8.8.1). Indeed, the edges of the first
type (respectively, second type) in (8.46) are a subset of the edges of the first
type (respectively, precisely the set of all edges of the second type) in the lexi-
cographic product.

Remark 8.12.7 A d-regular graph G = (X,E, r) is d-edge-colorable if there
exists a map φ : E → [d] such that the restriction of φ to Ex is a bijection for
each x ∈ X . In other words, G is d-edge-colorable when we may assign a color
to each edge in such a way that for each x ∈ X and j ∈ [d] there exists exactly
one edge with color j incident to x. If such a map φ exists, we may use it to get
a labelling of G such that if x, y ∈ X and e ∈ Ex ∩ Ey then e has the same color
φ(e) both near x and near y. This way, in (8.43) we always have i = j. If this
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condition is satisfied, we may write the first condition in (8.46) in the form:

x ∼ z, i = m, and the label of the edge connecting x and z is i. (8.47)

Here is an informal description of the replacement product G r©F ; compare
with the figures in Exercise 8.12.8. Replace each vertex of G by a copy of F .
The edges of each copy of F constitute the edges of the second type in (8.46).
Then join the copies of F by means of the edges of G, taking into account the
labelling of G, as in (8.46) (edges of the first type).

Exercise 8.12.8 Prove that the replacement products K5 r©C4 of the complete
graph K5 on five vertices (with the corresponding labellings) and the 4-circle
C4, are as in Figures 8.12 and 8.13. These examples, taken from [1], show that
the replacement product does depend on the labelling of the first graph.
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Figure 8.12. The replacement product K5 r©C4 (with a given labelling of K5).

Proposition 8.12.9 Let B be the adjacency matrix ofF and RG the permutation
matrix in (8.45). Then the adjacency matrix of the replacement product G r©F
is given by

MG r©F = RG + IX ⊗ B.
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Figure 8.13. The replacement product K5 r©C4 (with another labelling of K5).
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Proof. The matrix RG (respectively, IX ⊗ B) takes into account all edges of
the first type (respectively, second type) of G r©F ; compare with Proposition
8.8.3.(i). �

We end this section by showing that the lamplighter construction in Section
8.10 may be obtained as a replacement product.
Let then Qn = (X,E ) be the n-dimensional hypercube (see Section 8.5).

Using the notation in both Section 8.10 and in the present section, we may
identify X with {0, 1}[n]. Moreover, two vertices ω, θ ∈ {0, 1}[n] are adjacent
when there exists j ∈ [n] such that: ω( j) �= θ ( j) and ω(h) = θ (h) for h �= j. In
this case, the edge {ω, θ} ∈ E is labelled by the color j both near ω and near
θ . This shows (cf. Remark 8.12.7) that the n-dimensional hypercube is n-edge-
colorable.

Proposition 8.12.10 Let F = ([n],E ) be a simple graph without loops on
n vertices. Then the product replacement Qn r©F obtained by means of the
labelling described above is isomorphic to the lamplighter F ' K2.

Proof. In the terminology of Remarks 8.10.2, 8.12.6, and 8.12.7, a switch edge
in F ' K2 corresponds to an edge of the first type in Qn r©F : both the switch
condition in (8.34) and the conditions in (8.47) become: i = m, ω ∼ θ , and the
color of the edge connecting ω with θ is i.

Similarly, a walk edge in F ' K2 corresponds to an edge of the second type
in Qn r©F : for (ω, i), (θ,m) ∈ Qn × [n] both the walk condition in (8.34) and
the second condition in (8.46) become: i ∼ m and ω = θ . �

8.13 The zig-zag product

This section is based on the exposition in [58]. The original sources are [74]
and [128]. We assume all the notation in Section 8.12, in particular in Defini-
tion 8.12.4, so that G = (X,E, rG ) is a d-regular graph and F = (Y,F, rF ) a
k-regular graph with Y = [d].

Definition 8.13.1 The zig-zag product of G andF is the k2-regular graph G z©F
with vertex set X × [d] and rotation map RotG z©F described by the following
conditions. We use the set [k]× [k] to label the edges of the graph and, for
x ∈ X , h ∈ [d], and i, j ∈ [k],

RotG z©F ((x, h), (i, j)) = ((y, l), ( j′, i′)),

where y ∈ X , l ∈ [d] and i′, j′ ∈ [k] are determined by means of the following
steps:
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278 Graphs and their products

(i) (h′, i′) = RotF (h, i);
(ii) (y, l′) = RotG (x, h′);
(iii) (l, j′) = RotF (l′, j).

Remark 8.13.2 Here is a more detailed description of these steps. We replace
each vertex x of G with the vertices (x, 1), (x, 2), . . . , (x, d). Then the vertices
(x, h), (y, l) ∈ X × [d] are adjacent in the zig-zag product G z©F if it is possible
to connect them in the replacement product G r©F with a path of length three
and of the following form.

(i) First of all, we choose an edge of the second type in G r©F incident
to (x, h), that is, we choose a label i ∈ [k] so that the vertex (x, h′) is
determined by the rotation map: RotF (h, i) = (h′, i′); this also yields
the label i′ ∈ [k]. We refer to this as to a zig move.

(ii) It is then determined the unique edge of the first type in G r©F incident
to (x, h′), that is, the vertex (y, l′) = RotG (x, h′). We refer to this as to
the jump move.

(iii) Finally, we choose an edge of the second type in G r©F incident to
(y, l′), that is, we choose a label j ∈ [k] so that the vertex (y, l) is deter-
mined by the rotation map: RotF (l′, j) = (l, j′), which also yields the
label j′ ∈ [k]. We refer to this as to a zag move.

Proposition 8.13.3 Using the notation in Proposition 8.12.9, the adjacency
matrix of the zig-zag product is:

MG z©F = (IX ⊗ B)RG (IX ⊗ B). (8.48)

Moreover, there exists a
[
(k + 1)3 − k2

]
-regular graphH such that

M3
G r©F = MG z©F + H,

where H is the adjacency matrix ofH.

Proof. Clearly, in (8.48) the two factors (IX ⊗ B) take into account the zig and
zag moves, while RG is the jumpmove. Now consider the following graph C. Its
vertex set is again X × [d] and two vertices are adjacent in C if there is a path
in G r©F of length three connecting them. By Proposition 8.1.6, the adjacency
matrix of C isM3

G r©F . Moreover, C is regular of degree (k + 1)3, possibly with
multiple edges and loops. Finally, we conclude by noting that G z©F is a sub-
graph of C so that, denoting by H = (X × [d],E(H)) the subgraph of C with
edge set E(H) = E(C) \ E(G z©F ), we have, cf. Proposition 8.12.9,

H = [RG + (IX ⊗ B)
]3 − (IX ⊗ B)RG (IX ⊗ B). �
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8.14 Cayley graphs and graph products 279

Exercise 8.13.4 Using the first result in Exercise 8.12.8, prove that the zig-zag
product of the complete graph K5 on five vertices (with the given labeling) and
the 4-circle C4, is as in Figure 8.14.
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Figure 8.14. The zig-zag product K5 z©C4.

Remark 8.13.5 Proposition 8.13.3 and Exercise 8.13.4 show that it is not nec-
essary to introduce a labelling in F in order to construct the zig-zag product.
But the labelling of F is necessary to get a [k]× [k]-labelling on the zig-zag
graph.

Exercise 8.13.6 Assume the notation in Proposition 8.12.10. Define the walk-
switch-walk lamplighter as follows: (ω, i), (θ,m) ∈ Qn × [n] are adjacent if
there exists j ∈ [n] such that i ∼ j, j ∼ m, ω(h) = θ (h) for h �= j and ω( j) �=
θ ( j). Show that this graph is isomorphic to the zig-zag product Qn z©F .

8.14 Cayley graphs, semidirect products, replacement products,
and zig-zag products

In this section we introduce the concepts of a Cayley graph of a (finite) group
(with respect to a given generating subset) and of a semidirect product of two
(finite) groups. Then, by means of several exercises, we illustrate the connec-
tions between the Cayley graph of a semidirect product of two groups and a
modified version of the replacement and of zig-zag products of the Cayely
graphs of these groups (with respect to suitable generating subsets). They are
based on the exposition in [58]. The original sources are [8] and [74].
LetG be a finite group. A subset S ⊆ G is termed generating if every element

g ∈ Gmay be written as a product g= s1s2 · · · sm with s1, s2, . . . , sm ∈ S ∪ S−1

for some m ≥ 0, where S−1 = {s−1 : s ∈ S}. A subset S ⊆ G is said to be sym-
metric provided S = S−1.
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280 Graphs and their products

Let S ⊂ G be a symmetric generating subset. Then the associated Cayley
graph �(G, S) is the graph with vertex set G and edge set {{g, gs} : s ∈ S, g ∈
G}. In other words, two vertices g, g′ ∈ G are adjacent if and only if g−1g′ ∈ S.
Note that �(G, S) is undirected since S is symmetric: g−1g′ ∈ S if and only if
(g′)−1g= (g−1g′)−1 ∈ S. Moreover, �(G, S) has no multiple edges: if gs = gs′

for some g ∈ G and s, s′ ∈ S, then the cancellation property implies that s = s′.
Moreover, �(G, S) has loops if and only if S contains the identity element (and,
if this is the case, then there is exactly one loop based at each vertex of�(G, S)).
Finally, note that we may use the elements of S to get a labelling of �(G, S):
the rotation map (8.43) is then defined by setting

Rot�(G,S)(g, s) = (gs, s−1)

for all g ∈ G and s ∈ S.

Exercise 8.14.1

(1) Show that the discrete circle Cn (cf. Definition 8.6.1) is the Cayley graph
of the cyclic group Zn with respect to the (symmetric) generating set
S = {1, n− 1}.

(2) Show that the hypercube Qn (cf. Definition 8.5.1) is the Cayley graph
of the group Zn

2 with respect to the (symmetric) generating set S =
{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1)}.

We now recall the well known construction of a semidirect product of two
(finite) groups (see, for instance, [12, pp. 20–24], [148, pp. 6–8]).

Definition 8.14.2 (Semidirect product) LetG be a finite group and N,H ≤ G
two subgroups of G. Then G is the (internal) semidirect product of N by H and
we write G = N � H, when the following conditions are satisfied:

(a) N � G;
(b) G = NH;
(c) N ∩ H = {1G}.

Proposition 8.14.3 Suppose that G is a semidirect product of N by H. Then

(i) G/N ∼= H;
(ii) every g ∈ G has a unique expression g= nh with n ∈ N and h ∈ H;
(iii) for any h ∈ H and n ∈ N set φh(n) = hnh−1. Then φh ∈ Aut(N) for all

h ∈ H and the map

H −→ Aut(N)
h �−→ φh

is a homomorphism (conjugation homomorphism);
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8.14 Cayley graphs and graph products 281

(iv) if nh, n1h1 ∈ G are as in (ii), then their product is given by

n1h1 · n2h2 = [n1 · h1n2h−1
1 ]h1h2 = [n1φh1 (n2)]h1h2. (8.49)

Conversely, suppose that H and N are two (finite) groups and we are given
a homomorphism

H −→ Aut(N)
h �−→ φh.

Set G = {(n, h) : n ∈ N, h ∈ H} and define a product in G by setting

(n, h)(n1, h1) = (nφh(n1), hh1)

for all n, n1 ∈ N and h, h1 ∈ H (compare with (8.49)). Then G is a group and it
is isomorphic to the (inner) semidirect product of Ñ = {(n, 1H ) : n ∈ N} ∼= N
by H̃ = {(1N, h) : H ∈ H} ∼= H. The group G is called the external semidirect
product of N by H with respect to φ and it is usually denoted by N �φ H. More-
over, with the above notation, the following conditions are equivalent:

(a) G is isomorphic to the direct product Ñ × H̃;
(b) H̃ is normal in G;
(c) φh is the trivial automorphism of N for all h ∈ H.

Proof. The proof is just an easy exercise and it is left to the reader. �

Clearly, the internal and external semidirect products are equivalent con-
structions and we shall make no distinction between them.
Suppose now that G = N � H is a semidirect product. For n ∈ H we denote

by nH its orbit under the action of H, that is nH = {hnh−1 : h ∈ H}. Let SH
(respectively, SN) be a symmetric generating subset for H (respectively, N) and
suppose that nH ∈ SN for all n ∈ SN (in other words, SN is H-invariant). Let
then x1, x2, . . . , xk ∈ SN form a set of representative elements for the orbits of
SN under the action of H, that is,

SN = xH1
∐

xH2
∐

· · ·
∐

xHk ,

and set S′N = {x±1
1 , x±1

2 , . . . , x±1
k

}
. In the following exercises we ask the reader

to investigate the connections between the construction in Sections 8.12 and
8.13 and the semidirect product of groups.

Exercise 8.14.4

(1) Show that

S = SH ∪ S′N
is a symmetric generating subset for G.
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282 Graphs and their products

(2) Prove that the Cayley graph �(G, S) is the modified replacement
product

�(N, S′N ) r©�(H, SH )

defined as follows. The vertex set is G ≡ NH. Each g= nh ∈ G is inci-
dent to |SH | edges of the second type, which connect it with the vertices
{nhs : s ∈ SH}; this is as in Remark 8.12.6. Moreover, nh is also incident
to 2k edges of the first type, which connect it with the vertices{

nhx±1
j ≡ (n · hx±1

j h
−1)h : j = 1, 2, . . . , k

}
.

(3) Show that the set

S̃ =
{
sx±1

j t : s, t ∈ SH, j = 1, 2, . . . , k
}

is another symmetric generating subset for G.
(4) Prove that the Cayley graph �(G, S̃) is the modified zig-zag product

�(N, S′N ) z©�(H, SH )

that may be defined as in Remark 8.13.2 but using the modified replace-
ment product in (2).

Remark 8.14.5 If k = 1 and x1 = x−1
1 , then the modified replacement prod-

uct in Exercise 8.14.4.(2) coincides with an ordinary replacement product. The
same holds for the modified zig-zag product in Exercise 8.14.4.(4). In general,
a modified product may be seen as a “union” of ordinary products.
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9

Expanders and Ramanujan graphs

This chapter is an introduction to the theory of expanders and Ramanujan
graphs. It is based mainly on the exposition in the monograph by Davidoff-
Sarnak-Valette [49] and the paper [74]. First of all, we present the basic
theorems of Alon-Milman and Dodziuk, and of Alon-Boppana-Serre, on the
isoperimetric constant and the spectral gap of a (finite, undirected, connected)
regular graph, and their connections. We discuss a few examples with explicit
computations showing optimality of the bounds given by the above theorems.
Then we give the basic definitions of expanders and describe three fundamental
constructions due to Margulis, Alon-Schwartz-Schapira (based on the replace-
ment product, cf. Section 8.12), and Reingold-Vadhan-Wigderson [128] (based
on the zig-zag product, cf. Section 8.13). In these constructions, the harmonic
analysis on finite Abelian groups (cf. Chapter 2) and finite fields (cf. Chapter
6) we developed so far, plays a crucial role.
The original motivation for expander graphs was to build economical robust

networks (e.g. for phones or computers): an expander with bounded valence is
precisely an asymptotic robust graphwith the number of edges growing linearly
with size (number of vertices), for all subsets. Since their definition, expanders
have found extensive applications in several branches of science and technol-
ogy, for instance: in computer science, in designing algorithms, error correcting
codes, extractors, pseudorandom generators, sorting networks (Ajtai, Komlós,
and Szemerédi, [6]), robust computer networks (as in their initial motivation),
and in cryptography (in order to construct hash functions: these are used in hash
tables to quickly locate a data record given its search key). From a more theo-
retical viewpoint, they have also been used in proofs of many important results
in computational complexity theory, such as SL = L (Reingold, [126]) and the
PCP theorem (Dinur, [56]).
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284 Expanders and Ramanujan graphs

9.1 The Alon-Milman-Dodziuk theorem

In this section we present the discrete analogues, due to Dodziuk [57] and
Alon-Milman [9], of the well-known Cheeger-Buser inequalities in Rieman-
nian geometry (cf. [38] and [26, 27]).
Let G = (X,E, r) be a finite (undirected) k-regular graph (possibly with mul-

tiple edges and loops). Recall that E0 = {e ∈ E : |r(e)| = 1} denotes the set of
all loops of G and E1 = {e ∈ E : |r(e)| = 2} = E \ E0.

Definition 9.1.1 Let F ⊆ X be a set of vertices of G. The boundary of F is the
set

∂F = {e ∈ E : r(e) ∩ F �= ∅ and r(e) ∩ (X \ F ) �= ∅} ⊆ E1

of all edges in G joining (vertices in) F with (vertices in) its complement X \ F .
The isoperimetric constant (also called the Cheeger constant) of G is the

non-negative number

h(G) = min

{ |∂F|
|F| : F ⊆ X, 0 < |F| ≤ |X |

2

}
.

Note that one has

|∂F| =
∑
x∈F
y∈X\F

A(x, y) =
∑

{x,y}∈r(∂F )
A(x, y). (9.1)

Moreover, h(G) is strictly positive if and only if G is connected, and

h(G) ≤ k. (9.2)

Indeed, if G is connected, then ∂F is nonempty for all ∅ �= F � X , thus show-
ing that h(G) > 0. If G is not connected, then there exists a connected compo-
nent whose vertex set F satisfies 0 < |F| ≤ |X |

2 and, clearly, ∂F = ∅, showing,
in this case, that h(G) = 0. Moreover, if ∅ �= F ⊆ X , since G is k-regular, the
total number of edges incident to some vertices in F is at most |F|k, so that
|∂F| ≤ |F|k, and (9.2) follows.

Finally, note that some papers (for instance [10]) use the normalized isoperi-
metric constant (or edge expansion constant) that is defined as h′(G) = h(G )

k ,
and, by virtue of (9.2), satisfies h′(G) ≤ 1.

Let A be the adjacency operator of G and set � = kI − A ∈ End(L(X )),
where, as usual, I denotes the identity map. Then, for f ∈ L(X ) and x ∈ X we
have that

[� f ](x) = k f (x)−
∑
y∈X

A(x, y) f (y) = k f (x)−
∑
y∼x

A(x, y) f (y).
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9.1 The Alon-Milman-Dodziuk theorem 285

Moreover, keeping in mind Proposition 8.1.5 and the notation therein, we have
that the eigenvalues of � are:

λ0 = 0 ≤ λ1 = k − μ1 ≤ · · · ≤ λ|X |−1 = k − μ|X |−1. (9.3)

In the sequel we shall often use the following summation argument.

Remark 9.1.2 In our setting, for a ∈ L(X × X ) symmetric (i.e. such that
a(x, y) = a(y, x) for all x, y ∈ (X) and b ∈ L(X ), we have

∑
{x,y}∈r(E1 )

a(x, y) = 1

2

∑
x∈X

∑
y∈X :
y∼x
y�=x

a(x, y) = 1

2

∑
y∈X

∑
x∈X :
x∼y
x �=y

a(x, y) (9.4)

and, by the regularity of G (namely, deg x = k for all x ∈ X),

∑
{x,y}∈r(E1 )

A(x, y) (b(x)+ b(y)) =
∑
x∈X

(k − A(x, x))b(x). (9.5)

In particular, taking b = 1X we get 2|E1| = k|X | − |E0|, that is,

2|E1| + |E0| = k|X |. (9.6)

Lemma 9.1.3 Let f ∈ L(X ) be real valued. Then

〈� f , f 〉 =
∑

{x,y}∈r(E1 )

A(x, y) ( f (x)− f (y))2 . (9.7)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core


286 Expanders and Ramanujan graphs

Proof. We have∑
{x,y}∈r(E1 )

A(x, y) ( f (x)− f (y))2

=
∑

{x,y}∈r(E1 )

A(x, y)
(
f (x)2 + f (y)2

)
− 2

∑
{x,y}∈r(E1 )

A(x, y) f (x) f (y)

=∗
∑
x∈X

(k − A(x, x)) f (x)2 −
∑
x∈X

∑
y∈X :
y∼x
y�=x

A(x, y) f (x) f (y)

= k
∑
x∈X

f (x)2 −
∑
x∈X

∑
y∈X :
y∼x

A(x, y) f (x) f (y)

= k
∑
x∈X

f (x)2 −
∑
x∈X

∑
y∈X

A(x, y) f (x) f (y)

= k
∑
x∈X

f (x)2 −
∑
x∈X

[A f ](x) f (x)

= k〈 f , f 〉 − 〈A f , f 〉
= 〈� f , f 〉,

where =∗ follows from (9.5) with b(x) = f (x)2, and from (9.4) with a(x, y) =
A(x, y) f (x) f (y). �
Definition 9.1.4 The operator � ∈ End(L(X )) is called the combinatorial
Laplacian and the right hand side of (9.7) the Dirichlet form on G.

The terminology in the above definition is based on the classical mean-
value property of harmonic functions on Rn (which constitute the kernel of
the Euclidean Laplace operator � = ∂2

∂x21
+ ∂2

∂x22
+ · · · + ∂2

∂x2n
).

Remark 9.1.5 Suppose that G = (X,E ) is a finite simple graph without loops.
Recall that we may identify the edge set E with the set of two-elements sets
{x, y} ⊂ X such that x ∼ y. In this setting, the boundary of a subset F ⊂ X is
given by the set of edges

∂F = {{x, y} ∈ E : x ∈ F and y /∈ F} ⊆ E.

Moreover, if G is k-regular, the combinatorial Laplacian and its associated
Dirichlet form (9.7) can be expressed as

[� f ](x) = k f (x)−
∑
y∼x

f (y)
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and

〈� f , f 〉 =
∑

{x,y}∈E
( f (x)− f (y))2 ,

respectively, for all f ∈ L(X ) and x ∈ X .

We recall (cf. Proposition 8.1.4) that ifW0 is the space of constant functions
on X andW1 = { f ∈ L(X ) :

∑
x∈X f (x) = 0}, then L(X ) =W0 ⊕W1.

Lemma 9.1.6 Suppose that G is connected. Then we have

λ1 = k − μ1 = min

{ 〈� f , f 〉
〈 f , f 〉 : f ∈W1, f �= 0

}
(9.8)

and

μ1 = k − λ1 = max

{ 〈A f , f 〉
〈 f , f 〉 : f ∈W1, f �= 0

}
. (9.9)

Proof. Since G is connected, the multiplicity of the eigenvalue λ0 = 0 of � is
one: the corresponding eigenspace isW0 (cf. Proposition 8.1.5). Therefore, the
other eigenvalues of�, namely λ1 ≤ · · · ≤ λn−1 (n = |X |), are all positive with
corresponding eigenfunctions φ1, . . . , φn−1 that can be chosen to be real valued
and to constitute an orthonormal basis ofW1. Then, for every f = α1φ1 + · · · +
αn−1φn−1 ∈W1 \ {0} (α1, . . . , αn−1 ∈ C) we have

〈� f , f 〉 =〈�(α1φ1 + · · · + αn−1φn−1), α1φ1 + · · · + αn−1φn−1〉
= 〈λ1α1φ1 + · · · + λn−1αn−1φn−1, α1φ1 + · · · + αn−1φn−1〉
= λ1|α1|2 + · · · + λn−1|αn−1|2

(by (9.3)) ≥ λ1|α1|2 + · · · + λ1|αn−1|2
= λ1(|α1|2 + · · · + |αn−1|2)
= λ1〈 f , f 〉,

showing that λ1 ≤ 〈� f , f 〉
〈 f , f 〉 . Since λ1 = 〈�φ1,φ1〉

〈φ1,φ1〉 , (9.8) follows. The proof of (9.9)
is analogous and is left to the reader. �

Theorem 9.1.7 (Alon-Milman) Let G = (X,E, r) be a finite connected k-
regular graph. Then

k − μ1

2
≤ h(G).
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Proof. We apply Lemma 9.1.6 to a suitable function in W1. For F ⊆ X such
that 0 < |F| ≤ |X |

2 , we define fF ∈ L(X ) by setting

fF (x) =
{
|X \ F| if x ∈ F

−|F| if x ∈ X \ F .
Then

∑
x∈X fF (x) = |X \ F| · |F| − |F| · |X \ F| = 0, so that fF ∈W1, and

〈 fF , fF〉 =
∑
x∈X

fF (x)
2 = |X \ F|2 · |F| + |F|2 · |X \ F|

= |X \ F| · |F| · (|X \ F| + |F|) = |X \ F| · |F| · |X |.
Moreover,

fF (x)− fF (y) =
{
±|X | if {x, y} ∈ r(∂F )

0 otherwise.

Therefore, by virtue of Lemma 9.1.3 we have

〈� fF , fF〉 =
∑

{x,y}∈r(E1 )

A(x, y) ( fF (x)− fF (y))
2

= |X |2
∑

{x,y}∈r(∂F )
A(x, y)

(by (9.1)) = |X |2 · |∂F|.
Thus, from Lemma 9.1.6 we deduce that

|X |
|X \ F| ·

|∂F|
|F| = |X |2 · |∂F|

|X \ F| · |F| · |X | =
〈� fF , fF〉
〈 fF , fF〉 ≥ λ1 = k − μ1.

Since |F| ≤ |X |
2 , we have |X\F|

|X | ≥ 1
2 and therefore

|∂F|
|F| ≥ (k − μ1)

|X \ F|
|X | ≥ k − μ1

2
. (9.10)

As the isoperimetric constant h(G) is, by definition, the minimum of the left
hand side values (with 0 < |F| ≤ |X |

2 ) of (9.10), the statement follows. �

In the following theorem we give an upper bound for the isoperimetric con-
stant.

Theorem 9.1.8 (Dodziuk) Let G = (X,E, r) be a finite connected k-regular
graph. Then

h(G) ≤
√
2k(k − μ1).
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Proof. Let f ∈ L(X ) be a non-negative function and denote by αr > αr−1 >

· · · > α1 > α0 ≥ 0 its values. Consider the map j : X → {0, 1, . . . , r} defined
by

f (x) = α j(x)

for all x ∈ X (such a map j is clearly well defined). We also define the level sets

Xi = {x ∈ X : f (x) ≥ αi} ≡ {x ∈ X : j(x) ≥ i}

for i = 0, 1, . . . , r. Clearly, X0 = X ⊃ X1 ⊃ · · · ⊃ Xr �= ∅. Finally, set

Bf =
∑

{x,y}∈r(E )
A(x, y)| f (x)2 − f (y)2| =

∑
{x,y}∈r(E1 )

A(x, y)| f (x)2 − f (y)2|.

Claim 1.

Bf =
r∑

h=1

|∂Xh|(α2
h − α2

h−1).

Proof of Claim 1. Given any {x, y} ∈ r(E1) we may suppose, up to exchanging
x and y, that f (x) ≥ f (y), equivalently, j(x) ≥ j(y). This way, we have

r(∂Xh) = {{x, y} : j(y) < h ≤ j(x)} (9.11)

for all h = 1, 2, . . . , r. Moreover,

Bf =
∑

{x,y}∈r(E1 ):
j(x)> j(y)

A(x, y)
(
α2
j(x) − α2

j(y)

)= ∑
{x,y}∈r(E1 ):
j(x)> j(y)

A(x, y)
j(x)∑

h= j(y)+1

(α2
h − α2

h−1).

In the last expression, each “telescopic” summand (α2
h − α2

h−1) appears exactly
A(x, y) times for every {x, y} ∈ r(E1) such that j(x) ≥ h > j(y), equivalently
(cf. (9.11)), exactly A(x, y) times for every {x, y} ∈ r(∂Xh). In other words,
each “telescopic” summand appears exactly |∂Xh| times (cf. (9.1)). The claim
follows. �

Claim 2.

Bf ≤
√
2k ‖ f‖ 〈� f , f 〉 1

2 .

Proof of Claim 2. From the inequality 2ab ≤ a2 + b2, for all a, b ∈ R, we
deduce that

( f (x)+ f (y))2 = f (x)2 + f (y)2 + 2 f (x) f (y) ≤ 2[ f (x)2 + f (y)2] (9.12)
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for all x, y ∈ X . Now,

Bf =
∑

{x,y}∈r(E1 )

√
A(x, y)| f (x)+ f (y)| ·

√
A(x, y)| f (x)− f (y)|

≤(∗)

⎧⎨⎩ ∑
{x,y}∈r(E1 )

A(x, y)[ f (x)+ f (y)]2

⎫⎬⎭
1
2
⎧⎨⎩ ∑
{x,y}∈r(E1 )

A(x, y)[ f (x)− f (y)]2

⎫⎬⎭
1
2

≤(∗∗)
√
2

⎧⎨⎩ ∑
{x,y}∈r(E1 )

A(x, y)[ f (x)2 + f (y)2]

⎫⎬⎭
1
2

〈� f , f 〉 1
2

=(∗∗∗)
√
2

{∑
x∈X

(k − A(x, x)) f (x)2
} 1

2

〈� f , f 〉 1
2

≤
√
2k

{∑
x∈X

f (x)2
} 1

2

〈� f , f 〉 1
2 ,

where ≤(∗) follows from the Cauchy-Schwarz inequality, ≤(∗∗) follows from
(9.12) and Lemma 9.1.3, and =(∗∗∗) follows from (9.5). �

We recall that the support of f ∈ L(X ) is the set

supp( f ) = {x ∈ X : f (x) �= 0}.

Claim 3. Suppose that

|supp( f )| ≤ |X |
2

.

Then

Bf ≥ h(G)‖ f‖2.

Proof of Claim 3. By our hypothesis on f , we have α0 = 0, so that X1 =
supp( f ), and 0 < |Xh| ≤ |X |

2 for every h = 1, 2, . . . , r. Keeping in mind the
definition of the isoperimetric constant, this implies that

|∂Xh| ≥ h(G)|Xh| (9.13)
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for every h = 1, 2 . . . , r. From Claim 1 we deduce that

Bf =
r∑

h=1

|∂Xh|(α2
h − α2

h−1)

(by (9.13)) ≥ h(G)
r∑

h=1

|Xh|(α2
h − α2

h−1)

= h(G)
[|Xr|(α2

r − α2
r−1)+ |Xr−1|(α2

r−1 − α2
r−2)+

+ · · · + |X2|(α2
2 − α2

1 )+ |X1|α2
1

]
= h(G)

[|Xr|α2
r + |Xr−1 \ Xr|α2

r−1+
+|Xr−2 \ Xr−1|α2

r−2 + · · · + |X1 \ X2|α2
1

]
= h(G)‖ f‖2,

where the last equality follows from the fact that Xh−1 \ Xh is the set on which
f takes the value αh−1. �

Claim 4. Let 1 ≤ i ≤ n− 1. Denote by φi ∈ L(X ) a real eigenfunction associ-
ated with the eigenvalue λi = k − μi and define fi ∈ L(X ) by setting

fi(x) = max{φi(x), 0} = φi(x)+ |φi(x)|
2

for all x ∈ X. Then

[� fi](x) ≤ λiφi(x)

for all x ∈ X such that φi(x) > 0. Moreover, we have

〈� fi, fi〉 ≤ λi‖ fi‖2.

Proof of Claim 4. Let x ∈ X such that φi(x) > 0. Then we have fi(x) = φi(x)
and therefore

[� fi](x) = k fi(x)−
∑
y∈X

A(x, y) fi(y)

= kφi(x)−
∑
y∈X :

φi(y)>0

A(x, y)φi(y)

≤ kφi(x)−
∑
y∈X

A(x, y)φi(y)

= [�φi](x)

= λiφi(x),
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proving the first part of the claim. On the other hand,

〈� fi, fi〉 =
∑
x∈X

[� fi](x) fi(x) =
∑
x∈X :

φi(x)>0

[� fi](x)φi(x)

≤ λi
∑
x∈X :

φi(x)>0

φi(x)
2 = λi‖ fi‖2,

where the inequality follows from the first part of the claim. �

We are now in a position to complete the proof of Dodziuk’s Theorem.
Let φ1 be a real eigenfunction associated with the eigenvalue λ1 = k − μ1.

Switching φ1 with −φ1, if necessary, we may suppose that the subset X+ =
{x ∈ X : φ1(x) > 0} satisfies the condition 0 < |X+| ≤ |X |

2 (observe that since
φ1 ∈W1 and φ1 �≡ 0, the set {x ∈ X : φ1(x) > 0} is nonempty). Taking into
account, in order, Claim 3, Claim 2, and Claim 4 (and the notation therein), we
deduce

h(G)‖ f1‖2 ≤ Bf1 ≤
√
2k〈� f1, f1〉 1

2 ‖ f1‖ ≤
√
2k(k − μ1)‖ f1‖2,

and the statement follows after dividing by ‖ f1‖2. �

Definition 9.1.9 Let G = (X,E, r) be a finite connected k-regular graph.
Denote by k = μ0 > μ1 ≥ · · · ≥ μn the eigenvalues of the adjacency matrix
of G. The spectral gap of G is the positive number

δ(G) = μ0 − μ1 = k − μ1.

Remark 9.1.10 The theorem of Alon-Milman ensures that, in order to have a
“large” isoperimetric constant h(G), it suffices to have a “large” spectral gap
δ(G). Conversely, the theorem of Dodziuk ensures that this is also a necessary
condition. More specifically:

δ(G) ≥ δ ⇒ h(G) ≥ δ

2
(Alon-Milman)

h(G) ≥ ε ⇒ δ(G) ≥ ε2

2k
(Dodziuk).

In the remainder of this section we compare the exact values of the isoperi-
metric constant with the estimates provided by the theorems of Alon-Milman
and Dodziuk for some graphs presented in Chapter 8.

Example 9.1.11 (The complete graph) Let Kn be the complete graph on n ≥
1 vertices (cf. Section 8.4). Recall that the graphKn is regular of degree k = n−
1 and the eigenvalues of the associated adjacency matrix are μ0 = n− 1 (with
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multiplicity one) and μ1 = −1 (with multiplicity n− 1). As a consequence, by
virtue of Theorem 9.1.7 and Theorem 9.1.8, the isoperimetric constant h(Kn)
satisfies

n

2
= k − μ1

2
≤ h(Kn) ≤

√
2k(k − μ1) =

√
2(n− 1)n ≤

√
2n.

Moreover, if Fh = {1, 2, . . . , h}, h = 1, 2, . . . , n, we have |∂Fh| = h(n− h) so

that
|∂Fh|
|Fh| = n− h. It follows that

h(Kn) = min
1≤h≤n/2

|∂Fh|
|Fh| = |∂F[n/2]|

|F[n/2]| = n− [n/2],

where, as usual, [·] denotes the integer part (floor function). It follows that
h(Kn) ≈ n/2 showing that the Alon-Milman inequality is asymptotically opti-
mal; in fact, for n even we have h(Kn) = n/2 and, in this case, the Alon-Milman
inequality is indeed an equality.

Example 9.1.12 (The hypercube) Let Qn = (Xn,En) be the n-dimensional
hypercube, n ≥ 1 (cf. Section 8.5). Recall that Xn = {0, 1}n, the graph Qn is
regular of degree k = n, and that the second eigenvalue of the associated adja-
cency matrix is μ1 = n− 2. As a consequence, by virtue of Theorem 9.1.7 and
Theorem 9.1.8, the isoperimetric constant h(Qn) satisfies

1 = k − μ1

2
≤ h(Qn) ≤

√
2k(k − μ1) =

√
4n = 2

√
n. (9.14)

Moreover, if F ′ = {x ∈ Xn : x1 = 0} is the hyperplane x1 = 0, we have |F ′| =
|Xn|/2 = 2n−1 and, for every x ∈ F ′, there exists exactly one edge in ∂F ′ issuing
from the vertex x, namely {x, x′}, where x′1 = 1 and x′i = xi for i = 2, 3, . . . , n.
It follows that |∂F ′| = |F ′| and therefore from the Left Hand Side estimate in
(9.14) we deduce

1 ≤ h(Qn) = min
0<|F|≤2n−1

|∂F|
|F| ≤ |∂F ′|

|F ′| = 1,

showing that h(Qn) = 1. We remark that, as for the complete graph, the Alon-
Milman inequality is indeed an equality.

Example 9.1.13 (The discrete circle) Let Cn = (Xn,En) be the discrete circle
on n ≥ 3 vertices (cf. Section 8.6). Recall that Xn = Zn, the graph Cn is regular
of degree k = 2, and that the second eigenvalue of the associated adjacency

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core


294 Expanders and Ramanujan graphs

matrix is μ1 = 2 cos(2π/n). As a consequence, by virtue of Theorem 9.1.7
and Theorem 9.1.8, the isoperimetric constant h(Cn) satisfies

1− cos(2π/n) = k − μ1

2
≤ h(Cn) ≤

√
2k(k − μ1) = 2

√
2(1− cos(2π/n)).

(9.15)
Let Fh = {0, 1, . . . , h}, h = 0, 1, . . . , [n/2]− 1. Then 0 < |Fh| = h+ 1 ≤
[n/2] and ∂Fh consists of the two edges {n− 1, 0} and {h, h+ 1}, so that

|∂Fh| = 2 and
|∂Fh|
|Fh| = 2

h
. It is also clear that if F ⊆ Xn, 0 < |F| ≤ [n/2] is

not connected (as a subgraph of Cn), then |∂F| > 2. It follows that

h(Cn) = min
0<|F|≤[n/2]

|∂F|
|F| = min

0<h≤[n/2]−1

2

h+ 1
= 2

[n/2]
≈ 4

n
.

Comparing with (9.15), since

1− cos(2π/n) = 2 sin2(π/n) ≈ 2π2

n2

and

2
√
2(1− cos(2π/n)) = 4 sin(π/n) ≈ 4π

n
,

we deduce that in this case the upper bound provided by Dodziuk (Theorem
9.1.8) is asymptotically better than the lower bound provided by Alon-Milman
(Theorem 9.1.7).

Example 9.1.14 (The 2-regular segment) Let Gn = (Xn,En, rn) be the 2-
regular segment on n ≥ 2 vertices (cf. Exercise 8.6.3). Recall that Xn =
{0, 1, 2, . . . , n− 1} and that the second eigenvalue of the associated adjacency
matrix is μ1 = 2 cos(π/n) (cf. (8.10)). The isoperimetric constant h(Gn) then
satisfies the inequalities

1− cos(π/n) = k − μ1

2
≤ h(Gn) ≤

√
2k(k − μ1) = 2

√
2(1− cos(π/n)).

(9.16)
For 0 ≤ h ≤ k ≤ [n/2]− 1 we set Fh,k = {h, h+ 1, . . . , k}. Then |Fh,k| = k −
h+ 1 ≤ [n/2] and

∂Fh,k =
{
{{h− 1, h}, {k, k + 1}} if h > 0

{{k, k + 1}} if h = 0.

We then have

|∂Fh,k|
|Fh,k| ≥ |∂F0,k|

|F0,k| = 1

k + 1
≥ 1

[n/2]
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so that

h(Gn) = min
0<|F|≤[n/2]

|∂F|
|F| = min

0<k≤[n/2]−1

1

k + 1
= 1

[n/2]
≈ 2

n
.

Comparing with (9.16), since

1− cos(π/n) = 2 sin2(π/2n) ≈ π2

2n2

and

2
√
2(1− cos(π/n)) = 4 sin(π/2n) ≈ 2π

n
,

we deduce that, as for the discrete circle, the upper bound provided by Dodziuk
is asymptotically better than the lower bound provided by Alon-Milman.

9.2 The Alon-Boppana-Serre theorem

In this section we present the Alon-Boppana-Serre Theorem. A weaker ver-
sion (cf. Corollary 9.2.7) was originally proved by Alon and Boppana [7]. The
present statement (cf. Theorem 9.2.6) is due to J.P. Serre [146] who studied
eigenvalues of Hecke operators and their distribution. Our proof closely fol-
lows the presentation in the monograph by Davidoff, Sarnak, and Valette [49].
For another proof, due to Alon Nilli, we refer to the next section.
Let G = (X,E, r) be a finite connected k-regular graph.

Definition 9.2.1 (Hecke operators) Apath p = (x0, e1, x1, e2, . . . , er, xr ) inG
is said to be non-backtracking if ei+1 �= ei for all i = 1, 2, . . . , r − 1.

(a) For r ≥ 1 define the X × X matrix Ar by setting

Ar(x, y) = |{non-backtracking paths of length r from x to y}|
for all x, y ∈ X .

(b) For m ≥ 1 set

Tm =
∑

0≤r≤[m/2]

Am−2r.

We also set T0 = A0 = I the identity matrix.

Clearly, A1 = T1 equals the adjacency matrix A of G. Moreover, T2 = A0 +
A2 and, more generally, for h ≥ 1,

T2h = A0 + A2 + · · · + A2h and T2h+1 = A1 + A3 + · · · + A2h+1. (9.17)
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Proposition 9.2.2 (Hecke relations I) The matrices Aj’s satisfy the following
relations:

(i) A2
1 = A2 + kI;

(ii) A1Ar = ArA1 = Ar+1 + (k − 1)Ar−1 for all r ≥ 2.

Proof. Let x, y ∈ X and r ∈ N. We first recall (cf. Proposition 8.1.6) that
Ar1(x, y) equals the number of all paths of length r connecting x and y, in par-
ticular, A1(x, y) �= 0 if and only if x ∼ y.

(i) If x and y are distinct, then a path of length 2 connecting x and y is
necessarily non-backtracking. Therefore, A2

1(x, y) = A2(x, y).
Suppose now that x = y. For every neighbor z ∼ x (possibly,

z = x) there are exactly A(x, z) edges connecting x and z. Thus,
among all the A(x, z)2 paths p = (x, e1, z, e2, x) of length 2 start-
ing at x, passing by z, and returning at x (note that A(x, z)2 =
A(x, z)A(z, x)), there are exactly A(x, z) which are backtracking (e1 =
e2) and A(x, z)(A(x, z)− 1) which are non-backtracking (e1 �= e2).
Altogether we have

A2(x, x) =
∑
z∼x

A(x, z)2=
∑
z∼x

A(x, z)+
∑
z∼x

A(x, z)(A(x, z)− 1)

= k + A2(x, x),

showing that A2
1 = A2 = A2 + kI.

(ii) By definition we have

[A1Ar](x, y) =
∑
z∈X

A1(x, z)Ar(z, y). (9.18)

Now, Ar(z, y) counts the number of non-backtracking paths of length r connect-
ing z and y. If (z = x0, e1, x1, e2, . . . , xr−1, er, xr = y) is one of these paths, we
have two possibilities:

(a) x �= x1: then for every e ∈ E such that r(e) = {x, z}, we have that
(x, e, z = x0, e1, x1, e2, . . . , xr−1, er, xr = y) is a non-backtracking path
of length r + 1 connecting x and y, and it contributes to the count of
Ar+1(x, y);

(b) x = x1: then (x = x1, e2, x2, e3, . . . , xr−1, er, xr = y) is a non-
backtracking path of length r − 1 connecting x and y: it contributes
to the count of Ar−1(x, y) and it appears exactly (k − 1) times in
(9.18) since e1 can be any of the (k − 1)-edges such that r(e1) � x and
e1 �= e2.
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This shows the equality A1Ar = Ar+1 + (k − 1)Ar−1. The proof that ArA1 =
Ar+1 + (k − 1)Ar−1 (thus yielding also A1Ar = ArA1) is similar and it is left to
the reader. �

Corollary 9.2.3 (Hecke relations II) For all m ≥ 1 we have

Tm+1 = TmT1 − (k − 1)Tm−1.

Proof. By Proposition 9.2.2.(i) we have

T 2
1 = A2

1 = A2 + kI = T2 + (k − 1)T0

and the case m = 1 immediately follows. In order to prove the general case
observe that, for h ≥ 1,

T2hT1 = T2hA1

(by (9.17)) = A0A1 + A2A1 + · · · + A2hA1

(by Proposition 9.2.2.(ii)) = A1+A3+· · ·+A2h+1

+ (k − 1)(A1+A3+· · ·+A2h−1)

(again by (9.17)) = kT2h−1 + A2h+1,

and, similarly,

T2h+1T1 = A2
1 + A3A1 + · · · + A2h+1A1

= A2 + kA0 + A4 + · · · + A2h+2 + (k − 1)(A2 + A4 + · · · + A2h)

= kA0 + A2h+2 + k(A2 + · · · + A2h)

= kT2h + A2h+2.

In other words,

TmT1 = kTm−1 + Am+1

for all m ≥ 2. From this we deduce

Tm+1 − [TmT1 − (k − 1)Tm−1] = Tm+1 − kTm−1 − Am+1 + (k − 1)Tm−1

= Tm+1 − Tm−1 − Am+1

= 0,

and the statement follows. �

Let Pm denote the modified Chebyshev polynomial as in (A.4).

Theorem 9.2.4 For every m ∈ N we have

Tm = Pm(A).
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Proof. We proceed by induction on m. Clearly, P0 = 1 so that P0(A) = I = T0,
while P1(x) = x so that P1(A) = A = T1. Moreover,

Pm+1(A) = Pm(A)A− (k − 1)Pm−1(A)

= TmT1 − (k − 1)Tm−1

= Tm+1,

where the first equality follows from Lemma A.9, the second one from the
inductive hypothesis, and the last one from Corollary 9.2.3. �

Theorem 9.2.5 (Trace formula) Denoting by μ0 ≥ μ1 ≥ · · · ≥ μn−1 the
eigenvalues of A, we have

∑
x∈X

∑
0≤r≤[m/2]

Am−2r(x, x) =
n−1∑
j=0

Pm(μ j )

for all m ≥ 1.

Proof. First note that

TrA� = μ�
0 + μ�

1 + · · · + μ�
n−1 (9.19)

for all � ∈ N. Then we compute TrTm in two different ways. By definition of
Tm (cf. Definition 9.2.1) we have

TrTm =
∑

0≤r≤[m/2]

TrAm−2r =
∑

0≤r≤[m/2]

∑
x∈X

Am−2r(x, x).

On the other hand, from Theorem 9.2.4 we deduce that

TrTm = TrPm(A) =
n−1∑
j=0

Pm(μ j ),

where the last equality follows from (9.19) and linearity of the trace. �

Theorem 9.2.6 (Alon-Boppana-Serre) For every ε > 0 and k ≥ 3 there exists
a positive constant C(ε, k) such that for every finite connected k-regular graph
G = (X,E, r) the number of eigenvalues of the corresponding adjacencymatrix
belonging to the interval [(2− ε)

√
k − 1, k] is at least C(ε, k)|X |. Note that

C(ε, k) does not depend on |X | but only on ε and k.

Proof. Let G = (X,E, r) be a finite connected k-regular graph with |X | = n
vertices and denote byμ0 ≥ μ1 ≥ · · · ≥ μn−1 the eigenvalues of the associated
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adjacency matrix. From Theorem 9.2.5 and (A.6) we then deduce that

n−1∑
j=0

Xm

(
μ j√
k − 1

)
≥ 0 (9.20)

for all m ∈ N. Let Zε be as in Corollary A.14. Then, by (9.20) and Corollary
A.14.(i), we have

n−1∑
j=0

Zε

(
μ j√
k − 1

)
≥ 0.

Set q = q(ε, k) = max[2−ε,k/
√
k−1] Zε and observe that, by virtue of Corol-

lary A.14.(iii), we have q > 0 (since k ≥ 3 implies k√
k−1

> 2). If μ j ≥ (2−
ε)
√
k − 1 for all j = 0, 1, . . . , n− 1 there is nothing to prove. Otherwise, there

exists 0 < j0 ≤ n− 1 such that

μ j ≥ (2− ε)
√
k − 1 for 0 ≤ j < j0

μ j < (2− ε)
√
k − 1 for j0 ≤ j ≤ n− 1.

Then
j0−1∑
j=0

Zε

(
μ j√
k − 1

)
≤ q j0

while, by virtue of Corollary A.14.(ii),

n−1∑
j= j0

Zε

(
μ j√
k − 1

)
≤ −(n− j0).

Therefore

0 ≤
n−1∑
j=0

Zε

(
μ j√
k − 1

)
≤ q j0 − (n− j0) = −n+ j0(q+ 1)

so that the number j0 of eigenvalues in [(2− ε)
√
k − 1, k] satisfies

j0 ≥ n

q+ 1
= 1

q+ 1
|X |,

and the proof is achieved by taking C(ε, k) = 1
q+1 . �

Corollary 9.2.7 (Alon-Boppana) Let Gn = (Xn,En, rn), n ∈ N, be a family of
finite connected k-regular graphs, k ≥ 2, such that limn→∞ |Xn| = +∞. Then

lim inf
n→∞ μ1(Gn) ≥ 2

√
k − 1.
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Proof. For k = 2, each Gn is either a cycle or a 2-regular segment (cf. Exercise
8.6.3), and the result follows from (8.9) and Exercise 8.6.3, respectively. For
k ≥ 3, the statement follows from the previous theorem (since

lim inf
n→∞ μ1(Gn) ≥ (2− ε)

√
k − 1

for all ε > 0). �

9.3 Nilli’s proof of the Alon-Boppana-Serre theorem

We now give an alternative proof of the Alon-Boppana-Serre theorem given by
Alon Nilli [122] (a pseudonym of Noga Alon: Nilli Alon is his daughter; see
[5] for a picture of Nilli Alon when she was a child). Our proof extends the
original proof in [122] to graphs with multiple edges but with no loops. See
also the discussion in [74].
We begin with an elementary lemma.

Lemma 9.3.1 Let k and h be positive integers with k ≥ 3. Set α = π
2h and

βi = cos[(i− h)α]

(k − 1)i/2

for i = 0, 1, . . . , 2h. Then the sequence β0, β1, . . . , β2h is unimodal, that is,
there exists 0 ≤ i0 ≤ 2h such that

β0 < β1 · · · < βi0 < βi0+1 ≥ βi0+2 ≥ · · · ≥ β2h.

More precisely:

� for k = 3, i0 = 2
� for k = 4, i0 = 1
� for k ≥ 5, i0 = 0.

Proof. First of all, note that (recall that α = π
2h )

cos[(i− h)α] = cos

(
iπ

2h
− π

2

)
= sin

iπ

2h
= sin(iα). (9.21)

Therefore, for 1 ≤ i ≤ 2h− 1,

βi+1

βi
= sin[(i+ 1)α]√

k − 1 sin(iα)
. (9.22)

The function

g(α) = i sin[(i+ 1)α]− (i+ 1) sin(iα)
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satisfies g(0) = 0 and

g′(α) = i(i+ 1) (cos[(i+ 1)α]− cos(iα)) ≤ 0

for 0 ≤ iα ≤ (i+ 1)α ≤ π . This is the case since (i+ 1)α ≤ 2h π
2h = π . Then

0 = g(0) ≥ g(α) and therefore, from (9.22), it follows that

βi+1

βi
≤ i+ 1

i
√
k − 1

, (9.23)

for 1 ≤ i ≤ 2h− 1. On the other hand, by the addition formulas for the sine
function applied to the numerator of (9.22), we get

βi+1

βi
= cosα + cot(iα) sinα√

k − 1
, (9.24)

so that βi+1

βi
is decreasing for 1 ≤ i ≤ 2h− 1. Moreover, from (9.21) β0 = 0 <

β1 = 1√
k−1

sin π
2h . Then we can take i0 + 1 as the smallest 1 ≤ i ≤ 2h− 1 such

that the quantity in (9.24) is smaller than 1: this exists because for i = h the
quantity in (9.24) is equal to cosα√

k−1
< 1 (recall that k ≥ 3).

We now determine the values of i0 for all k ≥ 3.

Case k = 3. For i = 3, from (9.23) we get β4

β3
≤ 4

3
√
2
< 1. Note that for i = 2,

from (9.22) we get

β3

β2
= sin 3α√

2 sin 2α
→

h→+∞
3

2
√
2

> 1,

so that i0 = 2 is the correct index that works for all h.
Case k = 4. Again from (9.23) for i = 2 we get β3

β2
≤ 3

2
√
3
< 1. For i = 1 we

have β2

β1
= sin 2α√

3 sinα
→

h→+∞
2√
3
. Therefore, i0 = 1.

Case k ≥ 5. From (9.22), for i = 1 we get

β2

β1
= sin 2α√

k − 1 sinα
= 2 cosα√

k − 1
≤ 1.

Then we have i0 = 0. �

Let now G = (X,E, r) be a finite graph. Given two subsets Y,Z ⊆ X we set

A(Y,Z) =
∑

(y,z)∈Y×Z
A(y, z). (9.25)

In other words, A(Y,Z) equals the number of edges that join a vertex in Y with
a vertex in Z. Note that A({y}, {z}) = A(y, z), so that we shall also write A(y,Z)
instead of A({y},Z), for all y, z ∈ X and Z ⊆ X . Moreover, if x1, x2 ∈ Y ∩ Z are
distinct and adjacent, then in the sum (9.25) the equal summands A(x1, x2) and
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A(x2, x1) both appear, giving altogether a contribution of 2A(x1, x2); in other
words, the edges in r−1({x1, x2}) are counted twice.
For k and h positive integers, with k ≥ 3, we set

γi = βi+i0 for 0 ≤ i ≤ 2h− i0, (9.26)

where the βi’s and i0 are as in Lemma 9.3.1. Note that γ2h−i0 = β2h = cos π
2

= 0.
We now give a second lemma, of a pure combinatorial nature, which is the

core of the proof of the main theorem of this section.

Lemma 9.3.2 Let G = (X,E, r) be a finite connected k-regular graph, with
k ≥ 3, and denote by A its adjacency matrix. Suppose there exists a vertex x0 ∈
X with no loops based at it, and define f ∈ L(X ) by setting

f (x) =
{
γi if 0 ≤ d(x, x0) = i < 2h− i0

0 if d(x, x0) ≥ 2h− i0,

where the γi’s are as in (9.26). Then

〈A f , f 〉L(X ) ≥ 〈 f , f 〉L(X )2
√
k − 1 cosα.

Proof. Set Xi = {x ∈ X : d(x, x0) = i} and ni = |Xi|. By our assumption on x0
we have A(x0, x0) = 0 and therefore

A(x0,X1) = k = |X1| = n1. (9.27)

Moreover, for i ≥ 1,

A(Xi−1,Xi) ≥ |Xi| = ni (9.28)

and

A(Xi−1,Xi)+ A(Xi,Xi)+ A(Xi+1,Xi) = kni (9.29)

because the left hand side counts all edges with a vertex in Xi (and the edges
with both vertices in Xi, but which are not loops, are counted twice). Then

〈 f , f 〉L(X ) =
∑
x∈X

f (x)2 =
2h−i0−1∑
i=0

∑
x∈Xi

f (x)2 =
2h−i0−1∑
i=0

niγ
2
i (9.30)
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and

〈A f , f 〉L(X ) =
∑
x∈X

∑
y∈X :
y∼x

A(x, y) f (x) f (y)

=
2h−i0−1∑
i=0

γi
∑
x∈Xi

∑
y∈X :
y∼x

A(x, y) f (y)

= γ0γ1A(x0,X1)+

+
2h−i0−1∑
i=1

γi [γi−1A(Xi−1,Xi)+ γiA(Xi,Xi)+ γi+1A(Xi+1,Xi)] .

(9.31)

In order to give a lower bound for (9.31), we first note that from 0 ≤ γ0 < γ1

(cf. Lemma 9.3.1) and (9.27) we deduce that

γ0γ1A(x0,X1) ≥ γ 2
0 A(x0,X1) = γ 2

0 k ≥ [2
√
k − 1 cosα]γ 2

0 (9.32)

(the last inequality follows immediately from (k − 2)2 ≥ 0 and cosα ≤ 1).
In the last line of (9.31), for the first term of the sum, corresponding to i = 1,

keeping in mind (9.27) and γ1 ≥ γ2, we have

γ0A(X0,X1)+ γ1A(X1,X1)+ γ2A(X2,X1)

≥ γ0A(X0,X1)+ γ2[A(X1,X1)+ A(X2,X1)]

(by (9.29)) = γ0A(X0,X1)+ γ2[kn1 − A(X0,X1)]

(by (9.27)) = γ0k + γ2[k
2 − k]

= k[γ0 + (k − 1)γ2]

(by (9.27)) = n1[γ0 + (k − 1)γ2].

As far as the terms corresponding to i ≥ 2 are concerned, keeping in mind
that γi−1 ≥ γi ≥ γi+1, from (9.28) and (9.29) we deduce that

γi−1A(Xi−1,Xi)+ γiA(Xi,Xi)+ γi+1A(Xi+1,Xi)

≥ γi−1A(Xi−1,Xi)+ γi+1[A(Xi,Xi)+ A(Xi+1,Xi)]

= γi−1[ni − ni + A(Xi−1,Xi)]+ γi+1[A(Xi,Xi)+ A(Xi+1,Xi)]

= γi−1ni + γi−1[A(Xi−1,Xi)− ni]+ γi+1[A(Xi,Xi)+ A(Xi+1,Xi)]

≥ γi−1ni + γi+1[A(Xi−1,Xi)− ni]+ γi+1[A(Xi,Xi)+ A(Xi+1,Xi)]

= γi−1ni + γi+1[−ni + A(Xi−1,Xi)+ A(Xi,Xi)+ A(Xi+1,Xi)]

= γi−1ni + γi+1(k − 1)ni

= ni[γi−1 + (k − 1)γi+1].
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Moreover, for all i ≥ 1 we have

ni[γi−1 + (k − 1)γi+1]

=
√
k − 1

(k − 1)(i+i0 )/2
ni {cos[(i+ i0 − h− 1)α]+ cos[(i+ i0 − h+ 1)α]}

= 2
√
k − 1

(k − 1)(i+i0 )/2
ni cosα cos[(i+ i0 − h)α]

= [2
√
k − 1 cosα]ni

cos[(i+ i0 − h)α]

(k − 1)(i+i0 )/2

= [2
√
k − 1 cosα]niγi,

where the first equality follows from (9.26).
Using the above estimates, we get the desired lower bound for (9.31):

〈A f , f 〉L(X ) ≥ [2
√
k − 1 cosα]

2h−i0−1∑
i=0

niγ
2
i

(by (9.30)) = [2
√
k − 1 cosα]〈 f , f 〉L(X ).

�

To derive the main result of this section, we need to recall the Courant-
Fischer min-max formula for the eigenvalues of a Hermitian operator.

Exercise 9.3.3 (Courant-Fischer min-max formula) Let W be an n-dimen-
sional vector space and T : W →W a Hermitian operator. Denote by μ0 ≥
μ1 ≥ · · · ≥ μn−1 the (real) eigenvalues of T and by {u0, u1, . . . , un−1} a cor-
responding orthonormal basis of eigenvectors. Let 0 ≤ s ≤ n− 1. Denote by
G(W, s) the Grassmann variety of all s-dimensional subspaces of W and set
Us = 〈us, us+1, . . . , un−1〉.

(1) Prove that for each V ∈ G(W, s+ 1) one has dim(V ∩Us) ≥ 1
Hint: use the Grassmann identity.

(2) Show that

max{〈Tw,w〉 : w ∈ Us, ‖w‖ = 1} = μs.

(3) From (1) and (2) deduce that for each V ∈ G(W, s+ 1)

min{〈Tv, v〉 : v ∈ V, ‖v‖ = 1} ≤ μs.

(4) Show that if V = 〈u0, u1, . . . , us〉 then
min{〈Tv, v〉 : v ∈ V, ‖v‖ = 1} = μs.
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(5) From (3) and (4) deduce the Courant-Fischer min-max formula

max
V∈G(W,s+1)

min{〈Tv, v〉 : v ∈ V, ‖v‖ = 1} = μs.

We are now in position to present some fundamental estimates for the eigen-
values of a k-regular graph.

Theorem 9.3.4 Let G = (X,E, r) be a finite connected k-regular graph, k ≥ 3,
with no loops. Suppose that there exist a positive integer h and s+ 1 vertices
x1, x2, . . . , xs+1 ∈ X such that d(xi, x j ) ≥ 4h, for i �= j. Then

μs(G) ≥ 2
√
k − 1 cos

π

2h
. (9.33)

Proof. For j = 1, 2, . . . , s+ 1 define f j ∈ L(X ) by setting

f j(x) =
{
γi if 0 ≤ d(x, x j ) = i ≤ 2h− i0

0 if d(x, x j ) > 2h− i0,

where the γi’s are as in (9.26). Then 〈 f j, fk〉L(X ) = 0 (because f j and fk have
disjoint supports) for 1 ≤ j �= k ≤ s+ 1, so that U = 〈 f1, f2, . . . , fs+1〉 is an
(s+ 1)-dimensional subspace of L(X ). Moreover, from Lemma 9.3.2 (where
x0 therein is replaced time after time by x1, x2, . . . , xs+1) we deduce that

〈A f , f 〉L(X ) ≥ 〈 f , f 〉L(X )2
√
k − 1 cos

π

2h
(9.34)

for all f ∈ U .
From Exercise 9.3.3 (the Courant-Fischer min-max formula) and with the

notation therein we deduce

μs = max
V∈G(L(X ),s+1)

min{〈A f , f 〉L(X ) : f ∈ V, ‖ f‖L(X ) = 1}. (9.35)

Then (9.33) follows from (9.35) and (9.34). �
Corollary 9.3.5 Let G be a finite connected k-regular graph, k ≥ 3, with no
loops. Suppose that the diameter of G satisfies that D(G) ≥ 4h for some positive
integer h. Then

μ1(G) ≥ 2
√
k − 1

(
1− π2

8h2

)
.

Proof. Apply Theorem 9.3.4 with s = 1 and the estimate cos θ ≥ 1− θ2

2 . �
Corollary 9.3.6 (Alon-Boppana-Serre: II proof) Let ε > 0 and k ≥ 3. Then
there exists a positive constant C(ε, k) such that the following holds. For every
finite connected k-regular graph G = (X,E, r) with no loops, the number of
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eigenvalues of the corresponding adjacency matrix belonging to the interval
[(2− ε)

√
k − 1, k] is at least C(ε, k)|X |. Explicitly, we may choose

C(ε, k) =
{
2−

2π√
ε
−5 if k = 3

(k − 1)−
2π√
ε
−4 if k ≥ 4.

Proof. We start by denoting h as the (positive) integer satisfying

h ≥ π

2
√
ε

> h− 1, (9.36)

so that ε ≥ π2

4h2 and therefore (recall that cos θ ≥ 1− θ2

2 )

2
√
k − 1 cos

π

2h
≥ 2

√
k − 1(1− π2

8h2
) ≥ √

k − 1(2− ε).

(We want to use the inequality in Theorem 9.3.4, that is,

μ0, μ1, . . . , μs ≥ 2
√
k − 1 cos

π

2h
≥ √

k − 1(2− ε) (9.37)

with the best possible, that is, the smallest, h.) According to Theorem 9.3.4,
choose the largest s such that the hypotheses therein are satisfied, and let
x1, x2, . . . , xs+1 ∈ X be the corresponding points. Then, for every x ∈ X there
exists 1 ≤ j ≤ s+ 1 such that d(x, x j ) ≤ 4h− 1. Arguing as in the proof of
Proposition 8.1.1, we conclude that

|X | ≤ (s+ 1)[1+ k + k(k − 1)+ · · · + k(k − 1)4h−2]

= (s+ 1)

[
1+ k

(k − 1)4h−1 − 1

k − 2

]
.

From (9.37) we deduce that such a constantC(ε, k) exists and satisfies

C(ε, k) ≥ s+ 1

|X | ≥
[
1+ k

(k − 1)4h−1 − 1

k − 2

]−1

. (9.38)

Now, for k ≥ 4 we have

1+ k
(k − 1)4h−1 − 1

k − 2
≤ (k − 1)4h (9.39)

because this is equivalent to

−2+ k(k − 1)4h−1 ≤ (k − 2)(k − 1)4h

which is certainly satisfied as k ≤ (k − 2)(k − 1) for k ≥ 4. Therefore,

C(ε, k) ≥ (k − 1)−4h ≥ (k − 1)−2π/
√
ε−4
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where the first inequality follows from (9.38) and (9.39), and the second from
(9.36). Finally, for k = 3 we may use

1+ k
(k − 1)4h−1 − 1

k − 2
|k=3 = 3 · 24h−1 − 2 ≤ 24h+1

in place of (9.39). �

9.4 Ramanujan graphs

Definition 9.4.1 Let G = (X,E, r) be a finite connected k-regular graph.
Denote by k = μ0 > μ1 ≥ · · · ≥ μn−1 the eigenvalues of the adjacency matrix
of G. Setting

μ(G) = max{|μi| : |μi| �= k, i = 1, 2, . . . , n− 1} (9.40)

one says that G is a Ramanujan graph provided

μ(G) ≤ 2
√
k − 1.

Note that if G is bipartite then (cf. Proposition 8.3.4) G is Ramanujan if and
only if

μ1 ≤ 2
√
k − 1.

Exercise 9.4.2 (see [99]) Let G be a connected strongly regular graph with
parameters (v, k, λ, μ) (cf. Definition 8.2.1). Show that G is Ramanujan if and
only if

2|λ− μ|√k − 1 ≤ 3k + μ− 4.

In the remainder of this section, we apply methods and results on finite fields
established in Section 7.1 to introduce and describe the Paley graph, which con-
stitutes an interesting example of a Ramanujan graph. We follow the approach
in the monograph by van Lint and Wilson [97].
Let p be an odd prime and q = pn. The Legendre symbol on Fq may be

defined, as in Definition 4.4.7, by setting

η(y) =

⎧⎪⎪⎨⎪⎪⎩
1 if y �= 0 is a square in Fq

−1 if y �= 0 is not a square in Fq

0 if y = 0

(see also Proposition 6.4.4).
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Exercise 9.4.3 Let q = pn with p an odd prime.

(1) Show that η is a multiplicative character of Fq and that, in the notation
of (7.11), we have

η(xk ) = exp(π ik) for k = 0, 1, . . . , q− 1.

(2) Prove that, for z �= 0, ∑
y∈Fq

η(y)η(y+ z) = −1

Hint: for y �= 0, η(y)η(y+ z) = η(y2)η(1+ y−1z).
(3) Prove that −1 is a square in Fq if and only if q ≡ 1 mod 4.
(4) Define a matrix R = (r(x, y))x,y∈Fq by setting

r(x, y) = η(x− y) for all x, y ∈ Fq.

Prove that
� R is symmetric (resp. antisymmetric) if q ≡ 1 mod 4 (resp. q ≡ 3
mod 4).

� RJ = JR = 0, where J is as in Exercise 8.2.2.(1).
� RRT = qI − J
Hint: Use (2).

Example 9.4.4 (The Paley graph) Let pbe an odd prime and q = pn. Suppose
that q ≡ 1 mod 4. The Paley Graph P(q) has vertex set Fq and two distinct
vertices x, y ∈ Fq are joined if x− y is a square. Note that, by virtue of Exercise
9.4.3.(3), x− y is a square if and only if y− x is a square. We deduce that P(q)
is an undirected simple graph without loops.

Figure 9.1. The Paley graph P(13).
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Exercise 9.4.5 We use the same notation as in Exercise 9.4.3 and Example
9.4.4.

(1) Show that the adjacency matrix of P(q) is

A = 1

2
(R+ J − I).

(2) Deduce that P(q) is a strongly regular graph with parameters (q, 1
2 (q−

1), 1
4 (q− 5), 1

4 (q− 1))
Hint: See Exercise 8.2.2 and Exercise 9.4.3.(4).

(3) [99, 161] Show that P(q) is a Ramanujan graph
Hint: Use Exercise 9.4.2.

9.5 Expander graphs

Definition 9.5.1 Let Gn = (Xn,En, rn), n ∈ N, be a sequence of finite (undi-
rected) graphs. Suppose that there exist and integer k ≥ 2 and ε > 0 such that

� Gn is k-regular for all n ∈ N;
� |Xn| → +∞ as n→ +∞;
� h(Gn) ≥ ε for all n ∈ N,

where h(·) denotes the isoperimetric constant (cf. Definition 9.1.1). Then we
say that (Gn)n∈N is a family of expander graphs (briefly, expanders).

Remark 9.5.2 From (9.6)† we deduce that if (Gn)n∈N is a family of k-regular
graphs, then

k

2
|Xn| ≤ |En| ≤ k|Xn|

for all n ∈ N, that is, the number of edges grows linearly with the size, i.e. with
the number of vertices, of the graphs Gn (because k is fixed).
Also, the condition h(Gn) ≥ ε ensures a good connectivity of the graph Gn in

the following sense: if An ⊆ Xn is a subset such that |An| ≤ |Xn|
2 , then, in order to

“disconnect” An from its complement Xn \ An, that is, to remove ∂An, we need
to “cut” at least ε|An| edges of Gn. Note that if |An| ≈ |Xn|, then the quantity
ε|An| grows linearly with |Xn|. In other words, expanders provide a solution
to the following min-max problem: to minimize the number of edges and to
maximize the connectivity of the graphs.

† Note that in (9.6), E0 (respectively, E1) is not the edge set of G0 (respectively, G1), but denotes
the loops (respectively, E \ E0) of a generic graph G = (X,E, r).
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310 Expanders and Ramanujan graphs

Moreover, keeping k fixed and letting |Xn| → +∞ for n→ +∞, the graphs
Gn become more and more “sparse,” that is, they have a large number |Xn| of
vertices, but each vertex has a “small” fixed number k of neighbors.

Recalling Remark 9.1.10, we immediately have the following equivalent def-
inition of expanders.

Definition 9.5.3 (Spectral definition of expanders) Let Gn = (Xn,En, rn),
n ∈ N, be a sequence of finite connected graphs. Suppose that there exist and
integer k ≥ 2 and δ > 0 such that

� Gn is k-regular for all n ∈ N;
� |Xn| → +∞ as n→ +∞;
� δ(Gn) ≥ δ for all n ∈ N,

where δ(·) denotes the spectral gap (cf. Definition 9.1.9). Then (Gn)n∈N is a
family of expanders.

Remark 9.5.4 We may reformulate Corollary 9.2.7 as follows:

lim sup
n→∞

δ(Gn) = k − lim inf
n→∞ μ1(G) ≤ k − 2

√
k − 1. (9.41)

As a consequence, if δ(Gn) ≥ δ for all n ∈ N, then necessarily

δ ≤ k − 2
√
k − 1. (9.42)

Example 9.5.5 Let (Gn)n∈N be a sequence of finite connected k-regular
Ramanujan graphs. Suppose that |Xn| → +∞ as n→ +∞. Then (Gn)n∈N is
a family of expanders with δ = k − 2

√
k − 1 (cf. Definition 9.5.3). It follows

fromRemark 9.5.4 that a sequence of Ramanujan graphs is asymptotically opti-
mal within the sequences of expanders.

The construction of a single Ramanujan graph is not difficult (see Exercise
9.4.2 and Exercise 9.4.5). On the contrary, the construction of a sequence of
Ramanujan graphs of a fixed degree (and increasing size) requires very deep
results from number theory. One of these results is the so-called Ramanujan
conjecture, eventually proved by several mathematicians including Deligne and
Drinfeld. For this reason, although Ramanujan never worked in graph theory,
these expanders were named after him.
The first explicit construction of a sequence of Ramanujan graphs (of con-

stant degree k and increasing size) were given for the following values of k:

� k = p+ 1, with p an odd prime, by Lubotzky, Phillips, and Sarnak [101],
and Margulis [112] in 1988;

� k = 3, by Chiu [40] in 1992;
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� k = q+ 1, with q = pr, p prime and r ≥ 1, by Morgenstern [116] in 1994.

An elementary account of the Lubotzky-Phillips-Sarnak graphs and Mar-
gulis graphs is in the monograph by Davidoff, Sarnak, and Valette [49] where,
however, the authors do not provide a full proof of the Ramanujan property but
only a weaker explicit estimate of the spectral gap (the construction of these
graphs is relatively easy, but the proof of the Ramanujan property is indeed the
difficult point). See also the monographs byWinnie Li [95], Lubotzky [99], and
Sarnak [135, Chapter 3].
Very recently, in 2015, Marcus, Spielman, and Srivastava [109] proved that

there exist infinite families of regular bipartite Ramanujan graphs of every
degree k ≥ 3. Later, in [110] they proved the existence of regular bipartite
Ramanujan graphs of every degree and every number of vertices. With respect
to the previous work, this is more elementary (although based on the proba-
bilistic method, cf. [11]), but it does not provide an explicit construction. On
the other hand, however, the construction of expanders is much more elemen-
tary: in the following sections we shall give several examples.

9.6 The Margulis example

In 1973 Margulis constructed the first example of a family of expanders [111].
His approach was quite abstract, based on the notion of Kazhdan property (T)
(cf. the monograph by Bekka, de la Harpe, and Valette [19]). In 1981, Gabber
and Galil [64], using classical Fourier analysis, were able to simplify Margulis
example and to provide a lower bound of the spectral gap. Similar improve-
ments were obtained in 1987 by Jimbo and Marouka [83] who used Fourier
analysis on the finite group Zn ⊕ Zn. Further simplifications were made by
Hoory, Linial, and Wigderson [74], although they attributed the merit to Bop-
pana. Our exposition is strictly based on this last reference.
We start by introducing some basic notation taken from Chapter 1 and Chap-

ter 2. Let n ≥ 1. Write the group A = Zn ⊕ Zn as a set of column vectors:

A =
{(

x1
x2

)
: x1, x2 ∈ Zn

}
,

equipped with the usual componentwise addition, and denote by 0 =
(
0
0

)
the zero of A. We also consider 2× 2 matrices with entries in Zn. Clearly, a

matrix

(
a b
c d

)
, with a, b, c, d ∈ Zn, is invertible if and only if its determinant
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312 Expanders and Ramanujan graphs

det

(
a b
c d

)
= ad − bc is invertible inZn. Moreover, if this is the case, we have

the usual formula(
a b
c d

)−1

=
(
d(ad − bc)−1 −b(ad − bc)−1

−c(ad − bc)−1 a(ad − bc)−1

)
.

Let us set ω = e2π i/n and, for x =
(
x1
x2

)
and y =

(
y1
y2

)
∈ A, write 〈x, y〉 =

x1y1 + x2y2. Arguing as in Section 2.4, we can write the Fourier transform of a
function f ∈ L(A) as

f̂ (y) =
∑
x∈A

f (x)ω−〈x,y〉 ∀y ∈ A.

Then, the inversion formula (cf. Theorem 2.4.2) takes the form

f (x) = 1

n2
∑
y∈A

f̂ (y)ω〈x,y〉 ∀x ∈ A,

while the Plancherel and Parseval formulas (cf. Theorem 2.4.3) become respec-
tively: √∑

y∈A
| f̂ (y)|2 = n ·

√∑
x∈A

| f (x)|2 ∀ f ∈ L(A)

and ∑
y∈A

f̂1(y) f̂2(y) = n2
∑
x∈A

f1(x) f2(x) ∀ f1, f2 ∈ L(A).

Note also that f̂ (0) =∑x∈A f (x) so that

f̂ (0) = 0 ⇔
∑
x∈A

f (x) = 0. (9.43)

The following result is elementary but new.

Proposition 9.6.1 Let f ∈ L(A), B a 2× 2 invertible matrix with entries in Zn,
and b ∈ A. Define g ∈ L(A) by setting g(x) = f (Bx+ b) for all x ∈ A. Then,

ĝ(y) = ω〈B−1b,y〉 f̂ ((B−1)T y),

for all y ∈ A.
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Proof. Let y ∈ A. Then we have

ĝ(y) =
∑
x∈A

f (Bx+ b)ω−〈x,y〉

(z = Bx+ b) =
∑
z∈A

f (z)ω−〈B−1z−B−1b,y〉

= ω〈B−1b,y〉∑
z∈A

f (z)ω−〈z,(B−1 )T y〉

= ω〈B−1b,y〉 f̂ ((B−1)T y). �

In what follows, a special role will be played by the following 2× 2 matrices
with entries in Zn:

T1 =
(
1 2
0 1

)
and T2 =

(
1 0
2 1

)
whose inverses are

T−1
1 =

(
1 −2
0 1

)
and T−1

2 =
(

1 0
−2 1

)
.

Clearly,

T1

(
x1
x2

)
=
(
x1 + 2x2

x2

)
, T−1

1

(
x1
x2

)
=
(
x1 − 2x2

x2

)

T2

(
x1
x2

)
=
(

x1
2x1 + x2

)
, T−1

2

(
x1
x2

)
=
(

x1
−2x1 + x2

) (9.44)

(everything mod n). Moreover, we identify Zn with the integral interval
[− n

2 ,
n
2 ) = {k ∈ Z : − n

2 ≤ k < n
2 }. Clearly,[

−n

2
,
n

2

)
=
{
[−m,m) if n = 2m is even

[−m,m] if n = 2m+ 1 is odd.

Then we can identify A with the set{(
x1
x2

)
: x1, x2 ∈

[
−n

2
,
n

2

)}
.

The diamond in A is the set (see Figure 9.2)

D =
{(

x1
x2

)
∈ A : |x1| + |x2| < n

2

}
.
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A

D
••

•

•

(n2 , 0)(−n
2 , 0)

(0, n
2 )

(0,−n
2 )

Figure 9.2. The diamond D in A.

We define a partial order in A by setting

(
x1
x2

)
>

(
y1
y2

)
if

⎧⎪⎪⎨⎪⎪⎩
|x1| > |y1| and |x2| ≥ |y2|
or

|x1| ≥ |y1| and |x2| > |y2|.

We now present a series of technical lemmas, which are essential for our
subsequent calculations.

Lemma 9.6.2 Let x =
(
x1
x2

)
∈ D \ {0}.

(i) If |x1| = |x2| then two of the four points

T1x, T−1
1 x, T2x, T−1

2 x (9.45)

are strictly greater than x and the other two are incomparable with x;
(ii) if |x1| �= |x2| and x1 �= 0 �= x2, then three of the points in (9.45) are

strictly greater than x and the other one is strictly smaller;
(iii) if |x1| �= |x2| but either x1 = 0 or x2 = 0, then two of the points in (9.45)

are strictly greater than x and the other two are equal to x.

Proof. (i) Suppose first that x1 = x2. Then

T−1
1 x = T−1

1

(
x1
x1

)
=
(−x1
x1

)
and T−1

2 x = T−1
2

(
x1
x1

)
=
(
x1
−x1

)
are incomparable with x. Moreover,

|x1| + |x1| < n

2
⇒ |x1| < n

4
,
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and therefore

T1x = T1

(
x1
x1

)
=
(
3x1
x1

)
and T2x = T2

(
x1
x1

)
=
(
x1
3x1

)
.

First case: suppose − n
6 ≤ x1 < n

6 . Then − n
2 ≤ 3x1 < n

2 and therefore |3x1| >
|x1| ensures that T1x > x and T2x > x.
Second case: suppose − n

4 < x1 < − n
6 . Then − 3

4n < 3x1 < − n
2 so that

n

4
< 3x1 + n <

n

2
,

and we must take 3x1 + n to represent 3x1 in the range [− n
2 ,

n
2 ). This gives

|3x1 + n| > n
4 > |x1| so that T1x > x and T2x > x.

Third case: suppose n
6 ≤ x1 < n

4 . Then
n
2 ≤ 3x1 < 3

4n so that

−n

2
≤ 3x1 − n < −n

4
,

and we must take 3x1 − n to represent 3x1 in the range [− n
2 ,

n
2 ). This gives

|3x1 − n| > n
4 > |x1| and, again, T1x > x and T2x > x.

When x1 = −x2 wemay argue similarly: now T−1
1 x > x and T−1

2 x > x, while
T1x and T2x are incomparable with x. We leave the easy details to the reader.
(ii) By (9.44) it suffices to compare |x1 + 2x2| and |x1 − 2x2| with |x1|, and

|x2 + 2x1| and |x2 − 2x1| with |x2|. It is easy to check (exercise) that, by means
of the symmetries

x1 ↔ −x1, x2 ↔ −x2, and x1 ↔ x2,

we may reduce to the case

0 < x2 < x1.

Clearly, we also have x1 < n
2 , x1 + x2 < n

2 , and x2 < n
4 .

First comparison: We have

|x1 − 2x2| =
{
x1 − 2x2 < x1 if x2 < x1

2

2x2 − x1 = x2 − (x1 − x2) < x1 if x1
2 ≤ x2 < x1,

and therefore T−1
1 x < x.

Second comparison:
If x1 + 2x2 < n

2 then |x1 + 2x2| = x1 + 2x2 > x1.
If x1 + 2x2 ≥ n

2 then x2 < n
4 yields

n
2 ≤ x1 + 2x2 ≤ 3

4n, which in turn implies
that− n

2 ≤ −n+ x1 + 2x2 < − n
4 , so that−n+ x1 + 2x2 represents x1 + 2x2 in

the range [− n
2 ,

n
2 ) and | − n+ x1 + 2x2| = n− x1 − 2x2 > x1, since x1 + x2

< n
2 .
In both cases, T1x > x.
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Third comparison:
If 2x1 + x2 < n

2 then |2x1 + x2| = 2x1 + x2 > x2.
If 2x1 + x2 ≥ n

2 then, from 2x1 + x2 = (x1 + x2)+ x1 < n
2 + n

2 = n we
deduce that n

2 ≤ 2x1 + x2 < n, which in turn implies that − n
2 ≤ 2x1 + x2 −

n < 0, so that 2x1 + x2 − n represents 2x1 + x2 in [− n
2 ,

n
2 ) and |2x1 + x2 −

n| = n− 2x1 − x2 > x2, because x1 + x2 < n
2 .

In both cases, T2x > x.
Fourth comparison:
If −2x1 + x2 ≥ − n

2 then | − 2x1 + x2| = 2x1 − x2 > x2.
If −2x1 + x2 < − n

2 , from x1 < n
2 we deduce that −2x1 + x2 > −n, which

in turn implies that 0 < −2x1 + x2 + n < n
2 , so that −2x1 + x2 + n represents

−2x1 + x2 in [− n
2 ,

n
2 ) and | − 2x1 + x2 + n| = n− 2x1 + x2 > x2 (because

x1 < n
2 ).

In both cases, T−1
2 x > x.

(iii) Arguing as in (ii), we may reduce to the case 0 = x2 < x1. Then T±1
1 x =

x, T2x = (x1, 2x1)T > x, and T−1
2 x = (x1,−2x1)T > x. �

Lemma 9.6.3 Let γ : A× A→ R denote the function defined by setting

γ (x, y) =

⎧⎪⎪⎨⎪⎪⎩
5
4 if x > y
4
5 if y > x

1 otherwise,

for all x, y ∈ A. Then

γ (x, y)γ (y, x) = 1 (9.46)

and

γ (x, y) ≤ 5

4
(9.47)

for all x, y ∈ A. Moreover, if x =
(
x1
x2

)
∈ A \ {0}, we have

|cos πx1
n

| · [γ (x,T2x)+ γ (x,T−1
2 x)]

+ |cos πx2
n

| · [γ (x,T1x)+ γ (x,T−1
1 x)] ≤ 3.65. (9.48)

Proof. (9.46) and (9.47) are obvious. We divide the proof of (9.48) into two
cases.
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First case: x is outside the diamond D. By virtue of (9.47), the left hand side of
(9.48) is bounded above by

5

2
(| cos πx1

n
| + | cos πx2

n
|). (9.49)

Since the cosine function is even, we may assume that 0 ≤ x1, x2 ≤ n
2 so that

0 ≤ πx2
n ≤ π

2 and x2 �→ cos πx2
n is positive and decreasing. It follows that the

maximum of (9.49) is achieved on the boundary of the diamond, and therefore
(9.49) is bounded above by (here the max is over all 0 ≤ x1 ≤ n

2 ):

max

(
5

2
(| cos πx1

n
| + | cos π (n/2− x1)

n
|)
)
= max

(
5

2
(cos

πx1
n

+ sin
πx1
n

)

)
≤ 5

√
2

2
< 3.65.

Second case: x is inside the diamond D. Now, using the trivial estimate
| cos θ | ≤ 1 we get that the left hand side of (9.48) is bounded by

γ (x,T1x)+ γ (x,T−1
1 x)+ γ (x,T2x)+ γ (x,T−1

2 x). (9.50)

If |x1| = |x2| by Lemma 9.6.2.(i) and the definition of γ we have that (9.50)
is bounded above by 1+ 1+ 4

5 + 4
5 = 3.6 < 3.65. Suppose now that |x1| �=

|x2|. If x1 �= 0 �= x2, then by Lemma 9.6.2.(ii) we have that (9.50) is bounded
above by 3 · 4

5 + 5
4 = 3.65. If either x1 or x2 is equal to zero, then by Lemma

9.6.2.(iii), we again have that (9.50) is bounded above by 1+ 1+ 4
5 + 4

5 = 3.6
< 3.65. �

Lemma 9.6.4 Let G : A→ R be a non-negative function such that G(0) = 0.
Then∑

x∈A
2G(x)

[
G(T−1

2 x)| cos πx1
n

| + G(T−1
1 x)| cos πx2

n
|
]
≤ 3.65

∑
x∈A

G(x)2.

(9.51)

Proof. Let x, y ∈ A. From (9.46) we deduce that

2G(x)G(y) ≤ γ (x, y)G(x)2 + γ (y, x)G(y)2.

Then, the left hand side of (9.51) is bounded above by∑
x∈A

{
| cos πx1

n
| · [γ (x,T−1

2 x)G(x)2 + γ (T−1
2 x, x)G(T−1

2 x)2
]+

+| cos πx2
n

| · [γ (x,T−1
1 x)G(x)2 + γ (T−1

1 x, x)G(T−1
1 x)2

]}
. (9.52)
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Setting x′ = T−1
2 x and observing that x′1 = x1 (that is, T2 and T−1

2 do not change
x1, see (9.44)), we get∑

x∈A
| cos πx1

n
|γ (T−1

2 x, x)G(T−1
2 x)2 =

∑
x′∈A

| cos πx′1
n

|γ (x′,T2x′)G(x′)2.

Similarly, with the change of variable x′′ = T−1
1 x, we have x′′2 = x2 and∑

x∈A
| cos πx2

n
|γ (T−1

1 x, x)G(T−1
1 x)2 =

∑
x′′∈A

| cos πx′′2
n

|γ (x′′,T1x′′)G(x′′)2.

Therefore, recalling that cos πx′1
n = cos πx1

n and cos πx′′2
n = cos πx2

n , the upper
bound (9.52) equals∑

x∈A
G(x)2

{
| cos πx1

n
| · [γ (x,T2x)+ γ (x,T−1

2 x)]

+ | cos πx2
n

| · [γ (x,T1x)+ γ (x,T−1
1 x)]

}
,

which, by virtue of Lemma 9.6.3 and the hypothesis G(0) = 0, is bounded
above by 3.65

∑
x∈A G(x)

2. �

Finally, we state a result, which is a consequence of the previous lemmas
and that will quickly lead to the proof that the Margulis graphs are expanders.
Recall that W1(A) = { f ∈ L(A) :

∑
x∈A f (x) = 0}, and set e1 = (1, 0)T and

e2 = (0, 1)T .

Theorem 9.6.5 For all real valued f ∈W1(A) we have∑
x∈A

f (x)[ f (T1x)+ f (T1x+ e1)+ f (T2x)+ f (T2x+ e2)] ≤ 3.65 ‖ f‖2L(A).
(9.53)

Proof. First of all, note that, by virtue of Proposition 9.6.1, if F denotes the
Fourier transform of f , then the Fourier transform of the function

x �→ f (T1x)+ f (T1x+ e1)+ f (T2x)+ f (T2x+ e2)

is the function

x =
(
x1
x2

)
�→ F (T−1

2 x)+ F (T−1
2 x)ωx1 + F (T−1

1 x)+ F (T−1
1 x)ωx2 ,

because (T−1
1 )T = T−1

2 , (T−1
2 )T = T−1

1 , T−1
1 e1 = e1, and T−1

2 e2 = e2. There-
fore, by the identities of Plancherel and Parseval, (9.53) is equivalent to∑

x∈A
F (x)[F (T−1

2 x)(1+ ωx1 )+ F (T−1
1 x)(1+ ωx2 )] ≤ 3.65 ‖F‖2L(A), (9.54)
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while condition
∑

x∈A f (x) = 0 is equivalent to F (0) = 0 (see (9.43)). Since

|1+ ωt |2 = |1+ cos
2πt

n
+ i sin

2πt

n
|2

= 2(1+ cos
2πt

n
)

= 4 cos2
πt

n
,

then (9.54) follows from Lemma 9.6.4 and the triangular inequality (by setting
G = |F|). �

We now present the Gabber-Galil version of the Margulis construction.

Definition 9.6.6 (Margulis expanders) For every integer n ≥ 1, we define the
8-regular graph Mn = (Xn,E, rMn ), where Xn = Z2

n, equipped with the rota-
tion map (cf. Exercise 8.12.3) RotMn : Xn × [8] → Xn × [8] defined by setting

RotMn (x, i) = (yi, i+ 4 mod 8)

for all x ∈ Xn and i ∈ [8], where

y1 = T1x, y2 = T2x, y3 = T1x+ e1, y4 = T2x+ e2
y5 = T−1

1 x, y6 = T−1
2 x, y7 = T−1

1 x− e1, y8 = T−1
2 x− e2,

(9.55)

for all x ∈ X .

Observe that the second line of (9.55) can be rewritten as

x = T1y5 = T2y6 = T1y7 + e1 = T2y8 + e2, (9.56)

showing, in particular, that RotMn is indeed a rotationmap (cf. Exercise 8.12.3).
Note also that Mn may have multiple edges and loops. For instance, T10 =

T20 = T−1
1 0 = T−1

2 0 = 0 so that there are (exactly) four loops at 0.

Exercise 9.6.7

(1) Show that, if n is divisible by 4, then there are two (distinct) edges con-

necting

(
x1
n/4

)
and

(
x1 + n/2
n/4

)
.

(2) Show that, if n− 1 is divisible by 4, then there are two (distinct) edges

connecting

(
x1

(n− 1)/4

)
and

(
x1 + (n− 1)/2

(n− 1)/4

)
.

Theorem 9.6.8 The 8-regular graphsMn = (Xn,En, rMn ) satisfy:

μ1(Mn) ≤ 7.3

for all n ∈ N. In particular, (Mn)n≥1 is a family of expanders.
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Proof. Let n ≥ 5. For f ∈W1 real valued we have

〈AMn f , f 〉 =
∑
x∈Xn

[AMn f ](x) f (x)

=
∑
x∈Xn

f (x)[ f (T1x)+ f (T2x)+ f (T1x+ e1)+ f (T2x+ e2)

+ f (T−1
1 x)+ f (T−1

2 x)+ f (T−1
1 x− e1)+ f (T−1

2 x− e2)]

(by (9.56)) = 2
∑
x∈Xn

f (x)[ f (T1x)+ f (T2x)+ f (T1x+ e1)+ f (T2x+ e2)]

≤ 7.3 ‖ f‖2L(Xn ),
where the inequality follows from Theorem 9.6.5. From (9.9) we deduce that
μ1(Mn) ≤ 7.3 and therefore

0.7 = 8− 7.3 ≤ k − μ1(Mn) = δ(Mn).

Thus, in accordance with Definition 9.5.3, (Mn)n∈N is a family of expanders
with spectral gap δ ≥ 0.7. �

9.7 The Alon-Schwartz-Shapira estimate

This section is an exposition of the main result in [10], where the authors –
using, however, a slightly different definition of a replacement product – give
a lower bound for the isoperimetric constant of a replacement product. This
result is interesting because it does not rely on spectral techniques but on a
direct combinatorial argument.
We use the notation of Definition 8.12.4.

Theorem 9.7.1 Let G = (X,E, rG ) be a d-regular graph and F = (Y,F, rF ) a
k-regular graph with Y = [d]. Assume that in both graphs we have defined a
labelling and a rotation map as in Definition 8.12.1. Then:

h(G r©F ) ≥ min

{
1

40

[
h(G)
d

]2
h(F ),

1

8

h(G)
d

}
. (9.57)

Proof. First of all, for x ∈ X we set �x = {x} × [d], so that we can regard the
vertex set X × [d] of G r©F as the disjoint union

∐
x∈X �x (observe that each

�x is a copy of F and the �xs are joined according to the structure of G, as
explained in Definition 8.12.4 and Remark 8.12.6).
Let now � ⊆ X × [d] such that

|�| ≤ 1

2
|X × [d]| = |X |d

2
. (9.58)
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Set

� �x = � ∩�x;
� X ′ = {x ∈ X : |�x| ≤ d − h(G )

4 } and X ′′ = X \ X ′;
� �′ =∐x∈X ′ �x and �′′ =∐x∈X ′′ �x (clearly, �′∐�′′ = �).

We distinguish two cases.
First case:

|�′| ≥ 1

10

h(G)
d

|�|. (9.59)

Note that, by definition, for x ∈ X ′ we have

|�x \ �x| = d − |�x| ≥ h(G)
4

so that (observing that |�x| ≤ d)

|�x \ �x| ≥ h(G)
4d

d ≥ h(G)
4d

|�x|.

Similarly, from (9.2) we deduce that h(G )4d ≤ 1
4 < 1, so that

|�x| ≥ h(G)
4d

|�x|.

Then, both in the case |�x| ≤ d
2 and in the case |� \ �x| ≤ d

2 , by definition
of h(F ), we deduce that there are at least h(G )

4d |�x|h(F ) edges (of the second
kind) connecting �x and its complement �x \ �x (a copy of F). Then, by our
assumption (9.59), the edges connecting � and its complement are at least

1

10

h(G)
d

h(G)
4d

|�|h(F ) = 1

40

(
h(G)
d

)2

|�|h(F ).

After dividing by |�|, this yields the first term in the minimum in (9.57).
Second case:

|�′| < 1

10

h(G)
d

|�|. (9.60)

Since � = �′∐�′′, this gives

|�′′| >
(
1− h(G)

10d

)
|�|. (9.61)
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Moreover, since, by definition, |�x| > d − h(G )
4 for each x ∈ X ′′, summing up

over X ′′ we get |�′′| > |X ′′|
(
d − h(G )

4

)
, and therefore

|X ′′| < |�′′|
d − h(G )

4

≤ |�|
d − h(G )

4

≤
1
2d|X |
d − h(G )

4

(where the last inequality follows from (9.58)). From the inequality h(G) ≤ d
we deduce that

d
2

d − h(G )
4

≤ 2

3
,

so that

|X ′′| ≤ 2

3
|X |. (9.62)

Note also that

|X ′′| ≥ 1

d
|�′′| (9.63)

simply because

|�′′| = |
∐
x∈X ′′

�x| ≤ |
∐
x∈X ′′

�x| = d|X ′′|.

We claim that

min{|X ′|, |X ′′|} ≥ |X ′′|
2

.

Indeed, from (9.62) we deduce that

|X ′| = |X | − |X ′′| ≥ 1

3
|X | ≥ 1

2
|X ′′|.

By definition of h(G), it follows that there exists a set F of edges of G such that

|F| ≥ 1

2
h(G)|X ′′|

and F connects X ′ with X ′′. Denote by� the corresponding set of edges (of the
first type) in G r©F (so that they connect vertices in

∐
x∈X ′ �x with vertices in∐

x∈X ′′ �x). Since for x ∈ X ′′ we have |�x| > d − h(G )
4 then |�x \ �x| < h(G )

4 so
that at most h(G )4 |X ′′| of the edges in� connect a vertex in

∐
x∈X ′′ (�x \ �x) with

a vertex in
∐

x∈X ′ �x (recall that each vertex is incident to exactly one edge of
the first type, cf. Remark 8.12.6). Therefore, if we denote by �2 the subset of
� of all edges that connect vertices of �′′ with vertices in

∐
x∈X ′ �x, then

|�2| ≥ |�| − h(G)
4

|X ′′| ≥ 1

4
h(G)|X ′′|. (9.64)
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Consider the decomposition �2 = �3
∐

�4, where �3 are the edges that con-
nect vertices of �′′ with vertices in �′ and �4 its complement (so that an edge
of�4 connects a vertex of �′′ ⊆ � with a vertex in the complement of �). Then

|�3| ≤ |�′|
(by (9.60)) ≤ 1

10

h(G)
d

|�|

(by (9.61)) ≤ h(G)/10d
1− h(G)/10d |�

′′|

(because h(G) ≤ d) ≤ h(G)
9d

|�′′|

(by (9.63)) ≤ h(G)
9

|X ′′|.

It follows that

|�4| = |�2| − |�3|

(by (9.64)) ≥
(
1

4
− 1

9

)
h(G)|X ′′|

(by (9.63)) ≥ 5

36

h(G)
d

|�′′|

(by (9.61)) ≥ 5

36

h(G)
d

(
1− h(G)

10d

)
|�|

(because 1− h(G)
10d

≥ 9

10
) ≥ 1

8

h(G)
d

|�|.

This computation yields the second term in the min of (9.57), ending the proof
of the theorem. �

Theorem 9.7.1 applies to situations where we have a lower bound for the
normalized isoperimetric constant of G. Here, we give an example.

Corollary 9.7.2 Let (Gn)n∈N be a family of regular graphs such that

� the degree of Gn is dn and dn → +∞ as n→ +∞;
� Gn has an vertices and an → +∞ as n→ +∞;
� there exists δ > 0 such that h(Gn )dn

≥ δ for all n ∈ N.

Let also (Fn)n∈N be a family of k-degree expander graphs. Suppose that Fn

has dn vertices and there exists ε > 0 such that h(Fn) ≥ ε for all n ∈ N. Then
Gn r©Fn is a family of (k + 1)-degree expanders with andn vertices and

h(Gn r©Fn) ≥ min

(
δ2ε

40
,
δ

8

)
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for all n ∈ N.

Proof. It is an immediate consequence of Theorem 9.7.1. �
Following [10], we construct a family of graphs that may take the role of Gn

in Corollary 9.7.2.
Let p be a prime number, q = pt for some positive integer t, and denote by

Fq the field of order q. Given a positive integer r, we define the finite graph
LD(q, r) as follows. The vertex set is Fr+1

q = {(a0, a1, . . . , ar ) : a j ∈ F, j =
0, 1, . . . , r}. For each a = (a0, a1, . . . , ar ) ∈ Fr+1

q and for each (x, y) ∈ F2
q

there is a edge connecting a with

a+ y(1, x, x2, . . . , xr ) = (a0 + y, a1 + yx, . . . , ar + yxr ).

This way, there are q loops at each vertex (these correspond to the case y = 0),
and all other edges are simple. It follows that LD(q, r) is regular of degree q2

and has qr+1 vertices.

Theorem 9.7.3 Suppose that 1 ≤ r ≤ q. Then

μ1(LD(q, r)) ≤ qr.

Proof. We give a complete spectral analysis of the graph LD(q, r), by
exhibiting an orthonormal set of eigenvectors and by computing the rela-
tive eigenvalues. Actually, the eigenvectors are the character of the additive
Abelian group Fr+1

q , but, in our exposition, we prefer to follow the original
sources and derive their properties from scratch. Fix a nontrivial linear map
L : Fq → Fp. For instance, thinking of Fq as a t-dimensional vector space over
Fp (i.e., Fq = {(α1, α2, . . . , αt ) : αi ∈ Fp, i = 1, 2, . . . , t}), then we can take
L(α1, α2, . . . , αt ) = α1. Another choice could be the trace map TrFq/Fp (cf. Sec-
tion 6.7). Also, for a = (a0, a1, . . . , ar ) and b = (b0, b1, . . . , br ) ∈ Fr+1

q we set

a · b =
r∑
j=0

a jb j.

Let ω = e2π i/p be a primitive p-th root of the unity and, for a ∈ Fr+1
q , define

va : Fr+1
q → C by setting

va(b) = ωL(a·b)

for all b ∈ Fr+1
q .

Note that

va = v−a, va(b) = vb(a), and va(b+ c) = va(b)va(c) (9.65)

for all a, b, c ∈ Fr+1
q .
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We claim that for a �= (0, 0, . . . , 0)

∑
b∈Fr+1

q

va(b) = 0. (9.66)

Indeed, ∑
b∈Fr+1

q

va(b) =
∑
b∈Fr+1

q

ωL(a·b)

=
∑
h∈Fp

∑
b∈Fr+1

q
L(a·b)=h

ωh

= K
∑
h∈Fp

ωh

= 0,

where

K = |{b ∈ Fr+1
q : L(a · b) = h}| = |Fr+1

q |
|Fq| · |Fq|

p

is independent of h, and the last equality follows from the fact that ω is a prim-
itive p-th root of the unity (recall Lemma 2.2.3). The claim is proved.
As a consequence, for a, b ∈ Fr+1

q from (9.65) and (9.66) we deduce

〈va, vb〉L(Fr+1
q ) =

∑
c∈Fr+1

q

va(c)vb(c) =
∑
c∈Fr+1

q

va−b(c) = δa,b|Fr+1
q |,

that is, the set {va : a ∈ Fr+1
q } is an orthogonal basis in L(Fr+1

q ). More precisely,
(va)a∈Fr+1

q
constitutes a parameterization of the characters of Fr+1

q .

We now show that the functions va ∈ L(Fr+1
q ) are eigenvectors of the adja-

cency matrix A of the graph LD(q, r). Indeed, for a, b ∈ Fr+1
q we have

[Ava](b) =
∑
x,y∈Fq

va(b+ y(1, x, x2, . . . , xr ))

(by (9.65)) =
⎛⎝∑
x,y∈Fq

va(y(1, x, x
2, . . . , xr ))

⎞⎠ va(b)
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so that, setting pa(x) =
∑r

j=0 a jx
j, we have that va is an eigenvector whose

corresponding eigenvalue μa is given by

μa =
∑
x,y∈Fq

va(y(1, x, x
2, . . . , xr ))

=
∑
x,y∈Fq

ωL(ypa(x))

=
∑
x∈Fq
pa(x)=0

∑
y∈Fq

ωL(ypa(x))

= |Fq| · |{x ∈ Fq : pa(x) = 0}|,

(9.67)

where the two last equalities follow from the identity
∑

y∈Fq ω
L(ypa(x)) =

|Fq|δ0,pa(x). Now, if a = (0, 0, . . . , 0), then μa = |Fq|2 = q2: this is the largest
eigenvalue (recall that LD(q, r) is q2-regular). If a �= (0, 0, . . . , 0), then the
polynomial pa(x) has at most r roots in Fq and therefore μa ≤ |Fq|r = qr. �

Corollary 9.7.4 Suppose that 1 ≤ r ≤ q/2. Then

h(LD(q, r)) ≥ q2

4
.

Proof. This follows from Theorem 9.7.3 and the Alon-Milman theorem
(Theorem 9.1.7):

h(LD(q, r)) ≥ q2 − μ1(LD(q, r))

2
≥ q2 − qr

2
≥ q2

4
. �

Example 9.7.5 For n ∈ N let

Gn = LD(2n, 2n−1)

and

Fn = M2n

the Margulis graph (cf. Definition 9.6.6). Recall that Gn has 2n(2
n−1+1) vertices

and degree d(Gn) = 22n. Moreover, by Corollary 9.7.4, h(Gn) ≥ 22n

4 so that

h(Gn)
d(Gn)

≥ 1

4
.

Also,Fn has 22n vertices and constant degree d(Fn) = 8.Moreover, by virtue
of Theorem 9.6.8 and the Alon-Milman theorem (Theorem 9.1.7), we have

h(Fn) ≥ 8− μ1(Fn)

2
≥ 8− 7.3

2
= 7

20
.
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Then by Corollary 9.7.2 (with ε = 7
20 and δ = 1

4 ) we have that {Gn r©Fn}n∈N
is a family of 9-degree expanders. In fact, for every n ∈ N, the graph Gn r©Fn

has 2n(2
n−1+1) · 22n = 2n(2

n−1+3) vertices and its isoperimetric constant satisfies

h(Gn r©Fn) ≥ min

(
1

40
· 1

16
· 7

20
,
1

8
· 1
4

)
= 7

12800
.

9.8 Estimates of the first nontrivial eigenvalue for the
Zig-Zag product

In this section, following [128], we give an upper bound for the first nontrivial
eigenvalue of a zig-zag product in terms of the first nontrivial eigenvalues of its
factors.
We first need to introduce a slightly modified version of μ1(G). Keeping the

notation of Proposition 8.1.5, for a connected k-regular graph G we set

μ̃1(G) = max{|μ1|, |μn−1|}.
In other words, μ̃1(G) is the largest (in absolute value) eigenvalue of the adja-
cency matrix of G different from μ0 = k. Note that, if G is bipartite, then, by
Proposition 8.3.4, μ̃1(G) = k. Moreover, μ1(G) ≤ μ̃1(G) and, by replacing μ1

by μ̃1, we obtain a variant of the spectral definition of expanders (cf. Definition
9.1.9 and Definition 9.5.3).
In the notation of Proposition 8.1.4 and Lemma 9.1.6 we have

μ̃1(G) = max
f∈W1, f �=0

‖A f‖
‖ f‖ = max

f∈W1, f �=0

|〈A f , f 〉|
‖ f‖2 . (9.68)

Indeed, if v0, v1, . . . , vn−1 is an orthonormal basis of L(X ) such that Av j =
μ jv j for j = 0, 1, . . . , n− 1, then v1, . . . , vn−1 is an orthonormal basis ofW1.
Thus, if f =∑n−1

j=1 α jv j we have A f =
∑n−1

j=1 α jμ jv j and

〈A f ,A f 〉 =
n−1∑
j=1

|α j|2μ2
j ≤ μ̃1(G)2‖ f‖2

so that

〈A f ,A f 〉
‖ f‖2 ≤ μ̃1(G)2.

On the other hand, if |μ j| = μ̃1(G) ( j = 1 or j = n− 1) then

〈Av j,Av j〉
‖v j‖2 = μ̃1(G)2.

The proof of the other equality is similar.
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Remark 9.8.1 It is important to notice that since the adjacency matrix A of G
is real and symmetric, we can select the orthonormal basis {v0, v1, . . . , vn−1}
of L(X ) made up of real-valued functions. Thus, denoting by LR(X ) the space
of all real-valued functions on X , in (9.68) we can replaceW1 byW1 ∩ LR(X ).
In the following we shall use the notation in Sections 8.7, 8.12, and 8.13.

Lemma 9.8.2 Let f ∈W1(X × [d]). Then

(IX ⊗ B) f⊥ ∈ L(X )⊗W1([d]) (9.69)

and

‖(IX ⊗ B) f⊥‖ ≤ μ̃1(F )‖ f⊥‖.
Proof. First of all, using (8.20) we have

(IX ⊗ B) f⊥ = (IX ⊗ B)

(∑
x∈X

δx ⊗ f⊥x

)
=
∑
x∈X

δx ⊗ B f⊥x .

Then, using again (8.20) and theB-invariance ofW1([d]) (cf. Proposition 8.1.4),
(9.69) follows. Moreover, by (9.68)

‖B f⊥x ‖L([d]) ≤ μ̃1(F )‖ f⊥x ‖L([d])
for all x ∈ X so that

‖(IX ⊗ B) f⊥‖2L(X×[d]) ≤
∑
x∈X

‖δx ⊗ B f⊥x ‖2L(X×[d])

(by (8.12)) =
∑
x∈X

‖B f⊥x ‖2L([d])

≤ μ̃1(F )2
∑
x∈X

‖ f⊥x ‖2L([d])

= μ̃1(F )2‖ f⊥‖2L(X×[d]). �

Lemma 9.8.3 Let f ∈W1(X × [d]). Then

|〈RG f
‖, f ‖〉| ≤ μ̃1(G)

d
‖ f ‖‖2.

Proof. First of all, note that, from Lemma 8.7.4 and Proposition 8.12.2, it fol-
lows that

CRG f
‖ = 1

d
CRG

[
(C f )⊗ 1[d]

] = 1

d
AC f . (9.70)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core


9.8 Estimates of first nontrivial eigenvalue for the Zig-Zag product 329

Then, again by Lemma 8.7.4, we have

〈RG f
‖, f ‖〉 = 1

d
〈RG f

‖, (C f )⊗ 1[d]〉L(X×[d])

= 1

d

∑
(x,i)∈X×[d]

(RG f
‖)(x, i)[C f ](x)

(by (8.21)) = 1

d
〈CRG f

‖,C f 〉L(X )

(by (9.70)) = 1

d2
〈AC f ,C f 〉L(X ).

Now, by Lemma 8.7.3.(ii), C f ∈W1(X ) and therefore

|〈RG f
‖, f ‖〉| = 1

d2
|〈AC f ,C f 〉|

(by (9.68)) ≤ μ̃1(G)
d2

‖C f‖2L(X )

(by (8.12)) = μ̃1(G)
d3

‖(C f )⊗ 1[d]‖2L(X×[d])

(by Lemma 8.7.4) = μ̃1(G)
d

‖ f ‖‖2. �

Recall that LR(X × [d]) denotes the space of all real valued functions defined
on X × [d]. Since RG is a symmetric matrix, LR(X × [d]) decomposes into
eigenspaces of RG and, since R2

G = IX×[d], we deduce that RG has only 1 and
−1 as eigenvalues. Set

� V1 = { f ∈ LR(X × [d]) : RG f = f }
� V2 = { f ∈ LR(X × [d]) : RG f = − f }.
Then

LR(X × [d]) = V1 ⊕V2

is the orthogonal decomposition of LR(X × [d]) into eigenspaces of RG .

Lemma 9.8.4 Let f ∈ LR(X × [d]). Then we have

〈RG f , f 〉 = cos(2θ )‖ f‖2,
where θ is the angle between f and V1.

Proof. Write f = f1 + f2, with f1 ∈ V1 and f2 ∈ V2, so that
‖ f1‖ = cos θ‖ f‖ and ‖ f2‖ = sin θ‖ f‖,

as shown in Figure 9.3.
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f f2

f1

θ

Figure 9.3. The decomposition f = f1 + f2, with f1 ∈ V1 and f2 ∈ V2.

Then

〈RG f , f 〉 = 〈 f1 − f2, f1 + f2〉
= ‖ f1‖2 − ‖ f2‖2

= (cos2 θ − sin2 θ )‖ f‖2

= cos(2θ )‖ f‖2. �

We now introduce an auxiliary function: for 0 ≤ α, β ≤ 1 we set

�(α, β ) = 1

2
(1− β2)α + 1

2

√
(1− β2)2α2 + 4β2.

The elementary properties of this function are described in the next lemma.

Lemma 9.8.5 Let 0 ≤ α, β ≤ 1. Then the following holds.

(i) �(α, 0) = α, �(0, β ) = β, and �(α, 1) = �(1, β ) = 1.
(ii) For β < 1 fixed, the function α �→ �(α, β ) is strictly increasing.
(iii) For α < 1 fixed, the function β �→ �(α, β ) is strictly increasing.
(iv) If α, β < 1 then �(α, β ) < 1.
(v) �(α, β ) ≤ (1− β2)α + β ≤ α + β (First upper bound).
(vi) �(α, β ) ≤ 1− 1

2 (1− α)(1− β2) (Second upper bound).

(vii) �(α, β ) ≥ 2β2

1−α+β2(1+α) (Lower bound).

Proof. (i) and (ii) are obvious. (iii) requires some elementary algebra. For the
moment, suppose that 0 ≤ α < 1 and 0 ≤ β1 < β2 ≤ 1. Set A1 = (1− β2

1 )α
and A2 = (1− β2

2 )α. We have to prove that

A1 +
√
A2
1 + 4β2

1 < A2 +
√
A2
2 + 4β2

2 . (9.71)
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First of all, note that A1 > A2 and

A2
1 − A2

2 = α2(β2
2 − β2

1 )(2− β2
1 − β2

2 )

≤ 2(β2
2 − β2

1 )

< 4(β2
2 − β2

1 )

so that

A2
1 + 4β2

1 < A2
2 + 4β2

2 . (9.72)

We then write (9.71) in the form

A1 − A2 <

√
A2
2 + 4β2

2 −
√
A2
1 + 4β2

1

which, by virtue of (9.72), is equivalent to (by squaring both sides)√
A2
2 + 4β2

2

√
A2
1 + 4β2

1 < A1A2 + 2β2
1 + 2β2

2 .

Squaring again both sides, with some elementary calculations, (9.71) is in turn
equivalent to

A2
1β

2
2 + A2

2β
2
1 < (β2

1 − β2
2 )

2 + A1A2(β
2
1 + β2

2 ). (9.73)

Now recalling that Aj = (1− β2
j )α for j = 1, 2 one easily checks that

A2
1β

2
2 + A2

2β
2
1 = α2(β2

1 − β2
2 )

2 + A1A2(β
2
1 + β2

2 )

and (9.73) follows. This shows (9.71).
(iv) follows from (i) and (ii) (or (iii)), but we give a straightforward direct

proof. If 0 ≤ α, β < 1 then (1− β2)α < 1− β2 so that

�(α, β ) = 1

2
(1− β2)α + 1

2

√
(1− β2)2α2 + 4β2

<
1

2
(1− β2)+ 1

2

√
(1− β2)2 + 4β2

= 1

2
(1− β2)+ 1

2
(1+ β2) = 1.

(v) Completing the square inside the square root we have

�(α, β ) ≤ 1

2
(1− β2)α + 1

2

√
(1− β2)2α2 + 4β2 + 4β(1− β2)α

= 1

2
(1− β2)α + 1

2
[(1− β2)α + 2β]

= (1− β2)α + β.
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(vi) The inequality

�(α, β ) ≤ 1− 1

2
(1− α)(1− β2)

is equivalent to √
(1− β2)2α2 + 4β2 ≤ 1+ β2.

Squaring both sides this becomes

α2(1− β2)2 ≤ (1− β2)2

which is satisfied since α2 ≤ 1.
(vii) If 2β2

1−α+β2(1+α) ≤ 1
2 (1− β2)α then there is nothing to prove. Otherwise,

we can write the inequality in the form

2β2

1− α + β2(1+ α)
− 1

2
(1− β2)α ≤ 1

2

√
(1− β2)2α2 + 4β2

and squaring both sides (the left hand side is positive) we get

4β2 ≤ 2α(1− β2)[(1− α)+ β2(1+ α)]+ [(1− α)+ β2(1+ α)]2,

that is,

4β2 + α2(1− β2)2 ≤ {α(1− β2)+ [(1− α)+ β2(1+ α)]}2
= (1+ β2)2

which becomes

α2(1− β2)2 ≤ (1− β2)2.

This is clearly satisfied since α2 ≤ 1. �

Remark 9.8.6 The first upper bound is useful when α and β are small, while
the second upper bound is useful when α and β are close to one. Moreover, it
is an easy exercise to show that if β < 1 then

α(1− β2)+ β ≤ 1− 1

2
(1− α)(1− β2)

if and only if

α ≤ 1− β

1+ β
.
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In [127] the authors use the function �(α, β ) = 1− (1− α)(1− β )2 in
place of �. This is also useful when α and β are close to one. We just note
that

1− 1

2
(1− α)(1− β2) ≤ 1− (1− α)(1− β )2

if and only if β ≥ 1
3 . As a consequence, as soon as β ≥ 1

3 , the second upper
bound in Lemma 9.8.5 yields a better estimate than the one provided by � in
[127].
We are now in position to state and prove the main result of this section.

Theorem 9.8.7 (Reingold-Vadhan-Wigderson) In the notation of Section
8.13 we have the following inequality for the first nontrivial eigenvalue of a
zig-zag product:

μ̃1(G z©F ) ≤ k2�

(
μ̃1(G)
d

,
μ̃1(F )

k

)
,

where � is the function in Lemma 9.8.5.

Proof. Let 0 �= f ∈W1(X × [d]) ∩ LR(X × [d]) (cf. Remark 9.8.1). By virtue
of Lemma 8.7.4 (recall that B is the adjacency matrix of F) we have

(IX ⊗ B) f ‖ = 1

d
(IX ⊗ B)[(C f )⊗ 1[d]]

(as B1[d] = k1[d] ) = 1

d
[(C f )⊗ k1[d]]

= k f ‖.

Therefore,

(IX ⊗ B) f = (IX ⊗ B)( f ‖ + f⊥) = k f ‖ + (IX ⊗ B) f⊥. (9.74)

Setting B̃ = 1
k (IX ⊗ B) and recalling Proposition 8.13.3 we have

〈MG z©F f , f 〉 = 〈(IX ⊗ B)RG (IX ⊗ B) f , f 〉
= 〈RG (IX ⊗ B) f , (IX ⊗ B) f 〉

(by (9.74)) = k2〈RG ( f
‖ + B̃ f⊥), f ‖ + B̃ f⊥〉

(by Lemma 9.8.4) = k2 cos 2θ‖ f ‖ + B̃ f⊥‖2

(where θ ∈ [0, π/2] is the angle between f ‖ + B̃ f⊥ and V1) so that

〈MG z©F f , f 〉
‖ f‖2 = k2 cos 2θ

‖ f ‖ + B̃ f⊥‖2
‖ f ‖ + f⊥‖2 . (9.75)
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By virtue of (9.68), the remaining part of the proof is devoted to get an upper
bound for themodulus of the right hand side of the above equality.We introduce
three further angles:

� ϕ ∈ [0, π/2] is the angle between f ‖ and f = f ‖ + f⊥ (see Figure 9.4);

f f⊥

f

ϕ

Figure 9.4. ϕ ∈ [0, π/2] is the angle between f ‖ and f = f ‖ + f⊥.

� ϕ′ is the angle between f ‖ and f ‖ + B̃ f⊥ (see Figure 9.5);

f + Bf⊥ Bf⊥

f

ϕ

Figure 9.5. ϕ′ is the angle between f ‖ and f ‖ + B̃ f⊥.

� ψ ∈ [0, π/2] is the angle between f ‖ and V1.

By (9.69) we have that f ‖ ⊥ B̃ f⊥ so that ϕ′ ∈ [0, π/2]. We claim that

θ ∈ [ψ − ϕ′, ψ + ϕ′].

By symmetry, it suffices to prove that θ ≤ ψ + ϕ′, because by switching the
role of ψ and θ (that is, switching f ‖ with f ‖ + B̃ f⊥, see Figure 9.5) the
inequality ψ ≤ ϕ′ + θ follows. Let h be the orthogonal projection of f ‖ into
V1 and denote by θ̃ the angle between f ‖ + B̃ f⊥ and h. Then, ψ is the angle
between h and f ‖, θ̃ ≤ ψ + ϕ′, by virtue of the triangular inequality for angles
in a three dimensional real space and θ ≤ θ̃ because θ is the minimal angle
between f ‖ + B̃ f⊥ and a vector h̃ ∈ V1.
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f + Bf⊥

f

h ϕ
ψ

Figure 9.6. ψ ∈ [0, π/2] is the angle between f ‖ and V1.

Keeping in mind Figure 9.4 and Figure 9.5, and by virtue of Lemma 9.8.2,
we have

tanϕ′

tanϕ
= ‖ f ‖‖ tanϕ′

‖ f ‖‖ tanϕ = ‖B̃ f⊥‖
‖ f⊥‖ ≤ 1

k
μ̃1(F ). (9.76)

By Lemma 9.8.3, Lemma 9.8.4, and the definition of ψ

cos 2ψ = 〈RG f ‖, f ‖〉
‖ f ‖‖2 ≤ μ̃1(G)

d
. (9.77)

By Figure 9.4 and Figure 9.5,

‖ f ‖ + B̃ f⊥‖2
‖ f ‖ + f⊥‖2 =

1
cos2 ϕ′ ‖ f ‖‖2

1
cos2 ϕ ‖ f ‖‖2

= cos2 ϕ

cos2 ϕ′ .

In conclusion (see equation (9.75) and the observation following it), we have
to maximize

k2| cos 2θ | ‖ f
‖ + B̃ f⊥‖2

‖ f ‖ + f⊥‖2 = k2| cos 2θ | cos
2 ϕ

cos2 ϕ′

subject to the constraints:

(1) ϕ, ϕ′, ψ ∈ [0, π
2 ];

(2) θ ∈ [ψ − φ′, ψ + ϕ′];
(3) β = tanϕ′

tanϕ ≤ μ̃1(F )
k (cf. (9.76));

(4) α = | cos 2ψ | ≤ μ̃1(G )
d (cf. (9.77)).

We distinguish two cases, namely

0,
π

2
/∈ [ψ − ϕ′, ψ + ϕ′] ⇔ ϕ′ < min{ψ,

π

2
− ψ} ⇔ ϕ′ < ψ <

π

2
− ϕ′

(this condition ensures that cos 2ψ < 1) and

ϕ′ ≥ min{ψ,
π

2
− ψ}
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(now cos 2ψ = 1 is possible).

Case I: ϕ′ < min{ψ, π
2 − ψ}.

First of all, note that since

0 < ψ − ϕ′ ≤ θ ≤ ψ + ϕ′ <
π

2

we have

|cos 2θ | ≤ max{| cos 2(ψ + ϕ′)|, | cos 2(ψ − ϕ′)|}
= max{|cos 2ψ cos 2ϕ′−sin 2ψ sin 2ϕ′|,
|cos 2ψ cos 2ϕ′+sin 2ψ sin 2ϕ′|}

=∗

{
cos 2ψ cos 2ϕ′ + sin 2ψ sin 2ϕ′ if cos 2ψ cos 2ϕ′ ≥ 0

− cos 2ψ cos 2ϕ′ + sin 2ψ sin 2ϕ′ if cos 2ψ cos 2ϕ′ < 0

= | cos 2ψ cos 2ϕ′| + sin 2ψ sin 2ϕ′,

where =∗ follows from sin 2ψ sin 2ϕ′ ≥ 0. Therefore

|cos 2θ | cos
2 ϕ

cos2 ϕ′ ≤
∣∣∣∣ cos2 ϕcos2 ϕ′ cos 2ϕ

′ cos 2ψ
∣∣∣∣+ cos2 ϕ

cos2 ϕ′ sin 2ψ sin 2ϕ′

= 1

2
|(1− β2) cos 2ψ+(1+ β2) cos 2ψ cos 2ϕ|

+β sin 2ψ sin 2ϕ

(9.78)

where β = tanϕ′
tanϕ as in (3), and the last equality follows from two elementary

trigonometric identities, namely

cos2 ϕ

cos2 ϕ′ cos 2ϕ
′ = 1

2
[1− β2 + (1+ β2) cos 2ϕ],

which has a long but elementary proof, left to the reader, and

cos2 ϕ

cos2 ϕ′ sin 2ϕ
′ =

sin 2ϕ
2 tanϕ
sin 2ϕ′
2 tanϕ′

sin 2ϕ′ =
1

tanϕ
1

tanϕ′
sin 2ϕ = β sin 2ϕ.
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Finally, the triangular inequality applied to (9.78) (recall that |β| < 1 by (9.76))
yields

| cos 2θ | cos
2 ϕ

cos2 ϕ′ ≤
1

2
(1− β2)| cos 2ψ |

+ 1

2
(1+ β2)| cos 2ψ | · | cos 2ϕ| + 1

2
· 2β sin 2ψ · sin 2ϕ

≤∗∗
1

2
(1− β2)| cos 2ψ |

+ 1

2

√
(1+ β2)2(cos 2ψ )2 + 4β2(sin 2ψ )2

(by (4)) = 1

2
(1− β2)α + 1

2

√
(1− β2)2α2 + 4β2

= �(α, β ),

where ≤∗∗ follows by applying the Cauchy-Schwarz inequality. We then
conclude by invoking Lemma 9.8.5.(ii) and (iii), and keeping in mind the
inequalities in (3) and (4).

Case II: ϕ′ ≥ min{ψ, π
2 − ψ}.

We now have ψ − ϕ′ ≤ 0 or ψ + ϕ′ ≥ π
2 so that

| cos 2θ | cos
2 ϕ

cos2 ϕ′ ≤
cos2 ϕ

cos2 ϕ′

= tan2 ϕ′

tan2 ϕ
+ (1− tan2 ϕ′

tan2 ϕ
) cos2 ϕ

(by (3)) = β2 + (1− β2) cos2 ϕ,

(9.79)

where the first equality is an elementary trigonometric identity, whose proof is
left to the reader. Now, since ϕ′ ≥ min{ψ, π

2 − ψ}, we have⎧⎪⎪⎨⎪⎪⎩
2ϕ′ ≥ 2ψ

or

2ϕ′ ≥ π − 2ψ

⇒

⎧⎪⎪⎨⎪⎪⎩
cos 2ϕ′ ≤ cos 2ψ

or

cos 2ϕ′ ≤ − cos 2ψ

⇒ cos 2ϕ′ ≤ | cos 2ψ | = α.

Since

cos 2ϕ′ = (1+ β2) cos2 ϕ − β2

(1− β2) cos2 ϕ + β2

(another trigonometric identity whose proof is left as an exercise) we get

(1+ β2) cos2 ϕ − β2

(1− β2) cos2 ϕ + β2
≤ α,
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which is equivalent to

cos2 ϕ ≤ β2(1+ α)

β2(1+ α)+ 1− α
.

Applying this inequality to (9.79) we get

| cos 2θ | cos
2 ϕ

cos2 ϕ′ ≤ β2 + (1− β2)
β2(1+ α)

β2(1+ α)+ 1− α

= 2β2

1− α + β2(1+ α)

≤ �(α, β ),

where the last inequality follows from Lemma 9.8.5.(vii). The statement then
follows, as in the previous case, from Lemma 9.8.5.(ii) and (iii), together with
the inequalities in (3) and (4). �

9.9 Explicit construction of expanders via the Zig-Zag product

In this section, we present the basic recursive construction that uses the esti-
mates in Theorem 9.8.7 to construct a family of expander graphs. Let G =
(X,E, r) be a finite connected graph. We define the non-oriented square of
G as the graph G2 = (X,F, s) with the same vertex set of G, edge set defined as

F = {{x, e1, y, e2, z} : x, y, z ∈ X, e1, e2 ∈ E, r(e1) = {x, y}, r(e2) = {y, z}} ,
where {x, e1, y, e2, z} should be thought of as the pair of paths (x, e1, y, e2, z)
and (z, e2, y, e1, x), and s({x, e1, y, e2, z}) = {x, z} for all {x, e1, y, e2, z} ∈ F
(note that x, y, z are not necessarily distinct). In other words, F is the set of
all (non-oriented) paths of length two in G.
Clearly, if A is the adjacency matrix of G, then A2 is the adjacency matrix of

G2 (see Proposition 8.1.6). Moreover, it is immediate to see that G2 is connected
if and only if G is not bipartite: the reader is invited to find a direct proof of this
fact and, in the case G is k-regular, to deduce it from Proposition 8.3.4 and
Proposition 8.1.5.
Finally, if G is k-regular we clearly have

μ̃1(G2) = μ̃1(G)2. (9.80)

Theorem 9.9.1 Let G be a d-regular graph with d4 vertices, d ≥ 2 and suppose
that

μ̃1(G) ≤ d

4
.
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Set

G1 = G2 and Gn+1 = G2
n z©G for n ≥ 1.

Then Gn is a d2-regular graph with d4n vertices and

μ̃1(Gn) ≤ d2

2
. (9.81)

In particular, the sequence (Gn)n∈N is a family of expanders.

Proof. By construction, G1 has d4 vertices, is regular of degree d2, and satisfies
μ̃1(G1) ≤ d2

16 (by (9.80)). We proceed by induction. Suppose that Gn is a d2-
regular graph with d4n vertices and (9.81) holds. Then G2

n has d4n vertices, is
regular of degree d4, and satisfies μ̃1(G2

n ) ≤ d4

4 . Therefore Gn+1 has d4n · d4 =
d4(n+1) vertices, is regular of degree d2 (by Definition 8.13.1), and, by Theorem
9.8.7 and Lemma 9.8.5.(v),

μ̃1(Gn+1) ≤ d2
(
1

4
+ 1

4

)
= d2

2
.

The sequence (Gn)n∈N then forms a family of expanders (cf. Definition
9.5.3). �
Example 9.9.2 Consider the graph LD(q, r) introduced in Section 9.7, where
q = pt with p prime, and t, r positive integers. We use the notation in the proof
of Theorem 9.7.3. Recall (cf. (9.67)) that the eigenvalues of LD(q, r) are given
by

μa =
∑
x∈Fq
pa(x)=0

∑
y∈Fq

ωL(ypa(x)),

a ∈ Fr+1
q . Now, for a �= (0, 0, . . . , 0), the polynomial pa(x) has at most r roots

in Fq and therefore (cf. the end of the proof of Theorem 9.7.3)

|μa| ≤ qr. (9.82)

Then, for r = 7 and q ≥ 4r the graph G = LD(q, 7) satisfies the hypotheses
of Theorem 9.9.1. Indeed, G is d-regular of degree d = q2, the number of its
vertices is qr+1 = q8 = d4, and (cf. (9.82))

μ̃1(G) ≤ r
√
d ≤ d

4
.
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10

Representation theory of finite groups

In this chapter we give a concise but quite detailed and complete exposition of
the basic representation theory of finite groups. This may be considered as a
noncommutative analogue of Chapter 2. Indeed, we emphasize the harmonic
analytic point of view, focusing on unitary representations and Fourier trans-
forms. Our exposition is based on our previous books [29], [33]. We also refer
to the useful monographs by: Alperin and Bell [12], Diaconis [53], Fulton and
Harris [63], Naimark and Stern [119], Serre [145], Simon [148], and Sternberg
[154].

10.1 Representations, irreducibility, and equivalence

Let G be a finite group and V a finite dimensional vector space over C. We
denote by End(V ) the algebra (see Section 10.3) of all linear maps T : V → V
and byGL(V ) the general linear group ofV consisting of all invertible elements
in End(V ).

Definition 10.1.1 A representation of G over V is a homomorphism ρ : G→
GL(V ). In other words, we have:

� ρ(g) : V → V is linear and invertible for all g ∈ G;
� ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G;
� ρ(g−1) = ρ(g)−1 for all g ∈ G;
� ρ(1G) = IV where 1G is the identity element inG and IV : V → V is the iden-
tity map (and thus the identity element in GL(V )).

We shall denote a representation by a pair (ρ,V ). Note also that ρ may be
seen as an action (g, v ) �→ ρ(g)v of G on V , where ρ(g) is an invertible linear
map for all g ∈ G. Denoting by n the dimension dim(V ) of V , since GL(V ) is

343
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isomorphic to GL(n,C), the group of invertible n-by-n complex matrices, we
can regard a representation ofG as a group homomorphism ρ : G→ GL(n,C).
Then n is the dimension or degree of ρ and it will be usually denoted by dρ .

The kernel of the representation (ρ,V ) is Kerρ = {g ∈ G : ρ(g) = IV }. The
representation (ρ,V ) is called faithful if Kerρ = {1G}. In other words, ρ is
faithful if and only if it is an isomorphism betweenG and a subgroup of GL(V ).
Let (ρ,V ) be a representation of G and suppose thatW ≤ V is a subspace.

We say thatW is G-invariant (or ρ-invariant) if ρ(g)w ∈W for all g ∈ G and
w ∈W . Then, denoting by ρW (g) the restriction of ρ(g) to the subspace W ,
that is, ρW (g)w = ρ(g)w for all g ∈ G and w ∈W , we say that (ρW ,W ) is the
restriction of ρ to the (invariant) subspaceW and call it a sub-representation of
(ρ,V ). We also say that ρW is contained in ρ and write (ρW ,W ) ) (ρ,V ), or
simply ρW ) ρ. One also says that an element v ∈ V is a G-invariant vector,
provided ρ(g)v = v for all g ∈ G. It is clear that the set of G-invariant vector
is a G-invariant subspace VG ≤ V , which we call the subspace of G-invariant
vectors. Clearly, every representation is a sub-representation of itself.
LetK ≤ G be a subgroup ofG. Then setting [ResGKρ](k) = ρ(k) for all k ∈ K,

yields a K-representation (ResGKρ,V ). This is called the restriction of ρ to the
subgroup K.
The representation (ρ,V ) is called irreducible if the only G-invariant sub-

spaces are trivial: W ≤ V and ρ(g)W ≤W for all g ∈ G implies that either
W = {0} orW = V .

The direct sum of given G-representations (ρ j,Wj ), j = 1, 2, . . . , k, is the
G-representation (ρ,V ) where V =W1 ⊕W2 ⊕ · · · ⊕Wk is the direct sum of
the corresponding spaces, and ρ = ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk is defined by setting

ρ(g)v = ρ1(g)w1 + ρ2(g)w2 + · · · + ρk(g)wk

for all v = w1 + w2 + · · · + wk ∈ V ,wi ∈Wi, and g ∈ G. Conversely, if (ρ,V )
is a G-representation and

V =W1 ⊕W2 ⊕ · · · ⊕Wk (10.1)

is a direct sum decomposition into G-invariant subspaces, then ρ = ρ1 ⊕ ρ2 ⊕
· · · ⊕ ρk, where ρ j = ρWj , j = 1, 2, . . . , k; we then say that (10.1) constitutes
a (direct sum) decomposition of ρ.
Let (ρ,V ) and (θ,W ) be two representations of the same group G. Suppose

that there exists a linear isomorphism T : V →W such that, for all g ∈ G,

θ (g)T = Tρ(g). (10.2)

Then one says that the two representations are equivalent and we write ρ ∼ θ .
Note that ∼ is an equivalence relation and that two equivalent representations
have the same degree. We write ρ �∼ θ to denote that ρ and θ are not equivalent.
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We will also use the notation V ∼=W to indicate that the representations of G
on V andW are equivalent. However, in expressions as (10.1) we prefer to use
equality to emphasize that we have a concrete decomposition on V into direct
sum of subspaces.
Suppose now that the complex vector spaceV is unitary, that is, it is endowed

with an inner product that we shall denote by 〈·, ·〉V (with associated norm
‖·‖V ); the subscript will usually be omitted when the space V is clear from
the context. We recall (see [93, 91, 75]) that the adjoint of a linear operator
T : W → V between two unitary spaces W,V is the unique linear operator
T ∗ : V →W such that 〈Tw, v〉V = 〈w,T ∗v〉W , for all w ∈W, v ∈ V . More-
over, an endomorphism U : V → V is unitary if U∗U = I = UU∗ and this is
equivalent to the condition 〈Uv1,Uv2〉 = 〈v1, v2〉 for all v1, v2 ∈ V . Moreover,

ifU is a unitary matrix thenU∗ = U
T
, the conjugate transpose ofU .

A representation (ρ,V ) is called unitary if ρ(g) is unitary for all g ∈ G, that
is, 〈ρ(g)v1, ρ(g)v2〉 = 〈v,w〉 for all and v1, v2 ∈ V . We shall then say that the
inner product 〈·, ·〉 is ρ-invariant (or G-invariant).
Exercise 10.1.2 Show that every one-dimensional representation is unitary.
Hint: Show that every inner product on C is of the form 〈z1, z2〉 = αz1z2, where
α > 0, for all z1, z2 ∈ C.

Given an arbitrary representation (ρ,V ) of a finite group G it is always pos-
sible to endowV with an inner product making ρ unitary. If 〈·, ·〉 is an arbitrary
inner product on V , we define, for all v1 and v2 in V ,

(v,w) =
∑
g∈G

〈ρ(g)v, ρ(g)w〉 . (10.3)

Proposition 10.1.3 The representation (ρ,V ) is unitary with respect to the
scalar product (·, ·). In particular, every representation of G is equivalent to
a unitary representation.

Proof. First of all, it is easy to see that (10.3) defines an inner product on V .
Moreover, for all v1, v2 ∈ V and h ∈ G we have

(ρ(h)v1, ρ(h)v2) =
∑
g∈G

〈ρ(g)ρ(h)v1, ρ(g)ρ(h)v2〉

=
∑
g∈G

〈ρ(gh)v1, ρ(gh)v2〉

(t = gh) =
∑
t∈G

〈ρ(t )v1, ρ(t )v2〉

= (v,w).

This shows that the inner product (·, ·) is G-invariant. �
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We are mostly interested in equivalence classes of representations, thus we
might confine ourselves to unitary representations. Thus, from now on, given
a G-representation (ρ,V ), it is understood that V is a finite dimensional (com-
plex) vector space endowed with a G-invariant inner product and that ρ(g) is
unitary for all g ∈ G: note that, under these assumptions, we thus have

ρ(g−1) = ρ(g)−1 = ρ(g)∗ (10.4)

for all g ∈ G. Also, we shall use the polar decomposition of a linear operator
(see any book of linear algebra, for instance [75]) in the following form: if
T : V →W is a linear invertible map between two unitary spaces V and W
then there exist a unique positive, self-adjoint operator |T | : V → V (that is,
〈|T |v, v〉V > 0 and 〈|T |v1, v2〉V = 〈v1, |T |v2〉V for all v, v1, v2 ∈ V , v �= 0) and
a unique unitary isomorphismU : V →W such that T = U |T |. We also recall
that |T | is the unique positive square root of the positive operator T ∗T : this
means that |T |2 = T ∗T and |T | is positive.
Lemma 10.1.4 Let (ρ,V ) and (θ,W ) be two unitary representations of a finite
group G and suppose that they are equivalent. Then they are also unitarily
equivalent, that is, there exists a unitary isomorphism U : V →W such that
ρ(g) = U−1θ (g)U for all g ∈ G.

Proof. Let g ∈ G. Since ρ and θ are equivalent, we write (10.2) in the form

ρ(g) = T−1θ (g)T. (10.5)

Taking adjoints, using (10.4), and replacing g by g−1, we have

ρ(g) = T ∗θ (g)(T ∗)−1.

From (10.5) we then deduce that T ∗Tρ(g)(T ∗T )−1 = T ∗θ (g)(T ∗)−1 = ρ(g),
equivalently,

ρ(g)−1(T ∗T )ρ(g) = T ∗T. (10.6)

Now we use the polar decomposition of T : since |T |2 = T ∗T we have,
ρ(g)−1|T |2ρ(g) = |T |2, that is, [ρ(g)−1|T |ρ(g)]2 = |T |2, and ρ(g)−1|T |ρ(g) is
positive: 〈

ρ(g)−1|T |ρ(g)v, v 〉 = 〈|T |ρ(g)v, ρ(g)v〉 > 0

for all v ∈ V , v �= 0. Since ρ(g)−1|T |ρ(g) is the square root of the left
hand side of (10.6), by the uniqueness of the positive square root we have
ρ(g)−1|T |ρ(g) = |T |, that we write in the form

|T |ρ(g)|T |−1 = ρ(g). (10.7)
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Then, if T = U |T | is the polar decomposition of T , we have

U−1θ (g)U = |T |T−1θ (g)T |T |−1

(by (10.5)) = |T |ρ(g)|T |−1

(by (10.7)) = ρ(g).

This shows that ρ is unitarily equivalent to θ . �

The assumption that the representation ρ is unitary has a simple but funda-
mental consequence: ifW is a G-invariant subspace of V thenW⊥ = {v ∈ V :
〈v,w〉 = 0, ∀w ∈W }, the orthogonal complement of W , is also G-invariant.
Indeed, if v ∈W⊥ and g ∈ G one has 〈ρ(g)v,w〉 = 〈v, ρ(g−1)w

〉 = 0 for all
w ∈W . Moreover,V can be expressed as the direct sum of the orthogonal sub-
spacesW andW⊥, namely V =W ⊕W⊥ and ρ = ρW ⊕ ρW⊥ .

Lemma 10.1.5 Every representation of G is the orthogonal direct sum of a
finite number of irreducible representations.

Proof. Let (ρ,V ) be a representation of G. If ρ is irreducible there is nothing
to prove. If not, as above we get a nontrivial orthogonal decomposition into
G-invariant subspaces of the formV =W ⊕W⊥. Then the proof follows by an
easy inductive argument on the dimension of V , because dimW < dimV and
dimW⊥ < dimV . �

Definition 10.1.6 (Dual) Let G be a finite group. We denote by Ĝ, called the
dual ofG, a complete set of irreducible pairwise non-equivalent (unitary) repre-
sentations of G (in other words, Ĝ contains exactly one element in each equiv-
alence class of irreducible G-representations).

We will also use the following notation: if ρ, θ ∈ Ĝ then

δρ,θ =
{
1 if ρ = θ

0 if ρ �= θ,

(note that if ρ, θ ∈ Ĝ then ρ �∼ θ is the same thing as ρ �= θ ). We end this
section by illustrating some fundamental examples.

Example 10.1.7 For any finite group G we define the trivial representation
(ι,C) as the one-dimensional representation of G defined by setting ι(g) = IdC
for all g ∈ G. As it is one-dimensional, it is also unitary (cf. Exercise 10.1.2)
and irreducible.

Example 10.1.8 Let G be a finite group. Denote by L(G) = { f : G→ C} the
space of all complex valued functions on G; it is a vector space with respect to
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the pointwise linear combinations: (α1 f1 + α2 f2)(g) = α1 f1(g)+ α2 f2(g) for
all f1, f2 ∈ L(G), α1, α2 ∈ C, and g ∈ G. Introduce in L(G) the inner product

〈 f1, f2〉 =
∑
g∈G

f1(g) f2(g) (10.8)

for all f1, f2 ∈ L(G). Then the representation (λG,L(G)) defined by

[λG(g) f ](h) = f (g−1h) (10.9)

for all g, h ∈ G and f ∈ L(G), is called the left regular representation of G. It
is easy to show that it is indeed a representation: if g1, g2, g ∈ G and f ∈ L(G)
then we have

[λG(g1)λG(g2) f ](g) = {λG(g1)[λG(g2) f ]}(g)
= [λG(g2) f ](g

−1
1 g)

= f (g−1
2 g−1

1 g)

= [λG(g1g2) f ](g),

that is, λG(g1)λG(g2) = λG(g1g2). Moreover, λG is unitary: if g ∈ G and
f1, f2 ∈ L(G) then we have

〈λG(g) f1, λG(g) f2〉 =
∑
h∈G

f1(g
−1h) f2(g−1h)

(t = g−1h) =
∑
t∈G

f1(t ) f2(t )

= 〈 f1, f2〉 .
Analogously, the representation (ρG,L(G)) defined by

[ρG(g) f ](h) = f (hg) (10.10)

for all g, h ∈ G and f ∈ L(G), is again a unitary representation, called the
right regular representation. Note that these two representations commute:
λG(g)ρG(h) = ρG(h)λG(g) for all g, h ∈ G.

As in Section 2.1, we denote by δg ∈ L(G) the Dirac function at g ∈ G,
defined by

δg(h) =
{
1 if h = g

0 otherwise.

It is clear that {δg : g ∈ G} is an orthonormal basis in L(G). Note also that
λG(h)δg = δhg, for all h, g ∈ G so that we may represent every f ∈ L(G) in the
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form

f =
∑
g∈G

f (g)δg =
∑
g∈G

f (g)λG(g)δ1G . (10.11)

Remark 10.1.9 In many books, the inner product (10.8) is normalized, that is
〈 f1, f2〉L(G) = 1

|G|
∑

g∈G f1(g) f2(g) and this changes many formulæ given in the
following chapters by a factor of 1/|G|. Our choice makes the Dirac functions
an orthonormal basis. The normalized scalar product comes from the theory
of compact groups, where the Haar measure is normalized in order to be a
probability measure; see the monographs by Bump [23] and Simon [148].

Example 10.1.10 Let G = Sn be the symmetric group of degree n, that is,
the group of all permutations on n elements. The sign representation is the
one-dimensional representation (ε,C) defined by setting ε(g) = (−1)sign(g)IdC,
where sign(g), the sign of the permutation g ∈ Sn, is defined to be 1 if g is an
even permutation (that is, g is the product of an even number of transpositions,
equivalently g ∈ An, the alternating group), and −1 if g is an odd permutation
(that is, g ∈ Sn \ An). As the map sign : G→ Sn/An ≡ C2 is a group homomor-
phism, we have ε(g1g2) = ε(g1)ε(g2) for all g1, g2 ∈ Sn, so that ε is indeed a
representation. As it is one-dimensional, it is also unitary (cf. Exercise 10.1.2)
and irreducible.

Example 10.1.11 Let A be an Abelian group. Then its characters (see Section
2.3) are unitary representations of A and its dual Â is itself a group (cf. Defini-
tion 2.3.1; see also Corollary 10.2.7 and Example 10.2.27).

10.2 Schur’s lemma and the orthogonality relations

Given two finite dimensional vector spaces V and W , recall that Hom(V,W )
(respectively, End(V )) denotes the vector space of all linear maps T : V →W
(respectively, T : V → V ). Let G be a finite group and suppose that (ρ,V ) and
(θ,W ) are two representations of G.

Definition 10.2.1 One says that L ∈ Hom(V,W ) intertwines ρ and θ if

Lρ(g) = θ (g)L,

for all g ∈ G. We will denote by HomG(V,W ) (or HomG(ρ, θ )) the space of all
such intertwiners; it is called the commutant of ρ and θ . WhenW = V and θ =
ρ it is denoted by EndG(V ) (or EndG(ρ)), and it is simply called the commutant
of ρ.

We begin with an elementary but useful property.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.011
https://www.cambridge.org/core


350 Representation theory of finite groups

Proposition 10.2.2 A linear map L : V →W belongs to HomG(V,W ) if and
only if L∗ belongs to HomG(W,V ).

Proof. For all g ∈ G we have

L∗θ (g) = L∗θ (g−1)∗ = (θ (g−1)L)∗ and ρ(g)L∗ = ρ(g−1)∗L∗ = (Lρ(g−1))∗,

so that L∗θ (g) = ρ(g)L∗ if and only if θ (g−1)L = Lρ(g−1). �

The map L→ L∗ is an antilinear isomorphism between HomG(V,W )
and HomG(W,V ): indeed, (αT1 + βT2)∗ = αT ∗

1 + βT ∗
2 , for α, β ∈ C, T1,T2 ∈

HomG(V,W ).
We now illustrate the fundamental results that relate the notion of reducibility

of a representation with the existence of intertwiners.

Lemma 10.2.3 (Schur) Let (ρ,V ) and (θ,W ) be two irreducible representa-
tions of G. If L ∈ HomG(V,W ) then either L is the zero homomorphism, or it is
an isomorphism.

Proof. Consider the kernel KerL = {v ∈ V : Lv = 0} ≤ V and the range
RanL = {Lv : v ∈ V } ≤W of L. If L intertwines ρ and θ then KerL and RanL
are ρ- and θ -invariant, respectively:

v ∈ KerL ⇒ Lv = 0 ⇒ Lρ(g)v = θ (g)Lv = 0 ⇒ ρ(g)v ∈ KerL

and

w ∈ RanL ⇒ ∃v ∈ V : w = Lv ⇒ θ (g)w = Lρ(g)v ∈ RanL.

By irreducibility, either KerL = V (and necessarily RanL = {0}) or KerL = {0}
(and necessarily RanL =W ). In the first case L vanishes, in the second case it
is an isomorphism. �

Corollary 10.2.4 Let (ρ,V ) be an irreducible representation of G and suppose
that L ∈ EndG(V ) (that is, L intertwines ρ with itself: Lρ(g) = ρ(g)L for all
g ∈ G). Then L is amultiple of the identity: there exists λ ∈ C such that L = λIV .

Proof. Let λ be an eigenvalue of L (which exists because V is a complex vec-
tor space and C is algebraically closed). Then (L− λIV ) ∈ EndG(V ) and, by
Schur’s lemma, it is either an isomorphism or the zero homomorphism. But,
by definition of an eigenvalue, it cannot be invertible, and therefore necessarily
L = λIV . �

The last corollary may be expressed in the form: if V is G-irreducible then

EndG(V ) = {λIV : λ ∈ C} ≡ CIV .
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Corollary 10.2.5 Suppose that (ρ,V ) and (θ,W ) are irreducible equivalent
G-representations. Then dimHomG(V,W ) = 1.

Proof. Let T1,T2 ∈ HomG(V,W ) \ {0}. Then, by Proposition 10.2.2 T ∗
2 T1 ∈

EndG(V ) so that, by Corollary 10.2.4, there exists λ ∈ C such that T ∗
2 T1 = λIV ,

equivalently, T1 = λT2. �

Corollary 10.2.6 Suppose that (ρ,V ) and (η,U ) are G-representations. Then
HomG(V,U ) is nontrivial if and only if ρ and η contain a common isomorphic
irreducible G-representation.

Proof. Suppose that T ∈ HomG(V,U ) is nontrivial. Then (KerT )⊥ ≤ V is non-
trivial, ρ-invariant, and therefore it contains an irreducible representationW ≤
V (recall Lemma 10.1.5). Clearly, T |W is an isomorphism intertwiningW and
T (W ) ≤ U . The proof of the converse is left as an exercise (see also Exercise
10.6.9). �

Corollary 10.2.7 Let G be a (finite) Abelian group. A representation (ρ,V ) of
G is irreducible if and only if it is one dimensional (so that it is a character).

Proof. Let us use multiplicative notation for G. Then, for all g, h ∈ G we
have ρ(g)ρ(h) = ρ(h)ρ(g), so that ρ(g) ∈ EndG(ρ). By Corollary 10.2.4, there
exists a function χ : G→ C such that ρ(g) = χ (g)IV ,∀g ∈ G. Then every sub-
space of V is ρ-invariant so that ρ is irreducible if and only if dimV = 1. We
leave it to the reader to check that χ is indeed a character. �

Exercise 10.2.8 Show that if ρ ∈ Ĝ and g is in the center Z(G) = {z ∈ G : zh =
hz for all h ∈ G} of G, then there exists λ ∈ C such that ρ(g) = λIV .

Exercise 10.2.9 (Converse to Schur’s lemma) Suppose that the commutant
of a G-representation (ρ,V ) is trivial, that is, EndG(V ) = CIV . Show that ρ
is irreducible (see also Corollary 10.6.4).

Let (ρ,V ) be a representation ofG. Given v,w ∈ V the element uρv,w ∈ L(G)
defined by uρv,w(g) = 〈ρ(g)w, v〉 for all g ∈ G, is called a (matrix) coefficient of
the representation ρ; we will omit the superscript “ρ” when the representation
ρ is clear from the context. If {v1, v2, . . . , vn} is an orthonormal basis for V ,
then ρ(g), viewed as an n-by-nmatrix, coincides with the matrix (uρvi,v j (g))

n
i, j=1

(see Lemma 10.2.13.(ii)).
Note that if f ∈ L(G) and g ∈ G, then (cf. (10.11)) one has

f (g) = 〈λG(g)δ1G , f 〉 = uλG
δ1G , f

(g),
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where λG is the left regular representation of G and δ1G is the Dirac function at
the identity element 1G of G. This shows that any f ∈ L(G) may be realized as
a coefficient of a (unitary) representation.

Lemma 10.2.10 Let (ρ,V ) and (θ,W ) be two irreducible, non-equivalent rep-
resentations of G. Then all coefficients of ρ are orthogonal to all coefficients
of θ .

Proof. Let v1, v2 ∈ V and w1,w2 ∈W . Our goal is to show that the func-
tions uρv2,v1 (g) = 〈ρ(g)v1, v2〉V and uθw2,w1

(g) = 〈θ (g)w1,w2〉W are orthogonal
in L(G). Consider the linear transformation L : V →W defined by

Lv = 〈v, v2〉V w2, (10.12)

for all v ∈ V . Then, the linear transformation L̃ : V →W defined by

L̃ =
∑
g∈G

θ (g−1)Lρ(g)

belongs to HomG(ρ, θ ). Indeed, for every g ∈ G,

L̃ρ(g) =
∑
h∈G

θ (h−1)Lρ(hg)

(k = hg) =
∑
k∈G

θ (gk−1)Lρ(k)

= θ (g)̃L.

Thus, by virtue of Schur’s lemma, we have that either L̃ is invertible or L̃ = 0.
As ρ �∼ θ , necessarily the second possibility occurs and therefore

0 = 〈̃Lv1,w1
〉
W
=
∑
g∈G

〈Lρ(g)v1, θ (g)w1〉W

(by (10.12)) =
∑
g∈G

〈ρ(g)v1, v2〉V · 〈w2, θ (g)w1〉W

=
∑
g∈G

〈ρ(g)v1, v2〉V · 〈θ (g)w1,w2〉W

=
∑
g∈G

uρv2,v1 (g)u
θ
w2,w1

(g)

= 〈uρv2,v1 , uθw2,w1

〉
L(G)

. �
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Theorem 10.2.11 Let G be a finite group. Then there exist only finitely many
pairwise inequivalent irreducible unitary representations. In other words,
|Ĝ| < ∞.

Proof. The space L(G) is finite dimensional and contains only finitely many
distinct pairwise orthogonal functions, and the statement follows from previous
lemma. �

Let now (ρ,V ) be an irreducible G-representation, d = dimV , and choose
an orthonormal basis {v1, v2, . . . , vd} of V . Recall that the trace of a linear
operator T : V → V is given by Tr(T ) =∑n

j=1〈Tv j, v j〉. It is easy to check
that Tr : End(V ) → C is a linear map, that it does not depend on the choice of
the basis, and that it satisfies the following central properties:

Tr(TS) = Tr(ST ) for all S,T ∈ End(V );

Tr(T−1ST ) = Tr(S) for all S ∈ End(V ) and T ∈ GL(V ). (10.13)

Lemma 10.2.12 The coefficients

uρi, j(g) =
〈
ρ(g)v j, vi

〉
V , i, j = 1, 2, . . . , d, (10.14)

are pairwise orthogonal in L(G). In formulæ,〈
uρi, j, u

ρ

k,h

〉
L(G)

= |G|
d

δikδ jh

for all i, j, h, k = 1, 2, . . . , d.

Proof. Fix indices 1 ≤ i, k ≤ d and define Lik ∈ End(V ) by setting

Lik(v ) = 〈v, vi〉 vk,
for all v ∈ V . It is easy to check that Tr(Lik ) = δik. Now set

L̃ik = 1

|G|
∑
g∈G

ρ(g−1)Likρ(g)

and observe that L̃ik ∈ EndG(ρ) (see the proof of Lemma 10.2.10). As ρ is
irreducible, from Corollary 10.2.4 we deduce that L̃ik = αIV , for a suitable α ∈
C. Indeed, α = δik/d:

dα = Tr(̃Lik )

= 1

|G|
∑
g∈G

Tr
[
ρ(g−1)Likρ(g)

]
(by (10.13)) = Tr(Lik ).
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It follows that L̃ik = (1/d)δikIV and therefore
〈̃
Likv j, vh

〉
V = (1/d)δ jhδik. Since〈̃

Likv j, vh
〉
V = 1

|G|
∑
g∈G

〈
Likρ(g)v j, ρ(g)vh

〉
V

= 1

|G|
∑
g∈G

〈
ρ(g)v j, vi

〉
V · 〈vk, ρ(g)vh〉V

= 1

|G|
〈
uρi, j, u

ρ

k,h

〉
L(G)

,

this ends the proof. �

The following lemma presents further properties of the matrix coefficients;
these do not require the irreducibility of ρ.

Lemma 10.2.13 Let (ρ,V ) be a G-representation and let {v1, v2, . . . , vd} be
an orthonormal basis of V . With the notation in (10.14) one has:

(i) uρi, j(g
−1) = uρj,i(g);

(ii) ρ(g)v j =
∑d

i=1 viu
ρ

i, j(g);

(iii) uρi, j(g1g2) =
∑d

h=1 u
ρ

i,h(g1)u
ρ

h, j(g2);

(iv)
∑d

j=1 u
ρ

i, j(g)u
ρ

k, j(g) = δi,k and
∑d

i=1 u
ρ

i, j(g)u
ρ

i,k(g) = δ j,k (dual orthogo-
nality relations)

for all g, g1, g2 ∈ G and i, j, k = 1, 2, . . . , d.

Proof.

(i) This follows immediately from ρ(g)∗ = ρ(g−1) and 〈v,w〉 = 〈w, v〉 for
all g ∈ G and v,w ∈ V .

(ii) This is obvious, since for all v ∈ V one has v =∑n
h=1 vh〈v, vh〉.

(iii) From (ii) we deduce that

d∑
h=1

vhu
ρ

h, j(g1g2) = ρ(g1g2)v j = ρ(g1)ρ(g2)v j =
d∑

h=1

ρ(g1)vhu
ρ

h, j(g2)

and taking the scalar product with vi we get the desired equality.
(iv) This is an immediate consequence of the unitarity of ρ(g), that is, of the

relation ρ(g)ρ(g)∗ = ρ(g)∗ρ(g) = IV , for all g ∈ G. �

In the following, we shall refer to
(
uρi, j(g)

)n
i, j=1

as amatrix realization of the

representation ρ.
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Definition 10.2.14 Let (ρ,V ) be a G-representation. Then the map χρ ∈ L(G)
defined by setting

χρ (g) = Tr[ρ(g)] for all g ∈ G

is called the character of ρ.

Note that, for every g ∈ G, we have that ρ(g), being unitary, is diagonal-
izable and therefore its trace Tr[ρ(g)] = χρ (g) coincides with the sum of its
eigenvalues. From (10.13) it follows that two equivalent representations have
the same character: indeed, Tr[Tρ(g)T−1] = Tr[ρ(g)] for every invertible oper-
ator T . Therefore, with each equivalence class of irreducible representations
is associated a character. Clearly, using a matrix realization of ρ, one has
Tr[ρ(g)[=∑n

i=1 u
ρ

i,i(g) and this sum does not depend on the particular choice
of the orthonormal system {v1, v2, . . . , vd} in V . We observe that if ρ is one-
dimensional, then ρ(g) = χρ (g)IV for all g ∈ G and, by abuse of language, we
say that the representation ρ coincides with its character and write ρ = χρ .

Proposition 10.2.15 Let (ρ,V ) be a G-representation. Then we have:

(i) χρ (1G) = dimV;
(ii) χρ (s−1) = χρ (s), for all s ∈ G;
(iii) χρ (t−1st ) = χρ (s), for all s, t ∈ G;
(iv) if ρ = ρ1 ⊕ ρ2 then χρ = χρ1 + χρ2;
(v) with the notation as in Lemma 10.2.13 we have:

χρ =
d∑
i=1

uρi,i. (10.15)

Proof.

(i) This is easy: ρ(1G) = IV and Tr(IV ) = dimV = d.
(ii) We have

χρ (s−1) = Tr[ρ(s−1)] = Tr[ρ(s)∗] = χρ (s)

since ρ(s) is unitary and Tr(A∗) = Tr(A) for all A ∈ GL(V ).
(iii) This follows again from the central property of the trace.
(iv) This is easy and left as an exercise.
(v) This is obvious. �

Exercise 10.2.16 Let ρ be a G-representation and let n = |G|.
(1) Show that the eigenvalues of ρ(g), g ∈ G are n-th roots of unity;
(2) deduce that |χρ (g)| ≤ dρ for all g ∈ G.
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Proposition 10.2.17 (Orthogonality relations for characters) Let ρ, θ ∈ Ĝ.
Then 〈

χρ, χθ
〉
L(G) = |G|δρ,θ . (10.16)

In particular, two non-equivalent irreducible G-representations have different
characters.

Proof. From (10.15), Lemma 10.2.10 and Lemma 10.2.12 we get

〈
χρ, χθ

〉
L(G) =

dρ∑
i=1

dθ∑
j=1

〈
uρi,i, u

θ
j, j

〉
L(G)

=
dρ∑
i=1

dθ∑
j=1

δρ,θ δi, j
|G|
dρ

= |G|δρ,θ .
�

We thus have that the characters of irreducible representations constitute an
orthogonal system in L(G) (in general not complete: see Theorem 10.3.13).
Therefore they are finitely many and their cardinality equals the number of
equivalence classes of irreducible representations (cf. Proposition 10.2.17 and
the comments after Definition 10.2.14).

Proposition 10.2.18 Let ρ and θ be two G-representations. Suppose that ρ =
ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk is a decomposition of ρ into irreducible subrepresentations
and that θ is irreducible. Then, setting mθ = |{ j : ρ j ∼ θ}|, one has

mθ = 1

|G|
〈
χρ, χθ

〉
L(G) . (10.17)

In particular, mθ does not depend on the particular decomposition of ρ.

Proof. From Proposition 10.2.15.(iv) it follows that χρ =∑k
j=1 χ

ρ j . There-
fore, from Proposition 10.2.17 we deduce that

〈χρ, χθ 〉L(G) =
k∑
j=1

〈χρ j , χθ 〉L(G) =
k∑
j=1

|G|δρ j,θ = |G|mθ . �

Corollary 10.2.19 Let (ρ,V ) be a representation of G. Then, with the notation
as in Proposition 10.2.18, one has

ρ ∼
⊕
θ∈Ĝ

mθ θ,

where mθ θ = θ ⊕ θ ⊕ · · · ⊕ θ is the direct sum of mθ copies of θ , and

V ∼=
⊕
θ∈Ĝ

mθWθ ,
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where mθWθ =Wθ ⊕Wθ ⊕ · · · ⊕Wθ is the direct sum of mθ copies of Wθ , the
representation space of θ . Moreover,

χρ =
∑
θ∈Ĝ

mθχ
θ .

Definition 10.2.20 The number mθ in (10.17) is called the multiplicity of θ as
a sub-representation of ρ. If θ is not contained in ρ then clearly mθ = 0. The
subspace (ofV which is isomorphic to)mθWθ is called the θ -isotypic component
of V .

Example 10.2.21 Let (ρ,V ) be a G-representation. Then the dimension
dim(VG) of the subspace of G-invariant vectors equals the multiplicity mι of
the trivial representation ι of G as a sub-representation of ρ.

Corollary 10.2.22 Let ρ, η be two representations of G. Suppose that ρ =
⊕θ∈Ĝmθ θ and η = ⊕θ∈Ĝnθ θ are their decompositions into irreducible subrep-
resentations, so that the numbers mθ’s and nθ’s are the corresponding multiplic-
ities. Then, denoting by J the set of common irreducible representations, that
is, J = {θ ∈ Ĝ : mθ > 0 and nθ > 0}, we have

1

|G| 〈χ
ρ, χη〉 =

∑
θ∈J

mθnθ .

Corollary 10.2.23 A G-representation ρ is irreducible if and only if
‖χρ‖L(G) =

√|G|.
Corollary 10.2.24 Two G-representations ρ and θ are equivalent if and only
if χρ = χθ .

Theorem 10.2.25 (Peter-Weyl) Let G be a finite group and denote by
(λG,L(G)) its left regular representation (see Example 10.1.8). Then the fol-
lowing hold:

(i) Every irreducible representation θ ∈ Ĝ appears in the decomposition
of λG with multiplicity equal to its dimension dθ , that is,

L(G) ∼=
⊕
θ∈Ĝ

dθWθ , (10.18)

where Wθ denotes the representation space of θ . Moreover,∑
θ∈Ĝ

dθχ
θ = |G|δ1G; (10.19)

(ii) |G| =∑θ∈Ĝ d
2
θ ;
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(iii) denoting by uθi, j the matrix coefficient of θ ∈ Ĝ with respect to an
orthonormal basis (see (10.14)), then the set{√

dθ
|G|u

θ
i, j : i, j = 1, . . . , dθ , θ ∈ Ĝ

}
is a complete orthonormal system in L(G).

Proof.

(i) Denote by

λG ∼
⊕
θ∈Ĝ

mθ θ (10.20)

the decomposition of λG into irreducibles, as in Corollary 10.2.19, so
that the integer mθ denotes the multiplicity of the irreducible represen-
tation θ ∈ Ĝ in λG. Using the complete orthonormal system {δg : g ∈ G}
of Dirac deltas in L(G) and the identity λG(h)δg = δhg, we immediately
obtain that

χλG (g) =
∑
h∈G

〈λG(g)δh, δh〉 =
∑
h∈G

〈δgh, δh〉 =
{
|G| if g= 1G

0 if g �= 1G,

(10.21)

for all g ∈ G; in other words,

χλG = |G|δ1G . (10.22)

From Proposition 10.2.18, (10.22), and Proposition 10.2.15, we deduce

mθ = 1

|G|
〈
χλG, χθ

〉 = χθ (1G) = dθ . (10.23)

Then, (10.18) follows from (10.20) and (10.23), while (10.19) follows
from, in order, (10.22), (10.20), and (10.23).

(ii) Taking dimensions in (10.18), we deduce that |G| ≡ dimL(G) =∑
θ∈Ĝ d

2
θ .

(iii) From Lemma 10.2.10 and Lemma 10.2.12 we have that the functions√
dθ
|G|u

θ
i, j : i, j = 1, 2, . . . , dθ , θ ∈ Ĝ

constitute an orthonormal system in L(G). This system is indeed com-
plete since its cardinality

∑
θ∈Ĝ d

2
θ = |G| equals the dimension of the

space L(G). �

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.011
https://www.cambridge.org/core


10.2 Schur’s lemma and the orthogonality relations 359

The structure of the Peter-Weyl theorem will be examined further in Sec-
tions 10.3 and 10.5. For future reference, it is convenient to state explicitly
the orthogonality relations for matrix coefficients in the following form, which
immediately follows from Lemma 10.2.10 and Lemma 10.2.12. Let (θ,W ) and
(ρ,U ) be two irreducible G-representations. Then

〈uθi, j, uρh,k〉 =
|G|
dθ

δθ,ρδi,hδ j,k. (10.24)

We now present a useful formula for irreducible characters.

Proposition 10.2.26 Let (θ,W ) ∈ Ĝ,w ∈W be a vector of norm 1, andφ(g) =
〈θ (g)w,w〉 the diagonal matrix coefficient associated with w. Then

χθ (g) = dθ
|G|
∑
h∈G

φ(h−1gh) (10.25)

for all g ∈ G.

Proof. Let {v1 = w, v2, . . . , vdθ } be an orthonormal basis ofW and let uθi, j be
as in (10.14) (note that φ = uθ1,1). Then∑

h∈G
φ(h−1gh) =

∑
h∈G

〈θ (g)θ (h)v1, θ (h)v1〉

(by Lemma 10.2.13.(ii)) =
dθ∑

i, j=1

∑
h∈G

uθi,1(h)u
θ
j,1(h)〈θ (g)vi, v j〉

(by (10.24) and (10.15)) = |G|
dθ

χθ (g). �

Example 10.2.27 Let A be a finite Abelian group. In Corollary 10.2.7 we have
shown that its irreducible representations coincide with its characters. Now
we can also deduce that A has exactly |A| distinct characters: this agrees with
Proposition 2.3.3.

Example 10.2.28 Let Dn = 〈a, b : an = b2 = 1, bab = a−1〉 denote the dihe-
dral group of degree n, i.e. the group of isometries of a regular polygon with
n vertices. Recall that |Dn| = 2n and that any element of Dn may be written
uniquely in the form akbε , where 0 ≤ k ≤ n− 1 and ε ∈ {0, 1}. Moreover, the
product of two elements is given by the following rule:

ahbδ · akbε = ah(bδakbδ )bδ+ε =
{
ah−kb1+ε if δ = 1

ah+kbε if δ = 0
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for all h, k = 0, 1, . . . , n− 1 and δ, ε ∈ {0, 1}. Alternatively, Dn may be seen
as the group of matrices generated by

a =
(
ω 0
0 ω−1

)
and b =

(
0 1
1 0

)
,

where ω = e2π i/n ≡ cos 2π
n + i sin 2π

n (compare with the representation ρ1

below).
In the following, we determine D̂n. We consider first the case when n is even.

We have four one-dimensional representations (we identify these with the cor-
responding characters), χ i, i = 1, 2, 3, 4, defined by

χ1(akbε) = 1

χ2(akbε) = (−1)ε

χ3(akbε) = (−1)k

χ4(akbε) = (−1)k+ε

(10.26)

for all ε = 0, 1 and k = 0, 1, . . . , n− 1. Setting ω = e2π i/n as above, we also
define the two-dimensional representations ρt , t = 0, 1, . . . , n, by setting

ρt (a
k ) =

(
ωtk 0
0 ω−tk

)
and ρt (a

kb) =
(

0 ωtk

ω−tk 0

)
for all k = 0, 1, . . . , n− 1.

Exercise 10.2.29

(1) Show that each ρt is indeed a representation.
(2) Show that ρt ∼ ρn−t .
(3) Show that χρ0 = χ1 + χ2 and χρn/2 = χ3 + χ4.
(4) Show that ρt , with 1 ≤ t ≤ n

2 − 1, are pairwise non-equivalent irre-
ducible representations in two different ways, namely:
(i) by inspecting the invariant subspaces and intertwining operators;
(ii) by computing the characters and their inner products.

(5) Conclude that χ1, χ2, χ3, χ4, ρt , with 1 ≤ t < n/2, constitute a com-
plete list of irreducible representations of Dn.

Solution of (2): ρn−t (g) = ρt (b)ρt (g)ρt (b) for all g ∈ Dn.

Exercise 10.2.30 Determine a complete list of irreducible representations of
Dn in the case n is odd.
Solution: D̂n consists of χ1, χ2, and ρt with t = 1, 2, . . . , n−1

2 .

Exercise 10.2.31 The generalized quaternion group is Qn = 〈a, b : b2 =
an, b−1ab = a−1〉. Note that Q2 is the classical quaternionic group.
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(1) Show that b2 = a−n, b4 = 1, a2n = 1 and that every element g ∈ Qnmay
be written in the form g= akbh with 0 ≤ k ≤ 2n− 1 and h ∈ {0, 1}.

(2) Show that Qn may be seen as the group of matrices generated by a =(
ω 0
0 ω−1

)
and b = ( 0 −1

1 0

)
, where ω = eπ i/n. Deduce that the expression

g= akbh is unique and that Qn has 4n elements.
(3) Show that if n is even then Qn/〈a2〉 ∼= C2 ×C2 while if n is odd then

Qn/〈a2〉 ∼= C4.
(4) Denote by π : Qn → Qn/〈a2〉 the canonical quotient map. For every

ψ ∈ Q̂n/〈a2〉 set ψ = ψ ◦ π : this is called the inflation of ψ (cf. Sec-

tion 11.6). Show that the inflations ψ , with ψ ∈ Q̂n/〈a2〉, are four one-
dimensional, non-equivalent representations of Qn.

(5) For t = 0, 1, . . . , n− 1 set

ρt (a) =
(
ωt 0
0 ω−t

)
and ρt (b) =

(
0 (−1)t

1 0

)
. (10.27)

Show that (10.27) define n− 1 irreducible, non-equivalent representa-
tions of Qn which, added to the four one-dimensional representations
determined in (4), form a complete list for Q̂n.

10.3 The group algebra and the Fourier transform

An (associative) algebra over C (or complex algebra) is a vector spaceA over
C endowed with a multiplication operation, the product, such that A is a ring
with respect to the sum and the product, and the following associative law holds
for the product and multiplication by a scalar:

α(AB) = (αA)B = A(αB)

for all α ∈ C and A,B ∈ A. The basic example is End(V ), where V is a finite-
dimensional vector space over C, with the usual operations of sum and product
of operators, and of multiplication by scalars.
LetA be a complex algebra. A subalgebra ofA is a subspace B ≤ A, which

is closed under multiplication. For instance, if V is a finite-dimensional vector
space over C, fix a basis B = {v1, v2, . . . , vd} of V . An operator T ∈ End(V )
is called B-diagonal provided there exist scalars α1, α2, . . . , αd ∈ C such that
Tvi = αivi for all i = 1, 2, . . . , d. Then the B-diagonal operators constitute a
subalgebra of End(V).
An involution in A is a bijective map A �→ A∗ such that

� (A∗)∗ = A
� (αA+ βB)∗ = αA∗ + βB∗
� (AB)∗ = B∗A∗ (anti-multiplicative property)
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for all α, β ∈ C and A,B ∈ A. For instance, if A = End(V ), then the map
T �→ T ∗ (where T ∗ is the adjoint of T ) is an involution on A; similarly for
EndG(V ) (see Proposition 10.2.2). An algebra with involution is called an invo-
lutive algebra or ∗-algebra. An element A in a ∗-algebraA such that A = A∗ is
called self-adjoint.
A is unital if it has a unit, that is, there exists an element I ∈ A such that

AI = IA = A for all A ∈ A. Note that a unit is necessarily unique and self-
adjoint. Indeed, if I and I′ are units in A, then I = II′ = I′. Moreover, if
A ∈ A

I∗A = ((I∗A)∗)∗ = (A∗(I∗)∗)∗ = (A∗I)∗ = (A∗)∗ = A

and, similarly, AI∗ = A. Thus I = I∗, by uniqueness of the unit.
The dimension of A is simply its dimension as a complex vector space.
In the following, we shall consider only finite-dimensional, unital, involutive,

complex algebras.
The algebra A is commutative (or Abelian) if it is commutative as a ring,

namely if AB = BA for all A,B ∈ A. A basic example is the following: let J be
a finite set and denote by CJ the space of all functions f : J → C with multi-
plication and involution given respectively by:

( f1 f2)( j) = f1( j) f2( j) and f ∗( j) = f ( j), (10.28)

for all f , f1, f2 ∈ CJ and j ∈ J. Clearly, CJ is isomorphic to the subalgebra of
B-diagonal operators in End(V ) (for any basis B ofV and) for any vector space
V with dimV = |J|, as well as to the direct sum C ⊕ C ⊕ · · · ⊕ C︸ ︷︷ ︸

|J|−times

.

The center Z (A) of A is the commutative subalgebra

Z (A) = {B ∈ A : AB = BA for all A ∈ A}.

The direct sum A⊕ B of two algebras A,B is the vector space direct sum
with the product defined componentwise: (a1, b1)(a2, b2) = (a1a2, b1b2), for
all a1, a2 ∈ A, b1, b2 ∈ B.

Let A1 and A2 be two involutive algebras and let φ : A1 → A2 be a map.
One says that φ is a ∗-homomorphism provided that

� φ(αA+ βB) = αφ(A)+ βφ(B) (linearity)
� φ(AB) = φ(A)φ(B) (multiplicative property)
� φ(A∗) = [φ(A)]∗ (preservation of involution)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.011
https://www.cambridge.org/core


10.3 The group algebra and the Fourier transform 363

for all α, β ∈ C and A,B ∈ A1. If in addition φ is a bijection, then it is
called a ∗-isomorphism between A1 and A2 and one says that A1 and A2

are ∗-isomorphic. On the other hand, φ is a ∗-anti-homomorphism if the
multiplicative property is replaced by

φ(AB) = φ(B)φ(A) (anti-multiplicative property)

for all A,B ∈ A1. Finally, φ is a ∗-anti-isomorphism if it is a bijective ∗-anti-
homomorphism. If such a ∗-anti-isomorphism exists, then one says thatA1 and
A2 are ∗-anti-isomorphic.
Let G be a finite group. Recall that L(G) denotes the vector space of all

functions f : G→ C.

Definition 10.3.1 Let f , f1, f2 ∈ L(G). We define the convolution of f1 and f2
and the adjoint of f as the functions f1 ∗ f2 ∈ L(G) and f ∗ ∈ L(G) given by
setting

[ f1 ∗ f2](g) =
∑
h∈G

f1(gh
−1) f1(h) (10.29)

and

f ∗(g) = f (g−1) (10.30)

for all g ∈ G, respectively.

Note that the convolution (10.29) may be also written in the following equiv-
alent ways:

[ f1 ∗ f2](g) =
∑

s,t∈G:st=g
f1(s) f2(t )

=
∑
h∈G

f1(h) f2(h
−1g) =

∑
h∈G

f1(h)[λG(h) f2](g). (10.31)

Proposition 10.3.2 The vector space L(G) endowed with the convolution prod-
uct (10.29) and the involution (10.30) is a unital, involutive algebra, with unit
δ1G . It is called the group algebra of G.

Proof. We leave it as an exercise to prove that the convolution is distributive
with respect to the sum, and that δ1G is the unit.
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Let f1, f2, f3 ∈ L(G) and g ∈ G. Then we have:

[ f1 ∗ ( f2 ∗ f3)](g) =
∑
h∈G

f1(gh
−1)( f2 ∗ f3)(h)

=
∑
h∈G

∑
t∈G

f1(gh
−1) f2(ht

−1) f3(t )

(setting h = st) =
∑
t∈G

∑
s∈G

f1(gt
−1s−1) f2(s) f3(t )

=
∑
t∈G

( f1 ∗ f2)(gt
−1) f3(t ) = [( f1 ∗ f2) ∗ f3](g).

This shows associativity of the convolution product. Finally,

[ f ∗1 ∗ f ∗2 ](g) =
∑
s∈G

f ∗1 (gs) f
∗
2 (s

−1)

=
∑
s∈G

f1(s−1g−1) f2(s)

= [ f2 ∗ f1](g−1)

= [ f2 ∗ f1]
∗(g),

which shows the anti-multiplicative property of the involution. �

Proposition 10.3.3

(i) For s, t ∈ G we have δs ∗ δt = δst .
(ii) For s ∈ G, f ∈ L(G) we have: δs ∗ f = λG(s) f and f ∗ δs = ρG(s−1) f .
(iii) The center Z[L(G)] of the group algebra coincides with the set of all

functions f ∈ L(G) that are constant on each conjugacy class of G, that
is, f (s−1ts) = f (t ) for all s, t ∈ G. Such functions are termed central or
class functions.

(iv) L(G) is commutative if and only if G is Abelian.

Proof. Let g, s, t ∈ G and f ∈ L(G).

(i) (δs ∗ δt )(g) =
∑

h∈G δs(gh−1)δt (h) = δs(gt−1) = δst (g).
(ii)

(δs ∗ f )(g) =
∑
h∈G

δs(h) f (h
−1g) = f (s−1g) = [λG(s) f ](g)

and similarly ( f ∗ δs)(g) = f (gs−1) = [ρG(s−1) f ](g).
(iii) f belongs to the center if and only if f ∗ δs = δs ∗ f for all s ∈ L(G),

that is if and only if δs ∗ f ∗ δs−1 = f and this is equivalent to saying
that f is central since, by (ii), δs ∗ f ∗ δs−1 (t ) = f (s−1ts).
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(iv) L(G) is commutative if and only if δst = δs ∗ δt = δt ∗ δs = δts for all
s, t ∈ G, that is, if and only if G is Abelian. Alternatively, L(G) is com-
mutative if and only if it coincides with its center, that is, by (iii), if and
only if each conjugacy class consists of one single element, and this is
again equivalent to saying that G is Abelian. �

Exercise 10.3.4 Show that f ∈ L(G) is a class function if and only if f (g1g2) =
f (g2g1) for all g1, g2 ∈ G.

Given f ∈ L(G) the convolution operatorwith kernel f is the linear operator
Tf ∈ End(L(G)) defined by setting:

Tf f
′ = f ′ ∗ f , (10.32)

for all f ′ ∈ L(G).

Proposition 10.3.5 Tf ∈ EndG(L(G)) for every f ∈ L(G); here, EndG(L(G))
is the commutant (cf. Definition 10.2.1) of the left regular representation of G.
Moreover, the map

L(G) −→ EndG(L(G))
f �−→ Tf

(10.33)

is a ∗-anti-isomorphism of algebras, that is

Tf1∗ f2 = Tf2Tf1 and Tf ∗ = (Tf )
∗ (10.34)

for all f1, f2, f ∈ L(G).

Proof. First of all, for f , f ′ ∈ L(G) and g, g0 ∈ G we have:

[TfλG(g) f
′](g0) =

(
[λG(g) f

′] ∗ f
)
(g0)

=
∑
h∈G

[λG(g) f
′](g0h) f (h−1)

=
∑
h∈G

f ′(g−1g0h) f (h
−1)

= [Tf f
′](g−1g0)

= (λG(g)[Tf f ′]) (g0)
so that TfλG(g) = λG(g)Tf . This shows that Tf ∈ EndG(L(G)). Moreover, if
f , f1, f2 ∈ L(G) then, by associativity of the convolution product,

Tf1 (Tf2 f ) = ( f ∗ f2) ∗ f1 = f ∗ ( f2 ∗ f1) = Tf2∗ f1 f ,
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so that Tf1Tf2 = Tf2∗ f1 . Moreover,

〈Tf f1, f2〉L(G) =
∑
g∈G

∑
s∈G

f1(gs) f (s
−1) f2(g)

(setting g= ts−1) =
∑
t∈G

∑
s∈G

f1(t ) f (s
−1) f2(ts−1)

=
∑
t∈G

∑
s∈G

f1(t ) f ∗(s) f2(ts−1)

= 〈 f1,Tf ∗ f2〉L(G),

that is, (Tf )∗ = Tf ∗ . We now prove that the map f �→ Tf is a bijection by show-
ing that if T ∈ EndG(L(G)), then there exists a unique element f ∈ L(G) such
that T = Tf and that, indeed, f = Tδ1G . Uniqueness is clear: let f1, f2 ∈ L(G)
and suppose that Tf1 = Tf2 . Then, recalling that δ1G is the unit in L(G), we
deduce that f1 = δ1G ∗ f1 = Tf1δ1G = Tf2δ1G = δ1G ∗ f2 = f2. Finally, if f ′ ∈
L(G), then, using (10.11), we have

T f ′ = T

⎡⎣∑
g∈G

f ′(g)λG(g)δ1G

⎤⎦
(since T ∈ EndG(L(G)) =

∑
g∈G

f ′(g)λG(g)Tδ1G

(by (10.31)) = f ′ ∗ (Tδ1G ). �

We now compute the convolution of matrix coefficients and characters. From
now on, for each θ ∈ Ĝ we fix an orthonormal basis {vθ

j : j = 1, 2, . . . , dθ } in
the representation space Vθ and denote by uθi, j, i, j = 1, 2, . . . , dθ , the corre-
sponding matrix coefficients (as in (10.14)).

Proposition 10.3.6 For all θ, σ ∈ Ĝ we have:

uθi, j ∗ uσh,k =
|G|
dθ

δθ,σ δ j,hu
θ
i,k (10.35)

for all 1 ≤ i, j ≤ dθ and 1 ≤ h, k ≤ dσ . Moreover,

χθ ∗ χσ = |G|δθ,σ χθ . (10.36)
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Proof. For all g ∈ G we have[
uθi, j ∗ uσh,k

]
(g) =

∑
s∈G

uθi, j(gs)u
σ
h,k(s

−1)

(by (i) and (iii) in Proposition 10.2.13) =
dθ∑
�=1

uθi,�(g)
∑
s∈G

uθ�, j(s)u
σ
k,h(s)

(by (10.24)) =
dθ∑
�=1

uθi,�(g)δθ,σ δ�,kδ j,h
|G|
dθ

= |G|
dθ

δθ,σ δ j,hu
θ
i,k(g).

The convolutional property of the characters (10.36) then follows from (10.15)
and (10.35). �

Definition 10.3.7 Let f ∈ L(G) and (θ,Wθ ) ∈ Ĝ. The Fourier transform of f
with respect to θ is the linear operator f̂ (θ ) ∈ End(Wθ ) defined by setting

f̂ (θ ) =
∑
g∈G

f (g)θ (g).

Proposition 10.3.8 Let f1, f2, f ∈ L(G) and θ ∈ Ĝ. Then we have

f̂1 ∗ f2(θ ) = f̂1(θ ) f̂2(θ ) (10.37)

and

f̂ ∗(θ ) = f̂ (θ )∗. (10.38)

Proof. We have

f̂1 ∗ f2(θ ) =
∑
g∈G

[∑
h∈G

f1(gh
−1) f2(h)

]
θ (g)

=
∑
g∈G

∑
h∈G

f1(gh
−1) f2(h)θ (gh

−1)θ (h)

=
∑
h∈G

⎡⎣∑
g∈G

f1(gh
−1)θ (gh−1)

⎤⎦ f2(h)θ (h)

= f̂1(θ ) f̂2(θ ).
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This shows (10.37). For v,w ∈Wθ we have:〈
f̂ ∗(θ )v,w

〉 =∑
g∈G

f (g−1)〈θ (g)v,w〉

=
〈
v,
∑
g∈G

f (g−1)θ (g)∗w

〉

=
〈
v,
∑
g∈G

f (g−1)θ (g−1)w

〉
= 〈v, f̂ (θ )w〉

and (10.38) follows as well. �

Proposition 10.3.9 Let f ∈ Z (L(G)) and (θ,Wθ ) ∈ Ĝ. Then the Fourier trans-
form of f with respect to θ is a scalar multiple of the identity, more precisely,

f̂ (θ ) = λIW with λ = 1

dθ

∑
g∈G

f (g)χθ (g) = 1

dθ

〈
f , χθ

〉
.

Proof. Observe that

θ (g) f̂ (θ )θ (g−1) =
∑
h∈G

f (h)θ (g)θ (h)θ (g−1) =
∑
h∈G

f (h)θ (ghg−1)

(by Proposition 10.3.3.(iii)) =
∑
h∈G

f (ghg−1)θ (ghg−1) = f̂ (θ ),

so that f̂ (θ ) ∈ EndG(Wθ ). By Corollary 10.2.4 we deduce that f̂ (θ ) = λIW .

Computing the trace, we obtain

λdθ = Tr(λIW ) = Tr
[
f̂ (θ )

] =∑
h∈G

f (h)χθ (h) =
〈
f , χθ

〉
,

which yields the desired value of λ. �

Theorem 10.3.10 (Fourier’s inversion formula) For f ∈ L(G) one has

f (g) = 1

|G|
∑
θ∈Ĝ

dθTr
[
θ (g−1) f̂ (θ )

]
(10.39)

for all g ∈ G. In particular, if f1, f2 ∈ L(G) satisfy the condition f̂1(θ ) = f̂2(θ )
for every θ ∈ Ĝ, then one has f1 = f2.

Proof. Let {vθ
1 , v

θ
2 , . . . , v

θ
dθ
} be an orthonormal basis forWθ for all θ ∈ Ĝ. By

virtue of Theorem 10.2.25, the corresponding (normalized) coefficients
√
dθ

|G| u
θ
i, j,
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10.3 The group algebra and the Fourier transform 369

i, j = 1, 2, . . . , dθ , θ ∈ Ĝ, constitute an orthonormal basis in L(G). As a conse-
quence, also their conjugates

√
dθ

|G| u
θ
i, j constitute an orthonormal basis and thus

for every function f ∈ L(G) we have

f (g) = 1

|G|
∑
θ∈Ĝ

dθ

dθ∑
i, j=1

〈
f , uθi, j

〉
uθi, j(g), (10.40)

for all g ∈ G. Now, recalling that f̂ (θ ) =∑g∈G f (g)θ (g) we have

〈 f , uθi, j〉 =
∑
g∈G

f (g)uθi, j(g) =
∑
g∈G

f (g)〈θ (g)vθ
j , v

θ
i 〉 =

〈
f̂ (θ )vθ

j , v
θ
i

〉
(10.41)

and
dθ∑

i, j=1

〈
f , uθi, j

〉
uθi, j(g) =

dθ∑
i, j=1

〈
f̂ (θ )vθ

j , v
θ
i

〉 〈vθ
i , θ (g)v

θ
j 〉

=
dθ∑
j=1

〈
f̂ (θ )vθ

j , θ (g)v
θ
j

〉
=

dθ∑
j=1

〈
θ (g−1) f̂ (θ )vθ

j , v
θ
j

〉
= Tr

[
θ (g−1) f̂ (θ )

]
.

Thus, replacing this expression in (10.40), we deduce (10.39). �
Exercise 10.3.11 Deduce the Fourier inversion formula (10.39) from (10.19),
first in the case f = δg, g ∈ G, and then, using linearity, in the general case (cf.
(10.11)).

The Fourier inversion theorem shows that every function in L(G) is uniquely
determined by its Fourier transforms f̂ (θ ), θ ∈ Ĝ. Note that although the
expression of f , with respect to an orthonormal systemmade up of matrix coef-
ficients is not unique but depends on the choice of an orthonormal basis in each
representation spaceWθ , θ ∈ Ĝ, the Fourier inversion formula, however, does
not depend on the choice of such bases.
Finally, from this analysis we deduce that the algebra L(G) is isomorphic to a

direct sum ofmatrix algebras, namely, L(G) ∼= ⊕θ∈ĜMdθ (C), whereMdθ (C) ∼=
End(Wθ ) is the algebra of dθ -by-dθ matrices over C. In order to formulate more
explicitly the properties of the Fourier transform as a linear map, we define the
complex algebra

C(Ĝ) =
⊕
θ∈Ĝ

End(Wθ ).
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Clearly, C(Ĝ) is a direct sum of algebras and every element T ∈ C(Ĝ) will be
written in the form T = ⊕θ∈ĜT (θ ), where T (θ ) ∈ End(Wθ ) for each θ ∈ Ĝ. It
is also involutive with respect to the map T �→ T ∗ = ⊕θ∈ĜT (θ )

∗.

Corollary 10.3.12 The Fourier transform

L(G) −→ C(Ĝ)
f �−→ f̂

is a ∗-isomorphism of ∗-algebras and its inverse is given by the map (inverse
Fourier transform)

C(Ĝ) −→ L(G)
T �−→ T∨,

where T∨(g) = 1
|G|
∑

θ∈Ĝ dθTr
[
θ (g−1)T (θ )

]
.

Theorem 10.3.13 The Fourier inversion formula for a central function f has
the form

f = 1

|G|
∑
θ∈Ĝ

〈 f , χθ 〉L(G)χθ .

In particular:

(i) the characters χθ , θ ∈ Ĝ, constitute an orthogonal basis for the sub-
space of central functions;

(ii) |Ĝ| equals the number of conjugacy classes in G.
Proof. The inversion formula follows from Proposition 10.3.9, taking into
account that Tr θ (g−1) = χθ (g) for all g ∈ G. Note also that from Proposition
10.2.15 and Proposition 10.2.17 it follows that the characters of irreducible rep-
resentations form an orthogonal system in the space of central functions; the
inversion formula ensures that it is also complete. Since the dimension of the
space of central functions is equal to the number of conjugacy classes (recall
Proposition 10.3.3.(iii)), this dimension must also equal the number of irre-
ducible representations of G. �

Corollary 10.3.14 (Dual orthogonality relations for characters) LetL ⊆ G
be a set of representatives for the conjugacy classes of G and denote by C(t ) =
{g−1tg : g ∈ G} the conjugacy class of t ∈ L. Then∑

θ∈Ĝ
χθ (t )χθ (t ′) = |G|

|C(t )|δt,t ′ (10.42)

for all t, t ′ ∈ L.
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Proof. We begin by observing that (10.16) may be rewritten in the form∑
t∈L

|C(t )|
|G| χθ1 (t )χθ2 (t ) = δθ1,θ2 ,

thus showing that the square (recall that |L| = |Ĝ|) matrix U = (Uθ,t
)
θ∈Ĝ,t∈L,

withUθ,t =
√

|C(t )|
|G| χθ (t ), is unitary. Therefore

∑
θ∈Ĝ

√
|C(t1)|
|G| χθ (t1) ·

√
|C(t2)|
|G| χθ (t2) = δt1,t2

and the statement follows. �

Exercise 10.3.15 Deduce (10.42) from the dual orthogonality relations for
matrix coefficients (cf. Lemma 10.2.13).

Exercise 10.3.16 Let G be a finite group.

(1) Use Theorem 10.3.13 to prove that G is Abelian if and only if its irre-
ducible representations are all one-dimensional.

(2) More generally, prove that if G contains an Abelian subgroup A, then
dθ ≤ |G/A| for all θ ∈ Ĝ.

Solution of (2): Let (θ,V ) ∈ Ĝ. Consider the restriction (ResGAθ,V ) and let
W ≤ V be a nontrivial ResGAθ -irreducible subspace. By (1) we have thatW is
one-dimensional. SetH = {g ∈ G : θ (g)W ⊆W } and denote by T ⊂ G a com-
plete set of representatives for the left cosets of H in G, so that G =∐t∈T tH.
Clearly A ≤ H, θ (g)W ∈ {θ (t )W : t ∈ T } for all g ∈ G, and dimθ (t )W = 1 for
all t ∈ T . Since, by irreducibility,V = ⊕t∈T θ (t )W , we deduce that dθ = |T | =
|G/H| ≤ |G/A|.

Theorem 10.3.17 (Plancherel formula) For all f1, f2 ∈ L(G) we have:

〈 f1, f2〉L(G) =
1

|G|
∑
θ∈Ĝ

dθTr
[
f̂1(θ ) f̂2(θ )

∗] . (10.43)

Proof. From Theorem 10.2.25.(iii) we deduce that

〈 f1, f2〉 =
∑
θ∈Ĝ

dθ
|G|

dθ∑
i, j=1

〈
f1, uθi, j

〉 〈
uθi, j, f2

〉
,
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and then, applying (10.41), we get

〈 f1, f2〉 = 1

|G|
∑
θ∈Ĝ

dθ

dθ∑
i, j=1

〈
f̂1(θ )v

θ
j , v

θ
i

〉 · 〈vθ
i , f̂2(θ )v

θ
j

〉 =
= 1

|G|
∑
θ∈Ĝ

dθTr
[
f̂1(θ ) f̂2(θ )

∗] .
�

10.4 Group actions and permutation characters

In the present section we suppose that the finite group G acts on a finite set X .
We recall that this means that we have a map

G× X −→ X
(g, x) �−→ gx

such that

� for each g ∈ G the map x �→ gx is a bijection (a permutation) of X , that we
denote by π (g);

� the map g �→ π (g) is a homomorphism betweenG and Sym(X ), the group of
all permutations of X .

This is equivalent to saying that (g1g2)x = g1(g2x) and 1Gx = x so that, in
particular, x �→ g−1x is the inverse permutation π (g)−1, for all g1, g2 ∈ G and
x ∈ X . We usually call gx the g-image of x.
For x ∈ X denote by StabG(x) = {g ∈ G : gx = x} (or Gx) and OrbG(x) =

{gx : g ∈ G} (or Gx) the stabilizer and the G-orbit of x. It is easy to see that
the orbits form a partition of X (see Exercise 10.4.1); the action is transitive
if there is a single orbit, that is OrbG(x) = X (and this clearly holds for all
x ∈ X). Equivalently, it is transitive if and only if for all x1, x2 ∈ X there exists
g ∈ G such that gx1 = x2. If G acts transitively on X we also say that X is a
(homogeneous) G-space.

Exercise 10.4.1 Let X be a G-space.

(1) Show that StabG(gx) = gStabG(x)g−1, for all g ∈ G and x ∈ X .
(2) Show that for x, x′ ∈ X , the relation x ∼ x′ if x and x′ belong to the

same G-orbit is an equivalence relation on X , so that the G-orbits on X
constitute the corresponding partition of X .

Lemma 10.4.2 Let X be a G-space. Then

|G| = |StabG(x)| · |OrbG(x)| (10.44)
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for all x ∈ X. Moreover,

1

|G|
∑
x∈X

|StabG(x)| = number of G-orbits in X.

Proof. Let x ∈ X and consider the map φ : G→ OrbG(x) that maps g to gx.
By definition it is surjective; moreover one has φ−1(x) = StabG(x) and, more
generally, φ−1(gx) = {gk : k ∈ StabG(x)} = gStabG(x) so that, in particular,
|φ−1(x′)| = |φ−1(x)| = |StabG(x)| for all x′ ∈ OrbG(x). Thus φ is a surjective
|StabG(x)|-to-one map and (10.44) follows. Moreover, if X1,X2, . . . ,Xh are the
orbits of G on X then

1

|G|
∑
x∈X

|StabG(x)| = 1

|G|
h∑
i=1

∑
x∈Xi

|StabG(x)|

(by (10.44)) = 1

|G|
h∑
i=1

∑
x∈Xi

|G|
|Xi|

=
h∑
i=1

1

|Xi| · |Xi|

= h. �

Example 10.4.3 Let X be a G-space. As in Section 2.1, let L(X ) denote the
vector space of all complex valued functions defined on X endowed with the
inner product defined by 〈 f1, f2〉L(X ) =

∑
x∈X f1(x) f2(x), for all f1, f2 ∈ L(X ).

The permutation representation of G on X is the G-representation (λ,L(X ))
defined by

[λ(g) f ] (x) = f (g−1x)

for all f ∈ L(X ), g ∈ G and x ∈ X . As in Example 10.1.8 (which is actually a
particular case of the present construction), it is easy to check that this is a uni-
tary representation and that the Dirac functions δx, x ∈ X , form an orthonormal
basis (now, δx(x) = 1 and δx(y) = 0 if y �= x). Moreover, λ(g)δx = δgx for all
g ∈ G, x ∈ X , and f =∑x∈X f (x)δx for all f ∈ L(X ). Let now X =∐h

j=1 Xj

be the decomposition of X into G-orbits. Then

L(X ) =
h⊕
j=1

L(Xj ) (10.45)

is clearly a direct sum decomposition into G-invariant subspaces. Indeed, any
f ∈ L(X ) may be written in the form f =∑h

j=1 f j, where f j ∈ L(X ) is defined
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by setting

f j(x) =
{
f (x) if x ∈ Xj

0 otherwise,
(10.46)

for all j = 1, 2, . . . , h, so that f j may be naturally identified with a function in
L(Xj ). Moreover, (10.46) implies G-invariance of the decomposition (10.45).
For this reason, it is customary, in representation theory, to consider only tran-
sitive actions (that is, the case h = 1). Note also that even in this case, a permu-
tation representation on a set X with more than one element is not irreducible
because the (|X | − 1)-dimensional spaceW1 = { f ∈ L(X ) :

∑
x∈X f (x) = 0} is

always G-invariant: if f ∈W1 and g ∈ G then∑
x∈X

[λ(g) f ](x) =
∑
x∈X

f (g−1x) =
∑
y∈X

f (y) = 0

so that λ(g) f ∈W1. Note also that, as in Section 2.1, we have the orthogonal
decomposition L(X ) =W0 ⊕W1, whereW0 = { f ∈ L(X ) : f constant} =W⊥

1 .
More explicitly, for any f ∈ L(X ) we have

f = 1

|X |
∑
x∈X

f (x)+
[
f − 1

|X |
∑
x∈X

f (x)

]

where the first summand (the mean value) belongs to W0 and the second one
toW1. Another important consequence of transitivity is the following: the triv-
ial representation of G is contained in L(X ) with multiplicity exactly one and
coincides withW0. Indeed, if λ(g) f = f for all g ∈ G then transitivity implies
that f is constant (in general, the multiplicity of the trivial representation in
(λ,L(X )) equals the number of G-orbits). In Exercise 10.4.16 we will give a
necessary and sufficient condition for the irreducibility ofW1.

Example 10.4.4 Let G = Sn be the symmetric group of degree n (cf. Example
10.1.10). The natural permutation representation of Sn is n-dimensional rep-
resentation constructed as in Example 10.4.3, using the natural action of Sn on
X = 1, 2, . . . , n. See also Exercise 10.4.16.

Example 10.4.5 (The affine group over Fq) LetFq be the finite field with q =
pm elements, where p is a prime number and m ≥ 1 (see Chapter 6). The (gen-
eral) affine group (of degree one) over Fq is the group of matrices

Aff(Fq) =
{(

a b
0 1

)
: a ∈ F∗

q, b ∈ Fq

}
.
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The terminology is due to the fact that Aff(Fq) acts (transitively: this is an

easy exercise) on Fq ≡
{(

x
1

)
: x ∈ Fq

}
by multiplication

(
a b
0 1

)(
x
1

)
=
(
ax+ b

1

)
and the maps x �→ ax+ b (with a ∈ F∗

q, b ∈ Fq) are the affine transformations
of Fq. For this reason, one often also refers to Aff(Fq) as to the finite ax+ b
group.
This defines a permutation representation of Aff(Fq), that will be examined

in Exercise 10.4.7 and Exercise 10.4.16. In Section 12.1 we shall fully describe
all irreducible representations of Aff(Fq).

Consider the permutation representation of G on L(X ) defined in Example
10.4.3. The corresponding character χλ is called the permutation character of
the action of G on X . In the following, we prove a basic formula for χλ.

Proposition 10.4.6 (Fixed point character formula) Let g ∈ G. Then we
have

χλ(g) = |{x ∈ X : gx = x}|, (10.47)

that is, χλ(g) equals the number of points in X that are fixed by g.

Proof. Recall that the set {δx : x ∈ X} is an orthonormal basis in L(X ) and there-
fore

χλ(g) =
∑
x∈X

〈λ(g)δx, δx〉L(X ) =
∑
x∈X

〈
δgx, δx

〉
L(X ) .

This clearly counts the points in X that are fixed by g (compare with (10.21),
which is just a special case. �

Another formula for χλ, in the case of a transitive permutation representa-
tion, will be given in Corollary 11.1.14.

Example 10.4.7 Consider the permutation representation λ of the finite affine
group Aff(Fq) (cf. Example 10.4.5). The corresponding permutation character
χλ is given by

χλ

(
a b
0 1

)
=

⎧⎪⎪⎨⎪⎪⎩
1 if a �= 1

q if a = 1 and b = 0

0 otherwise

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.011
https://www.cambridge.org/core


376 Representation theory of finite groups

for all a ∈ F∗
q and b ∈ Fq. Indeed, solving the equation ax+ b = x, that is,

(a− 1)x+ b = 0, we find:

� if a �= 1 there is a unique solution given by x = − b
a−1 ;

� if a = 1 and b = 0 then each x ∈ Fq is a solution (the identity fixes every
point);

� if a = 1 and b �= 0 there are no solutions.

The following lemma is usually called “the Burnside lemma,” but it was
known already to Cauchy (see [21, 121, 169]).

Lemma 10.4.8 (Burnside’s lemma) Let G be a finite group acting on a finite
set X and denote by (λ,L(X )) the corresponding permutation representation.
Then we have:

1

|G|
∑
g∈G

χλ(g) = number of G-orbits on X.

Proof. We clearly have

1

|G|
∑
g∈G

χλ(g) = 1

|G|
〈
χλ, 1G

〉
L(G) , (10.48)

where 1G = χι, the character of the trivial representation of G. By Proposition
10.2.18, the right hand side of (10.48) equals the multiplicity of the trivial rep-
resentation as a sub-representation of the permutation representation λ. Since
(cf. Example 10.4.3) L(X )G = ⊕h

i=1C1Xi , where 1Xi denotes the characteristic
function of the orbit Xi, i = 1, 2, . . . , h, and (cf. Example 10.2.21) the multi-
plicity of the trivial representation in anyG-representationV equals the dimen-
sion of the subspace VG of G-invariant vectors, the right hand side of (10.48)
is therefore equal to dim(L(X )G) = h, the number of G-orbits on X . �

Exercise 10.4.9 Deduce Burnside’s Lemma from Lemma 10.4.2 and Proposi-
tion 10.4.6.

From now on, we assume thatG acts transitively on X , that K ≤ G is the sta-
bilizer of a fixed element x0 ∈ X , and that T is a complete set of representatives
for the left cosets of K in G, that is,

G =
∐
t∈T

tK. (10.49)

Then the map

� : G/K → X
gK �→ gx0,

(10.50)
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where G/K is the set of all left cosets of K in G, is a bijection. Indeed, for
g1, g2 ∈ G we have g1x0 = g2x0 if and only if g−1

1 g2 ∈ K, that is, g1K = g2K.
Define an action of G on G/K by setting g(g0K) = (gg0)K. It is easy to see
that the map (10.50) is G-equivariant (or, that the G-spaces X and G/K are
isomorphic), that is,

g�(g0K) = � (g(g0K)) ∀g, g0 ∈ G.

In other words, every transitiveG-space is isomorphic to aG-spaceG/K (where
K, as above, is the stabilizer of a point in X).

Exercise 10.4.10

(1) Let H,K ≤ G be two subgroups. Show that G/H and G/K are isomor-
phic as G-spaces if and only if H and K are conjugate in G (there exists
g ∈ G such that H = g−1Kg).

(2) Let X be a transitive G-space. Let x0, x′0 ∈ X and denote by K,K′ ≤ G
the corresponding stabilizers. Using Exercise 10.4.1 and (1) show that
the G-spaces G/K and G/K′ are isomorphic.

Given an action of a group G on a set X , the corresponding diagonal action
of G on X × X is defined by setting

g(x1, x2) = (gx1, gx2), g ∈ G, x1, x2 ∈ X.

We denote by (λ2,L(X × X )) the corresponding permutation representation.

Proposition 10.4.11 Let X be a G-space and denote by (λ,L(X )) and
(λ2,L(X × X )) the corresponding permutation representations. Then

χλ2 = (χλ)2.

Proof. Let g ∈ G. From the fixed point character formula (10.47) we deduce
that (

χλ(g)
)2 = |{x ∈ X : gx = x}|2

= |{x1 ∈ X : gx1 = x1}| · |{x2 ∈ X : gx2 = x2}|
= |{(x1, x2) ∈ X × X : g(x1, x2) = (x1, x2)}|

(again by (10.47)) = χλ2 (g). �

Proposition 10.4.12 Let X be a G-space and denote, as usual, by K ≤ G
the stabilizer of a fixed point x0 ∈ X. Let X = !0

∐
!1
∐ · · ·∐!n denote

the decomposition of X into K-orbits (with !0 = {x0}) and choose xi ∈ !i,
i = 1, 2, . . . , n. Then the sets

G(xi, x0) = {(gxi, gx0) : g ∈ G} ⊆ X × X,

i = 0, 1, 2, . . . , n, are the orbits of the diagonal action of G on X × X.
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Proof. First of all, note that if (x, y) ∈ X × X then there exist g ∈ G, k ∈ K,
and i ∈ {0, 1, . . . , n} such that gx0 = y (G is transitive on X) and gkxi = x (let
Kxi = !i be the K-orbit containing g−1x). Therefore,

(x, y) = (gkxi, gx0) = (gkxi, gkx0) ∈ G(xi, x0).

This shows that

X × X =
n⋃
i=0

G(xi, x0). (10.51)

It is also easy to show thatG(xi, x0) ∩ G(x j, x0) = ∅ if i �= j: indeed if g1, g2 ∈
G satisfy g1xi = g2x j and g1x0 = g2x0 then, necessarily, g−1

2 g1 ∈ K, and this
forces i = j. Therefore (10.51) is in fact a disjoint union. �

Conversely, we may rephrase the above result as follows.

Corollary 10.4.13 Let " be a G-orbit on X × X. Then the set ! = {x ∈ X :
(x, x0) ∈ "} is an orbit of K on X and the map " �→ ! is a bijection between
the set of orbits of G on X × X (with the diagonal action) and those of K on X.

The following result was surely known to Schur and possibly even to Frobe-
nius. Since a standard reference for it is the book by Wielandt [167], for conve-
nience we refer to it as to “Wielandt’s lemma.” Another proof will be indicated
in Exercise 11.4.9.

Lemma 10.4.14 (Wielandt) Let X be a G-space. Suppose that L(X ) =
⊕N
i=0miVi is the decomposition of L(X ) into irreducible G-representations,

where mi denotes the multiplicity of Vi. Then

N∑
i=0

m2
i =number of G-orbits on X×X=number of K-orbits on X. (10.52)

Proof. Denote again by χλ the permutation character associated with the G-
action on X . From Corollary 10.2.22 we deduce that:

h∑
i=1

m2
i =

1

|G|
〈
χλ, χλ

〉
L(G)

(χλ = χλ by Proposition 10.4.6) = 1

|G|
∑
g∈G

χλ(g)2

(by Proposition 10.4.11) = 1

|G|
∑
g∈G

χλ2 (g)

(by Lemma 10.4.8) = number of G-orbits on X × X

(by Corollary 10.4.13) = number of K-orbits on X .
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In other words, by Proposition 10.2.18,

1

|G|
〈
χλ, χλ

〉 = 1

|G|
〈(
χλ
)2

, 1G
〉
= 1

|G|
〈
χλ2 , 1G

〉
is equal to the multiplicity of the trivial representation in the permutation rep-
resentation of G on X × X . �

The following is a slight but useful generalization of the previous result.

Exercise 10.4.15 Let G act transitively on two finite sets X = G/K and Y =
G/H. Define the diagonal action ofG on X × Y by setting, for all x ∈ X, y ∈ Y ,
and g ∈ G

g(x, y) = (gx, gy).

(1) Show that the number of G-orbits on X × Y equals the number of H-
orbits on X , which in turn equals the number of K-orbits on Y .

(2) Let L(X ) = ⊕i∈ImiVi and L(Y ) = ⊕ j∈Jn jVj denote the decomposition
of the permutation representations L(X ) and L(Y ) into irreducible rep-
resentations. Denoting by I ∩ J the set of indices corresponding to com-
mon (equivalent) sub-representations, show that the number ofG-orbits
on X × Y equals the sum

∑
i∈I∩J mini.

An action of G on X is called doubly transitive if for all (x1, x2), (y1, y2) ∈
(X × X ) \ {(x, x) : x ∈ X} there exists g ∈ G such that gxi = yi for i = 1, 2.

Exercise 10.4.16 Suppose that G acts transitively on X .

(1) Prove that G is doubly transitive on X if and only if K is transitive on
X \ {x0}.

(2) LetW0 andW1 be as in Example 10.4.3. Prove that L(X ) =W0 ⊕W1 is
the decomposition of the permutation representation into irreducibles if
and only if G acts doubly transitively on X .

(3) Prove that if the action of G on X = G/K is doubly transitive, then K is
a maximal subgroup (K < H ≤ G infers H = G).
Solution. Suppose that K < H ≤ G and let h ∈ H \ K and g ∈ G \ K.
By double transitivity applied to (K, hK), (K, gK) ∈ (X × X ) \ {(x, x) :
x ∈ X}, there exists g′ ∈ G such that g′K = K and g′hK = gK. But then
g′ ∈ K, g′h ∈ H and therefore g ∈ H. This shows that H = G.

(4) Show that the action of Sn on {1, 2, . . . , n} is doubly transitive.
(5) Show that the action of Aff(Fq) on Fq defined in Example 10.4.5 is

doubly transitive. Deduce that the corresponding permutation represen-
tation decomposes into the sum of the trivial representation and of a
(q− 1)-dimensional, irreducible representation. See also Section 12.1.
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Exercise 10.4.17 Consider the dihedral group Dn in Example 10.2.28 and
define an action of Dn on the additive cyclic group Zn by setting ah = h+ 1
and bh = −h for all h ∈ Zn. Show that this coincides with the natural action
of Dn on the regular polygon with n sides. Also show that the corresponding
permutation representation λ decomposes as follows:

λ =

⎧⎪⎪⎨⎪⎪⎩
χ0 ⊕ χ3 ⊕

(⊕ n
2−1
j=1 ρ j

)
if n is even

χ0 ⊕
(⊕ n−1

2
j=1 ρ j

)
if n is odd.

10.5 Conjugate representations and tensor products

The present section is devoted to two basic constructions in linear and multi-
linear algebra, namely dual spaces and tensor products, in the framework of the
representation theory of finite groups. We recall all basic notions but only for
finite dimensional, complex unitary spaces.
Let V be a finite dimensional complex vector spaces. The dual V ′ of V is

the space of all linear functionals f : V → C. If V is unitary, then the Riesz
representation theorem ensures that for each f ∈ V ′ there exists a unique vector
ξ ( f ) ∈ V such that:

f (v ) = 〈v, ξ ( f )〉, for all v ∈ V. (10.53)

The Riesz map ξ = ξV : V ′ → V is anti-linear, i.e. ξ (α f1 + β f2) = αξ ( f1)+
βξ ( f2), for all α, β ∈ C and f1, f2 ∈ V ′, and bijective. In V ′ we introduce an
inner product by setting, for all f1 and f2 ∈ V ′,

〈 f1, f2〉V ′ = 〈ξ ( f2), ξ ( f1)〉V . (10.54)

Thus, for f ∈ V ′ and v ∈ V one has

f (v ) = 〈v, ξ ( f )〉V = 〈 f , ξ−1(v )〉V ′

which shows that V ′′ = (V ′)′, the bi-dual of V , is isometrically identified with
V by means of ξ−1.

Definition 10.5.1 Let G be a finite group and (ρ,V ) a unitary representation
of G. We define the adjoint or conjugate representation (ρ ′,V ′) of (ρ,V ) by
setting, for all f ∈ V ′, v ∈ V and g ∈ G

[ρ ′(g) f ](v ) = f [ρ(g−1)v]. (10.55)
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It is easy to check that ρ ′ is a linear representation of G and ρ ′ is irreducible
if and only if ρ is irreducible. This is an immediate consequence of the next
proposition.

Proposition 10.5.2 For all g ∈ G we have:

ρ ′(g) = ξ−1ρ(g)ξ . (10.56)

Proof. For all g ∈ G, v ∈ V , and f ∈ V ′ we have:

〈v, ξ [ρ ′(g) f ]〉 = [ρ ′(g) f ](v ) by (10.53)

= f [ρ(g−1)v] by (10.55)

= 〈ρ(g−1)v, ξ ( f )〉 by (10.53)

= 〈v, ρ(g)[ξ ( f )]〉
so that ξρ ′(g) = ρ(g)ξ . �

Remark 10.5.3 Note that, despite (10.56), in general ρ ′ �∼ ρ: recall that the
map ξ is anti-linear! However, the following result holds true (modulo the iden-
tification of V ′′ and V ).

Corollary 10.5.4 The double adjoint (ρ ′)′ coincides with ρ.

Proof. We first observe that

ξV ′ = (ξV )
−1. (10.57)

Thus, by applying Proposition 10.5.2 twice and (10.57), we obtain

(ρ ′)′(g) = ξ−1
V ′ ρ

′(g)ξV ′ = ξV ξ
−1
V ρ(g)ξV ξ

−1
V = ρ(g)

for all g ∈ G. �

We now fix an orthonormal basis {v1, v2, . . . , vd} of V and denote by
{ f1, f2, . . . , fd} the orthonormal basis in V ′ which is dual to {v1, v2, . . . , vd},
that is, such that fi(v j ) = δi, j (or, equivalently, fi = ξ−1(vi)), for all i, j =
1, 2, . . . , d.

Proposition 10.5.5 The matrix coefficients u′i, j(g) of ρ
′ with respect to the dual

basis { f1, f2, . . . , fd} are the conjugates of those of ρ, in fomulæ:
u′i, j(g) = ui, j(g) (10.58)

for all g ∈ G and i, j = 1, 2, . . . , d.
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Proof. Keeping in mind (10.14), we have

u′i, j(g) = 〈ρ ′(g) f j, fi〉V ′

(by (10.54)) = 〈ξ ( fi), ξ [ρ ′(g) f j]〉V
(since ξ ( fi) = vi and by (10.56)) = 〈vi, ρ(g)v j〉V

= 〈ρ(g)v j, vi〉V
= ui, j(g)

for all g ∈ G and i, j = 1, 2, . . . , d. �

Corollary 10.5.6 The character of ρ ′ is the conjugate of the character of ρ:

χρ (g) = χρ ′ (g) (10.59)

for all g ∈ G.

For instance, if χ k (0 ≤ k ≤ n− 1) is a character of the cyclic group Zn as
in Section 2.2, then the character of the corresponding adjoint representation
is χ−k.

Exercise 10.5.7 (Fourier transform of a character) Prove that for θ and σ in
Ĝ we have χ̂σ (θ ) = δθ,σ ′ |G|

dθ
IVθ

.

Remark 10.5.8 A representation ρ ∈ Ĝ is self-conjugate when ρ and ρ ′ are
equivalent; it is complex when it is not self-conjugate. By virtue of (10.59), we
may say that ρ is self-conjugate if and only if χρ (g) ∈ R for all g ∈ G, that
is, its character is a real valued function. Similarly, ρ is complex if and only
if χρ (g) ∈ C \ R for some g ∈ G. The class of self-conjugate representations
can be further split into two subclasses (real and quaternionic); we refer to [29,
Section 9.7] for more details.

Now we apply the notion of a conjugate representation to the decomposition
of the group algebra. Suppose that our choice of the elements of the dual Ĝ of
G makes it invariant under conjugation: for all θ ∈ Ĝ, also θ ′ ∈ Ĝ. Using the
notation in Theorem 10.2.25, for each θ ∈ Ĝ we set:

Mθ
i,∗ = 〈uθi, j : j = 1, 2, . . . , dθ 〉, i = 1, 2, . . . , dθ ;

Mθ
∗, j = 〈uθi, j : i = 1, 2, . . . , dθ 〉, j = 1, 2, . . . , dθ ;
Mθ = 〈uθi, j : i, j = 1, 2, . . . , dθ 〉.

where 〈· · · 〉 indicates C-linear span. Recall also the definition of the left
(respectively right) regular representation in Example 10.1.8.
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Theorem 10.5.9 The following orthogonal decompositions hold:

(i) L(G) = ⊕θ∈ĜM
θ and each Mθ is both λG- and ρG-invariant;

(ii) Mθ = ⊕dθ
i=1M

θ
i,∗; each M

θ
i,∗ is ρG-invariant and the restriction of ρG to

Mθ
i,∗ is equivalent to θ ;

(iii) Mθ = ⊕dθ
j=1M

θ
∗, j; each M

θ
∗, j is λG-invariant and the restriction of λ to

Mθ
∗, j is equivalent to θ ′.

Proof.

(i) The decomposition L(G) =⊕θ∈Ĝ M
θ is just the Peter–Weyl theorem

(Theorem 10.2.25); the λG- and ρG-invariance are proved below.
(ii) Let g, g1 ∈ G and i, j ∈ {1, 2, . . . , dθ }. Then, by Lemma 10.2.13.(iii),

[ρG(g)u
θ
i, j](g1) = uθi, j(g1g) =

dθ∑
k=1

uθi,k(g1)u
θ
k, j(g),

i.e.

ρG(g)u
θ
i, j =

dθ∑
k=1

uθi,ku
θ
k, j(g).

Since, by Lemma 10.2.13.(ii), θ (g)vθ
j =

∑dθ
k=1 vθ

k u
θ
k, j(g), we conclude

that the map vθ
j �→ uθi, j, j = 1, 2, . . . , dθ , extends to an invertible oper-

ator that intertwines θ with ρG|Mθ
i,∗
.

(iii) Let g, g1 ∈ G and i, j ∈ {1, 2, . . . , dθ }. Then, by Lemma 10.2.13.(iii),
Lemma 10.2.13.(i), and (10.58), we have

[λG(g)u
θ
i, j](g1) = uθi, j(g

−1g1)

=
dθ∑
k=1

uθi,k(g
−1)uθk, j(g1)

=
dθ∑
k=1

uθk,i(g)u
θ
k, j(g1)

=
dθ∑
k=1

uθ
′
k,i(g)u

θ
k, j(g1),

i.e. λG(g)uθi, j =
∑dθ

k=1 u
θ
k, ju

θ ′
k,i(g). Again by Lemma 10.2.13.(ii) we have

θ ′(g)vθ ′
i =∑dθ

k=1 vθ ′
k u

θ ′
k,i(g), and this shows that the map vθ ′

i �→ uθi, j, i =
1, 2, . . . , dθ , extends to an invertible operator that intertwines θ ′ with
λG|Mθ

∗, j
. �
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The representation Mθ is the θ -isotypic component of L(G) (see Definition
10.2.20).

Exercise 10.5.10 Show that the orthogonal projection Eθ : L(G) → Mθ is
given by Eθ f = 1

|G| f ∗ χθ , for all f ∈ L(G).

We now turn to the second fundamental construction in linear and multi-
linear algebra in the framework of representation theory of finite groups we
alluded to above, namely tensor products. In Section 8.7 we have already given
an elementary introduction to tensor products.
Let thenV andW be two finite dimensional, complex, unitary spaces. A map

B : V ×W → C is said to be bi-antilinear provided

B(v1 + v2,w) = B(v1,w)+ B(v2,w)

B(v,w1 + w2) = B(v,w1)+ B(v,w2)

B(αv, βw) = αβB(v,w)

for all v1, v2 ∈ V,w1,w2 ∈W, and α, β ∈ C. Clearly, the set of all such bi-
antilinear maps is a complex vector space in a natural way; we denote it by
V
⊗

W and call it the tensor product of V andW .
For v ∈ V and w ∈W we denote by v ⊗ w the element in V

⊗
W defined

by

[v ⊗ w](v ′,w′) = 〈v, v ′〉V 〈w,w′〉W
for all v ′ ∈ V andw′ ∈W . Elements of this kind are called simple tensors. Note
that the map

V ×W −→ V
⊗

W
(v,w) �−→ v ⊗ w

is bilinear, that is,

(α1v1 + α2v2)⊗ (β1w1 + β2w2)

= α1β1v1 ⊗ w1 + α1β2v1 ⊗ w2 + α2β1v2 ⊗ w1 + α2β2v2 ⊗ w2,

for all αi, βi ∈ C, vi ∈ V, andwi ∈W , i = 1, 2.We claim that the corresponding
image spans the wholeV

⊗
W . Indeed, if {vi}dVi=1 and {w j}dWj=1 denote two bases

for V andW , respectively, then for all B ∈ V⊗W we clearly have

B =
dV∑
i=1

dW∑
j=1

B(vi,w j )vi ⊗ v j.
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This incidentally shows that the simple tensors vi ⊗ w j, i = 1, . . . , dV and j =
1, . . . , dW , generate V

⊗
W . Since these are also linearly independent (exer-

cise), they constitute a basis for V
⊗

W , so that, in particular, dim(V
⊗

W ) =
dim(V ) · dim(W ).
We now endow V

⊗
W with a scalar product 〈·, ·〉V⊗W by setting

〈v1 ⊗ w1, v2 ⊗ w2〉V⊗W = 〈v1, v2〉V 〈w1,w2〉W (10.60)

and then extending by linearity. This way, if the bases {vi}dVi=1 and {w j}dWj=1 are
orthonormal in V andW , respectively, then so is {vi ⊗ w j} i=1,...,dV

j=1,...,dW
in V

⊗
W .

Let nowA ∈ End(V ) andB ∈ End(W ). DefineA⊗ B ∈ End(V
⊗

W ) by set-
ting, for allC ∈ V⊗W ,

{[A⊗ B](C)} (v ′,w′) = C(A∗v ′,B∗w′)

for all v ′ ∈ V and w′ ∈W , where A∗ ∈ End(V ) and B∗ ∈ End(W ) are the
adjoint operators. For v, v ′ ∈ V and w,w′ ∈W we then have

{[A⊗ B](v ⊗ w)} (v ′,w′) = [v ⊗ w](A∗v ′,B∗w′)

= 〈v,A∗v ′〉V 〈w,B∗w′〉W
= 〈Av, v ′〉V 〈Bw,w′〉W
= [(Av )⊗ (Bw)](v ′,w′).

This shows that

[A⊗ B](v ⊗ w) = (Av )⊗ (Bw). (10.61)

Lemma 10.5.11 Let A ∈ End(V ) and B ∈ End(W ). Then Tr(A⊗ B) =
Tr(A)Tr(B).

Proof. Let {vi}dVi=1 and {w j}dWj=1 be two orthonormal bases in V andW , respec-
tively. Then

Tr(A⊗ B) =
∑

i=1,...,dV
j=1,...,dW

〈[A⊗ B](vi ⊗ w j ), vi ⊗ w j〉V⊗W

(by (10.61)) =
∑

i=1,...,dV
j=1,...,dW

〈(Avi)⊗ (Bw j ), vi ⊗ w j〉V⊗W

(by (10.60)) =
∑

i=1,...,dV
j=1,...,dW

〈Avi, vi〉V 〈Bw j,w j〉W

= Tr(A)Tr(B). �
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386 Representation theory of finite groups

Exercise 10.5.12

(1) Show that the bilinear map

φ : V ×W → V
⊗

W
(v,w) �→ v ⊗ w

is universal in the sense that if Z is another complex vector space
and ψ : V ×W → Z is bilinear, then there exists a unique linear map
θ : V

⊗
W → Z such that θ (v ⊗ w) = φ(v,w), that is, such that the

diagram

V ×W
φ−→ V

⊗
W

↘ ψ ↙ θ

Z

is commutative (i.e. ψ = θ ◦ φ).
(2) Show that the above universal property characterizes the tensor product:

letU be a complex vector space and let ψ : V ×W → U be a bilinear
map such that
(a) ψ (V ×W ) = {ψ (v,w) : v ∈ V,w ∈W } generatesU ;
(b) for any complex vector space Z and any bilinear map τ : V ×W →

Z there exists a unique linear map θ : U → Z such that τ = θ ◦ ψ .
Then there exists a linear isomorphism α : V

⊗
W → U such that ψ =

α ◦ φ.

Exercise 10.5.13 Let V,W , and Z be finite dimensional, complex unitary
spaces. Prove that the following natural isomorphisms hold:

(1) V
⊗

W ∼=W
⊗

V ;
(2) C

⊗
V ∼= V ;

(3) (V
⊗

W )
⊗

Z ∼= V
⊗

(W
⊗

Z);
(4) (V

⊕
W )
⊗

Z ∼= (V
⊗

Z)
⊕

(W
⊗

Z).

Note that the third isomorphism, namely the associativity of the tensor prod-
uct, may be recursively extended to the tensor product of k vector spaces: we
then denote by V1

⊗
V2
⊗ · · ·⊗Vk the set of all k-antilinear maps B : V1 ×

V2 × · · · ×Vk → C.
We now introduce and study two kinds of tensor product of representations.

Definition 10.5.14 Let G1 and G2 be two finite groups and let (ρ1,V1) and
(ρ2,V2) be representations of G1 and G2, respectively. We define the outer ten-
sor product of ρ1 and ρ2 as the representation (ρ1 � ρ2,V1

⊗
V2) of G1 × G2
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10.5 Conjugate representations and tensor products 387

defined by setting

[ρ1 � ρ2](g1, g2) = ρ1(g1)⊗ ρ2(g2) ∈ End
(
V1
⊗

V2
)

for all gi ∈ Gi, i = 1, 2.
When G1 = G2 = G the internal tensor product of ρ1 and ρ2 is the G-

representation (ρ1 ⊗ ρ2,V1
⊗

V2) defined by setting

[ρ1 ⊗ ρ2](g) = ρ1(g)⊗ ρ2(g) ∈ End
(
V1
⊗

V2
)

for all g ∈ G.

In the above definition, we have used the symbols “�” and “⊗” tomake a dis-
tinction between these two notions of tensor product (compare with [63]). Note
that, however, in both cases the space will be simply denoted byV1

⊗
V2. More-

over, it is obvious that, modulo the isomorphism between G and G̃ = {(g, g) :
g ∈ G} ≤ G× G, the internal tensor product ρ1 ⊗ ρ2 is unitarily equivalent to
the restriction ResG×G

G̃
(ρ1 � ρ2).

Lemma 10.5.15 Let ρ1 and ρ2 be two representations of two finite groups G1

and G2, respectively, and denote by χρ1 and χρ2 their characters. Then, the
character of ρ1 � ρ2 is given by

χρ1�ρ2 (g1, g2) = χρ1 (g1)χ
ρ2 (g2) (10.62)

for all g1 ∈ G1 and g2 ∈ G2. In particular, if both ρ1 and ρ2 are one–
dimensional, so that they coincide with their characters, then one has that
ρ1 � ρ2 = χρ1 � χρ2 = χρ1χρ2 , the pointwise product of the characters. When
G1 = G2 = G, as the internal tensor product is concerned, (10.62) becomes

χρ1⊗ρ2 (g) = χρ1 (g)χρ2 (g) (10.63)

for all g ∈ G.

Proof. This follows immediately from Definition 10.2.14 and Lemma 10.5.11.
�

Theorem 10.5.16 Let G1 and G2 be two finite groups and let θ1 ∈ Ĝ1 and θ2 ∈
Ĝ2. Then θ1 � θ2 is an irreducible representation of G1 × G2. Moreover, if also
σ1 ∈ Ĝ1 and σ2 ∈ Ĝ2 then θ1 � θ2 ∼ σ1 � σ2 if and only if θ1 = σ1 and θ2 = σ2.

Proof. By Proposition 10.2.17 and Corollary 10.2.23 it suffices to check that
〈χθ1�θ2 , χσ1�σ2〉 is either |G1 × G2| ≡ |G1| · |G2| if σ1 = θ1 and σ2 = θ2, or 0
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otherwise. Now we have

〈χθ1�θ2 , χσ1�σ2〉 =
∑

(g1,g2 )∈G1×G2

χθ1�θ2 (g1, g2)χσ1�σ2 (g1, g2)

(by Lemma 10.5.15) =
∑
g1∈G1
g2∈G2

χθ1 (g1)χ
θ2 (g2)χσ1 (g1)χσ2 (g2)

=
∑
g1∈G1

χθ1 (g1)χσ1 (g1)
∑
g2∈G2

χθ2 (g2)χσ2 (g2)

= 〈χθ1 , χσ1〉 · 〈χθ2 , χσ2〉

(by Proposition 10.2.17) =
{
|G1| · |G2| if θ1 = σ1 and θ2 = σ2

0 otherwise.

�

Corollary 10.5.17 Let G1 and G2 be two finite groups. Then the map

Ĝ1 × Ĝ2 −→ Ĝ1 × G2

(θ1, θ2) �−→ θ1 � θ2
(10.64)

is a bijection.

Proof. We first observe that every conjugacy class in G1 × G2 is the Cartesian
product of a conjugacy class inG1 by one inG2, and vice versa. Thus, keeping in
mind Theorem 10.3.13, we have that |Ĝ1 × G2| equals the number of conjugacy
classes in G1 × G2, which in turn equals the product of the numbers of conju-
gacy classes in G1 and G2, and therefore, again by Theorem 10.3.13, equals
|Ĝ1| · |Ĝ2|. Therefore, by the previous theorem, the map (10.64) is indeed a
bijection. Alternatively, it is immediate to check (exercise) that∑

θ1∈Ĝ1

∑
θ2∈Ĝ2

(dθ1�θ2 )
2 = |G1 × G2|

and then we may invoke Theorem 10.2.25.(iii). �

Exercise 10.5.18 Let G (respectively H) be a finite group and let X (respec-
tively Y ) be a finite homogenous G-space (respectively H-space). Let λ and
μ denote the corresponding permutation representations. In Section 8.7 we
showed that the map δx ⊗ δy �→ δ(x,y), x ∈ X, y ∈ Y , yields a natural isomor-
phism L(X )

⊗
L(Y ) ∼= L(X × Y ).

(1) Show that λ� μ is equivalent to the permutation representation ofG×
H on X × Y .
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10.5 Conjugate representations and tensor products 389

(2) Show that if G = H and X = Y , then the internal tensor product λ⊗
μ is equivalent to the permutation representation associated with the
diagonal action of G on X × X .

By means of the two basic constructions (adjoints and tensor products), we
now reinterpret the decomposition of the group algebra (cf. Theorem 10.5.9).
First of all, we recall that if V is a finite dimensional vector space and V ′

denotes its dual, then End(V ) ∼= V ′⊗V . An explicit isomorphism is given by
linearly extending to the whole of V ′⊗V the map

V ′⊗V −→ End(V )
f ⊗ v �−→ Tf ,v

(10.65)

where Tf ,v (w) = f (w)v for all w ∈ V .
Exercise 10.5.19 Fill up all the details relative to (10.65).

Now consider the action of G× G on G given by

(g1, g2) · g= g1gg
−1
2

for all g, g1, g2 ∈ G, and the associated (G× G)-permutation representation
(η,L(G)) given by

[η(g1, g2) f ](g) = f (g−1
1 gg2),

for all f ∈ L(G) and g, g1, g2 ∈ G. Note that, in terms of the left and right
regular representations, we have η(g1, g2) = λG(g1)ρG(g2) = ρG(g2)λG(g1),
for all g1, g2 ∈ G. The stabilizer of the point 1G is the diagonal subgroup
G̃ = {(g, g) : g ∈ G}, clearly isomorphic toG, and in the present setting (10.50)
yields:

G = (G× G)/G̃.

Theorem 10.5.20 With the notation as in Theorem 10.5.9, the restriction of η
to Mθ is equivalent to θ ′ � θ . In particular, it is irreducible.

Proof. For f ∈Wθ ′ and v ∈Wθ define Fθ
f ,v ∈ L(G) by setting

Fθ
f ,v (g) = f (θ (g)v ), (10.66)

for all g ∈ G. Noticing that, for all i, j = 1, 2, . . . , dθ and g ∈ G, one has

uθi, j(g) = 〈θ (g)vθ
j , v

θ
i 〉

(by (10.53)) = [ξ−1(vθ
i )]
(
θ (g)vθ

j

)
= Fθ

ξ−1(vθ
i ),v

θ
j
(g),
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390 Representation theory of finite groups

we deduce that the Fθ
f ,vs span the whole of Mθ . Moreover, if (g1, g2) ∈ G× G

and g ∈ G, we have

[η(g1, g2)F
θ
f ,v ](g) = Fθ

f ,v (g
−1
1 gg2)

(by (10.66)) = f
(
θ (g−1

1 gg2)v
)

(by (10.53)) = 〈θ (g−1
1 gg2)v, ξ ( f )〉

(by (10.56)) = 〈θ (g)θ (g2)v, ξ [θ ′(g1) f ]〉
= [θ ′(g1) f ](θ (g)θ (g2)v )

= Fθ
θ ′(g1 ) f ,θ (g2 )v (g)

so that the surjective map

Wθ ′ ⊗Wθ −→ Mθ

f ⊗ v �−→ Fθ
f ,v

intertwines θ ′ � θ with η|Mθ . The irreducibility of θ ′ � θ follows fromTheorem
10.5.16. �

Recalling Corollary 10.3.12, the Fourier transform may be seen as an iso-
morphism between L(G) and

⊕
θ∈Ĝ
(
W ′

θ

⊗
Wθ

)
, if we identify End(Wθ ) with

W ′
θ ⊗Wθ as in (10.65).

Exercise 10.5.21 Using the notation in (10.65), (10.66), and in Corollary
10.3.12, show that the inverse Fourier transform of a tensor product f ⊗ v ∈
W ′

θ

⊗
Wθ is given by:

( f ⊗ v )∨(g) = dθ
|G|F

θ
f ,v (g

−1)

for all g ∈ G.

10.6 The commutant of a representation

In this section we study the commutant EndG(V ) of a G-representation (ρ,V ).
First of all, we recall some basic facts on projections (see any book on linear
algebra, for instance [91]). Let V be finite dimensional unitary space. A linear
transformation E ∈ End(V ) is called a projection if it is idempotent, that is,
E2 = E. If the rangeW = RanE is orthogonal to the null space KerE, we say
that E is an orthogonal projection ofV ontoW . It is easy to see that a projection
E is orthogonal if and only if it is self-adjoint, that is, E = E∗.
Let now (V, ρ) be a representation of a finite group G and suppose that

V ∼=
⊕
θ∈J

mθWθ (10.67)
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10.6 The commutant of a representation 391

is the decomposition into irreducibles as in Corollary 10.2.19 (with J = {θ ∈
Ĝ : mθ > 0}). We can decompose the isotypic component mθWθ by choosing
suitable operators Iθ,1, Iθ,2, . . . , Iθ,mθ

∈ HomG(Wθ ,V), in such a way that

V =
⊕
θ∈J

mθ⊕
j=1

Iθ, jWθ (10.68)

is an orthogonal decomposition, and

〈Iθ,iw1, Iσ, jw2〉V = δθ,σ δi, j〈w1,w2〉Wθ
(10.69)

for all θ, σ ∈ J, i = 1, 2, . . . ,mθ , j = 1, 2, . . . ,mσ , w1 ∈Wθ and w2 ∈Wσ .
In particular, each Iθ, j is an isometry and the Iθ, js are linearly independent
in HomG(W,V ). Then any vector v ∈ V may be uniquely written in the form
v =∑θ∈J

∑mθ

j=1 vθ, j, with vθ, j ∈ Iθ, jWθ . The operator Eθ, j ∈ End(V ), defined
by setting Eθ, j(v ) = vθ, j for all v ∈ V , is the orthogonal projection fromV onto
Iθ, jWθ . In particular, IV =∑θ∈J

∑mθ

j=1 Eθ, j.
Observe that if v =∑θ∈J

∑mθ

j=1 vθ, j then ρ(g)v =∑θ∈J
∑mθ

j=1 ρ(g)vθ, j. As
ρ(g)vθ, j ∈ Iθ, jWθ , by the uniqueness of such a decomposition, we have that
Eθ, jρ(g)v = ρ(g)vθ, j = ρ(g)Eθ, jv . Therefore, Eθ, j ∈ EndG(V ).

Lemma 10.6.1 With the above notation the following hold.

(i) The space HomG(Wθ ,V ) is spanned by Iθ,1, Iθ,2, . . . , Iθ,mθ
. In particu-

lar, mθ = dimHomG(Wθ ,V ).
(ii) We have

I∗θ,kIσ, j = δσ,θ δ j,kIWθ
(10.70)

for all θ, σ ∈ J, k = 1, 2, . . . ,mθ , j = 1, 2, . . . ,mσ ; in particular,
I∗θ, j|Iθ, jWθ

is the inverse of Iθ, j : Wθ → Iθ, jWθ (≤ V ).

Proof.

(i) If T ∈ HomG(Wθ ,V ), then

T = IVT =
∑
σ∈J

mσ∑
k=1

Eσ,kT.

Since RanEσ,k = Iσ,kWσ , if follows from Lemma 10.2.3 that, if σ �= θ ,
then Eσ,kT = 0. Moreover, from Corollary 10.2.5, one deduces that
Eθ,kT = αkIθ,k for some αk ∈ C. Thus,

T =
mθ∑
k=1

Eθ,kT =
mθ∑
k=1

αkIθ,k.
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392 Representation theory of finite groups

(ii) By Proposition 10.2.2, I∗θ, jIθ, j ∈ EndG(Wθ ) so that, by Schur’s Lemma,
I∗θ, jIθ, j = αIWθ

for some α ∈ C. Moreover, from (10.69) it follows that

〈I∗θ, jIθ, jw,w〉Wθ
= 〈Iθ, jw, Iθ, jw〉V = ‖w‖2Wθ

,

for allw ∈Wθ , so that necessarily α = 1. On the other hand, if (σ, j) �=
(θ, k) then, again by means of (10.69), we deduce that

〈I∗θ,kIσ, jw, u〉Wθ
= 〈Iσ, jw, Iθ,ku〉V = 0. �

Clearly, the decomposition of the θ -isotypic component ofV into irreducible
sub-representations is not unique: it corresponds to the choice of a basis in
HomG(Wθ ,V ).
Now, for all θ ∈ J and 1 ≤ j, k ≤ mθ , define T θ

k, j ∈ EndG(V ) by setting

T θ
k, jv =

{
Iθ,kI∗θ, jv if v ∈ Iθ, jWθ

0 if v ∈ V . Iθ, jWθ .
(10.71)

where V . Iθ, jWθ is the orthogonal complement of Iθ, jWθ in V .

Lemma 10.6.2 With the above notation, we have:

RanT θ
k, j = Iθ,kWθ , KerT θ

k, j = V . Iθ, jWθ ,

T σ
k, jT

θ
s,t = δσ,θ δ j,sT

θ
k,t (10.72)

and (
T θ
k, j

)∗ = T θ
j,k. (10.73)

In particular,

T θ
j, j ≡ Eθ, j.

and

HomG(Iθ, jWθ , Iθ,kWθ ) = CT θ
k, j.

Proof. From (10.70) and (10.71) we deduce that, for all w ∈Wθ ,

T θ
k, jIθ, jw = Iθ,kI

∗
θ, jIθ, jw = Iθ,kw (10.74)
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so that RanT θ
k, j = Iθ,kWθ . The same arguments yield KerT θ

k, j = V . Iθ, jWθ ,

T σ
k, jT

θ
s,tv =

{
T σ
k, jIθ,sI

∗
θ,tv if v ∈ Iθ,tWθ

0 if v ∈ V . Iθ,tWθ .

= δσ,θ δ j,sT
θ
k,tv,

and

〈T θ
k, jv1, v2〉V =

{
〈Iθ,kI∗θ, jv1, v2〉V if v1 ∈ Iθ, jWθ and v2 ∈ Iθ,kWθ

0 otherwise

= 〈v1,T θ
j,kv2〉.

Finally, from (10.71) and (10.74) we deduce that T θ
j jIσ,kw = δσ,θ δ j,kIθ, jw,

which yields T θ
j, j ≡ Eθ, j, while Corollary 10.2.5 ensures that every operator

T ∈ HomG(Iθ, jWθ , Iθ,kWθ ) is a scalar multiple of T θ
k, j. �

Theorem 10.6.3 With the above notation, the set

{T θ
k, j : θ ∈ J, k, j = 1, 2, . . . ,mθ } (10.75)

is a vector space basis for EndG(V ). Moreover, the map

EndG(V ) −→
⊕

θ∈J Mmθ
(C)

T �−→⊕
θ∈J
(
αθ
k, j

)mθ

k, j=1

where the αθ
k, js are the coefficients of T with respect to the basis (10.75), that

is,

T =
∑
θ∈J

mθ∑
k, j=1

αθ
k, jT

θ
k, j,

is a ∗-isomorphism of algebras.

Proof. Let T ∈ EndG(V ). We have

T = IVT IV =
(∑

σ∈J

mσ∑
k=1

Eσ,k

)
T

⎛⎝∑
θ∈J

mθ∑
j=1

Eθ, j

⎞⎠
=
∑
σ,θ∈J

mσ∑
k=1

mθ∑
j=1

Eσ,kTEθ, j.

Observe that

� RanEσ,kTEθ, j ≤ RanEσ,k = Iσ,kWσ ;

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.011
https://www.cambridge.org/core


394 Representation theory of finite groups

� KerEσ,kTEθ, j ≥ KerEθ, j = V . Iθ, jWθ ;
� the restriction to Iθ, jWθ of Eσ,kTEθ, j is in HomG(Iθ, jWθ , Iσ,kWσ ).

From Lemma 10.2.3, it follows that Eσ,kTEθ, j = 0 if σ �= θ , while, if σ = θ ,
by Corollary 10.2.5 one has that Eθ,kTEθ, j is a multiple of T θ

k, j, that is, there
exist αθ

k, j ∈ C such that

Eθ,kTEθ, j = αθ
k, jT

θ
k, j.

This proves that the T θ
k, js generate EndG(V ). To prove independence, suppose

that we can express the 0-operator as

0 =
∑
θ∈J

mθ∑
k, j=1

αθ
k, jT

θ
k, j.

For v ∈ Iθ, jWθ , v �= 0, we obtain that 0 =∑mθ

k=1 α
θ
k, jT

θ
k, jv and this in turn

implies that αθ
k, j = 0 for all k = 1, 2, . . . ,mθ , as T θ

k′, jv and T θ
k, jv belong to inde-

pendent subspaces in V if k �= k′.
The isomorphism of the algebras follows from (10.72):⎛⎝∑
θ∈J

mθ∑
k, j=1

αθ
k, jT

θ
k, j

⎞⎠(∑
σ∈J

mσ∑
h,i=1

βσ
h,iT

σ
h,i

)
=
∑
θ,σ∈J

mθ∑
k, j=1

mσ∑
h,i=1

αθ
k, jβ

σ
h,iδσ,θ δ j,hT

θ
k,i

=
∑
θ∈J

mθ∑
k,i=1

⎛⎝ mθ∑
j=1

αθ
k, jβ

θ
j,i

⎞⎠ T θ
k,i.

The fact that it is also a ∗-isomorphism easily follows from (10.73). �

Corollary 10.6.4 With the above notation we have that

dimEndG(V ) =
∑
θ∈J

m2
θ .

In particular, V is irreducible if and only if dimEndG(V ) = 1.

Definition 10.6.5 A representation (ρ,V ) is multiplicity-free if mθ = 1 for all
θ ∈ J.

Corollary 10.6.6 A representation (ρ,V ) is multiplicity-free if and only if
EndG(V ) is commutative.

Observe that

Eθ =
mθ∑
j=1

Eθ, j ≡
mθ∑
j=1

T θ
j, j
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is the projection from V onto the θ -isotypic component mθWθ . It is called the
minimal central projection associated with θ .
Recall the definition of the product in CJ in (10.28).

Corollary 10.6.7 The centerZ = Z (EndG(V )) is isomorphic toCJ. Moreover,
the minimal central projections Eθ , θ ∈ J, constitute a basis for Z .

Proof. The space EndG(V ) is isomorphic to the direct sum
⊕

θ∈J Mmθ
(C). But

A ∈ Mmθ
(C) commutes with any other B ∈ Mmθ

(C) if and only if it is a scalar
multiple of the identity: A ∈ CImθ

. �

Exercise 10.6.8 Show that Eθ = dθ
|G|
∑

g∈G ρ(g)χθ ′ (g). Compare with Exercise
10.5.7 and Exercise 10.5.10.

Exercise 10.6.9 Let (ρ,V ) and (η,U ) be two G-representations. Suppose that
V ∼=⊕θ∈J mθWθ andU ∼=⊕θ∈K nθWθ , J,K ⊆ Ĝ, are the decompositions ofV
andU into irreducible representations. Show that we have an isomorphism

HomG(U,V ) ∼=
⊕

θ∈K∩J
Mnθ ,mθ

(C)

as vector spaces.

Exercise 10.6.10 Let V andW be two inner product vector spaces.

(1) Show that

〈T1,T2〉Hom(W,V ) = 1

dimW
Tr(T ∗

2 T1),

with T1,T2 ∈ Hom(W,V ), defines an inner product in Hom(W,V )
(called the normalized Hilbert-Schmidt inner product).

(2) Show that if dimW ≤ dimV and T ∈ Hom(W,V ) is an isometry then
‖T‖Hom(W,V ) = 1.

Exercise 10.6.11 Let (ρ,V ) and (θ,W ) be two G-representations. Suppose
that (θ,W ) is irreducible and denote by m = dimHomG(W,V ) the multiplicity
of θ in (ρ,V ). Let also T1,T2, . . . ,Tm ∈ HomG(W,V ). Show that the following
facts are equivalent:

(a) 〈Tiw1,Tjw2〉V = 〈w1,w2〉W δi, j, for all w1,w2 ∈W and i, j =
1, 2, . . . ,m;

(b) theW -isotypic component of V is equal to the orthogonal direct sum

T1W ⊕ T2W ⊕ · · · ⊕ TmW,

and each operator Tj is an isometry fromW onto TjW ;
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396 Representation theory of finite groups

(c) the operators T1,T2, . . . ,Tm form an orthonormal basis for HomG(W,V )
(with respect to the normalized Hilbert-Schmidt inner product);

(d) T ∗
j Ti = δi, jIW , for all i, j = 1, 2, . . . ,m.

Exercise 10.6.12 In the notation of Corollary 10.3.12, see also Exercise
10.5.21,

(1) show that the Fourier transform is an isometric ∗-isomorphism between
the group algebra L(G) and C(Ĝ), where the scalar product is defined
by setting

〈T, S〉C(Ĝ) =
1

|G|
∑
θ∈Ĝ

dθTr[S(θ )
∗T (θ )],

for all S,T ∈ C(Ĝ).
(2) Show that the Fourier transform and the inverse Fourier transform are

one the adjoint of the other, that is, if we identify Mθ withW ′
θ ⊗Wθ by

means of Theorem 10.5.20, then

〈F, ( f ⊗ v )∨〉L(G) = 〈F̂, f ⊗ v〉C(Ĝ)
for all F ∈ L(G), v ∈Wθ , f ∈W ′

θ , and θ ∈ Ĝ.

Solution. Fix θ ∈ Ĝ and let {v1, v2, . . . , vdθ } be an orthonormal basis in Wθ .
Then, for v ∈Wθ and f ∈W ′

θ one has

〈F, ( f ⊗ v )∨〉L(G) = dθ
|G|
∑
g∈G

F (g) f [θ (g−1)v]

= dθ
|G|
∑
g∈G

F (g) f

(
dθ∑
i=1

〈θ (g−1)v, vi〉Wθ
vi

)

= dθ
|G|

dθ∑
i=1

f (vi)
∑
g∈G

〈F (g)θ (g)vi, v〉Wθ

= dθ
|G|

dθ∑
i=1

f (vi)〈F̂ (θ )vi, v〉Wθ

= dθ
|G|

dθ∑
i=1

〈F̂ (θ )vi, [ f ⊗ v](vi)〉Wθ

= 〈F̂, f ⊗ v〉C(Ĝ).
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10.7 A noncommutative FFT

The aim of this section is to present a noncommutative version of the FFT
developed by Diaconis and Rockmore in [54]. Let G be a finite group, K ≤ G
a subgroup, and T ⊂ G a complete set of representatives for the left cosets of
K (cf. (10.49)). Given an irreducible G-representation (θ,W ), we consider an
orthogonal decomposition

ResGKW =
m⊕
j=1

Vσ j (10.76)

of its restriction to K, into irreducible K-representations. Note that in (10.76)
the K-representations (σ j,Vσ j ), j = 1, 2, . . . ,m, are not necessarily pairwise
inequivalent. Then, by choosing an orthonormal basis in each Vσ j in (10.76),
we get an orthonormal basis forW such that, identifying a linear operator with
the associated matrix,

θ (k) =

⎛⎜⎜⎜⎝
σ1(k)

σ2(k)
. . .

σm(k)

⎞⎟⎟⎟⎠ , (10.77)

for all k ∈ K.

Exercise 10.7.1 Check the details of (10.77).

The orthogonal basis forW that leads to (10.77) is called an adapted basis to
the decomposition in (10.76). Then, for f ∈ L(G), its Fourier transform evalu-
ated at θ is given by

f̂ (θ ) =
∑
g∈G

f (g)θ (g)

=
∑
t∈T

θ (t )
∑
k∈K

ft (k)θ (k),
(10.78)

where ft ∈ L(K), t ∈ T , is defined by ft (k) = f (tk) for all k ∈ K. By virtue of
(10.77), we have, for all t ∈ T ,

∑
k∈K

ft (k)θ (k) =

⎛⎜⎜⎜⎝
f̂t (σ1)

f̂t (σ2)
. . .

f̂t (σm)

⎞⎟⎟⎟⎠ . (10.79)
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By combining (10.78) and (10.79), we get an algorithm that reduces the com-
putation of f̂ (θ ) to the computation of smaller (dimension) Fourier transforms
(the f̂t (σ j )s) and then to multiplications of these by the matrices θ (t )s.

Exercise 10.7.2 Denote by T (G) (respectively T (K)) the number of operations
required to compute the Fourier transform of a given f ∈ L(G) at each irre-
ducible representation of G (respectively of K), and by M(d) the number of
operations needed to compute the product of two (d × d)-matrices. Show that

T (G) = |T | · T (K)+ (|T | − 1)
∑
σ∈K̂

M(dσ ).

Exercise 10.7.3 Show that the Cooley-Tukey algorithm in (5.62) is a particular
case of the algorithm considered in this section.
Hint. Just observe that G = Znm and K = Zm.

Diaconis and Rockmore also considered recursive applications of this basic
algorithm when a chain

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gm ≥ Gm+1 = {1G}
of subgroups is available, providing several specific examples.
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Induced representations and Mackey theory

In this chapter we introduce the theory of induced representations. This is a
central topic in the representation theory of finite groups. We emphasize the
analytic approach and include a detailed treatment of Mackey’s theory, which
will play a fundamental role in the following chapters, and of the little group
method, due toMackey andWigner, that will be used extensively in Chapter 12.
Other treatments of these topics are in the books by Naimark and Stern [119],
Sternberg [154], Simon [148], Serre [145], Curtis and Reiner [42, 43], Huppert
[78], Shaw [147], and Bump [23]. See also our previous monographs [33, 34]
and the expository paper [30].

11.1 Induced representations

Throughout this section, G is a finite group, K a subgroup of G and (σ,V ) a
finite dimensional unitary representation of K. We suppose that T is a system
of representatives for the setG/K of left cosets of K inG as in (10.49). We also
assume that 1G ∈ T is the representative of K. We denote by V [G] the vector
space of all functions f : G→ V .

Definition 11.1.1 (Induced representation) The induced representation of a
K-representation (σ,V ) is the G-representation (λ, IndGKV ) whose representa-
tion space is

IndGKV = { f ∈ V [G] : f (gk) = σ (k−1) f (g), for all g ∈ G, k ∈ K}, (11.1)

with the action λ given by

[λ(g1) f ](g2) = f (g−1
1 g2), for all g1, g2 ∈ G and f ∈ IndGKV. (11.2)

399
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400 Induced representations and Mackey theory

Note that λ(g) f ∈ IndGKV for all g ∈ G and f ∈ IndGKV , and that λ is indeed a
representation (compare with the definition of the left regular representation in
(10.9)). Sometimes we shall denote λ by IndGKσ .

In IndGKV we can define an invariant scalar product by setting

〈 f1, f2〉IndGKV = 1

|K|
∑
g∈G

〈 f1(g), f2(g)〉V (11.3)

for f1, f2 ∈ IndGKV ; it is easy to check that (λ, Ind
G
KV ) is unitary with respect to

this scalar product. We also use the following reduced form of (11.3):

〈 f1, f2〉IndGKV =
∑
t∈T

〈 f1(t ), f2(t )〉V . (11.4)

Indeed, if g ∈ G and g= tk, k ∈ K, t ∈ T , then from (11.1) and the uni-
tarity of σ we deduce that 〈 f1(g), f2(g)〉V = 〈σ (k−1) f1(t ), σ (k−1) f2(t )〉V =
〈 f1(t ), f2(t )〉V .
Now we explore the structure of an induced representation. For every v ∈ V

define the function fv ∈ V [G] by setting

fv (g) =
{
σ (g−1)v if g ∈ K

0 otherwise.
(11.5)

It is easy to check that fv ∈ IndGKV and that the subspace Ṽ = { fv : v ∈ V } of
IndGKV is K-invariant and K-isomorphic to V ; indeed,

λ(k) fv = fσ (k)v (11.6)

for all k ∈ K.

Proposition 11.1.2 With the same notation as in (10.49), we have the direct
sum decomposition

IndGKV =
⊕
t∈T

λ(t )Ṽ . (11.7)

Proof. Take f ∈ IndGKV and set vt = f (t ) ∈ V for every t ∈ T . Then, for t0 ∈ T
and k ∈ K, we have t−1t0k ∈ K if and only if t = t0, and therefore∑

t∈T
λ(t ) fvt (t0k) =

∑
t∈T

fvt (t
−1t0k) = fvt0 (k)

= σ (k−1)vt0 = σ (k−1) f (t0) = f (t0k)

that is, since t0k ∈ G is arbitrary,

f =
∑
t∈T

λ(t ) fvt . (11.8)
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11.1 Induced representations 401

Note also that such an expression is unique: indeed, from (11.1) it follows that
every f ∈ IndGKV is uniquely determined by its values on T . �

Conversely, we have:

Lemma 11.1.3 Let (τ,W ) be a representation of G and V a K-invariant sub-
space such that the direct decomposition

W =
⊕
t∈T

τ (t )V (11.9)

holds. Then the G-representations W and IndGKV are isomorphic.

Proof. If we define Ṽ as in (11.7) it follows that IndGKV andW areG-isomorphic.
The easy details are left as an exercise. �

Remark 11.1.4 In some books, as for instance Serre’s monograph [145],
induced representations are defined by means of the property in Lemma 11.1.3.

We observe that the dimension of the induced representation is given by

dim(IndGKV ) = [G : K] · dim(V ) (11.10)

as it immediately follows from (11.7) and observing that |T | = [G : K]. We
now prove that induction is transitive.

Proposition 11.1.5 (Induction in stages) Let K ≤ H ≤ Gbe finite groups and
(σ,V ) a K-representation.

(i) The map f �→ F given by F (g, h) = [ f (g)](h), for all f ∈ (V [H]) [G],
F ∈ V [G× H], g ∈ G, and h ∈ H, yields a vector space isomorphism
between (V [H]) [G] and V [G× H]. By restriction, it yields an isomor-
phism between the G-representations IndGH (Ind

H
KV ) and

{F ∈ V [G× H] : F (gh, h′k) = σ (k−1)F (g, hh′),

∀g ∈ G, h, h′ ∈ H, k ∈ K}. (11.11)

(ii) The map F �→ F̃ , where F is in the space (11.11) and F̃ ∈ V [G] is
defined by setting F̃ (g) = F (g, 1G), for all g ∈ G, yields an isomor-
phism between the G-representations (11.11) and IndGKV . The corre-
sponding inverse map is given by F̃ �→ F, where F (g, h) = F̃ (gh), for
all h ∈ H, g ∈ G.

(iii) The following isometric isomorphism of G-representations holds:

IndGH (Ind
H
KV ) ∼= IndGKV. (11.12)
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402 Induced representations and Mackey theory

Proof.

(i) The isomorphism (V [H]) [G] ∼= V [G× H] induced by the map f �→ F
is obvious. Moreover, from the definition of an induced representation,
we get

IndHKV = { f ′ ∈ V [H] : f ′(hk) = σ (k−1) f ′(h), ∀h ∈ H, k ∈ K}
and, setting θ = IndHKσ ,

IndGH (Ind
H
KV ) = { f ∈ (IndHKV )[G] :

f (gh) = θ (h−1) f (g), ∀g ∈ G, h ∈ H}.

We deduce that if f ∈ IndGH (Ind
H
KV ) then we have

F (gh, h′k) = [ f (gh)](h′k)

= σ (k−1)
(
[ f (gh)](h′)

)
= σ (k−1)[θ (h−1) f (g)](h′)

= σ (k−1)[ f (g)](hh′)

= σ (k−1)F (g, hh′),

for all g ∈ G, h, h′ ∈ H, and k ∈ K. This shows that F belongs to
(11.11). By means of the same arguments, it is easy to check that each
F in (11.11) is the image of some f ∈ IndGH (Ind

H
KV ).

(ii) Let F be in the space (11.11). It is immediate to check that F (g, h) =
F (gh, 1G), for all g ∈ G and h ∈ H, so that F is uniquely determined by
its values on G× {1G}. As a consequence, we have

F̃ (gk) = F (gk, 1G) = F (g, k) = σ (k−1)F (g, 1G) = σ (k−1)F̃ (g),

for all g ∈ G and k ∈ K, so that F̃ ∈ IndGKV .
(iii) The isomorphism follows immediately from (i) and (ii). Finally, it is

immediate to check that, modulo the identifications in (i) and (ii), one
has ‖F̃‖IndGKV = ‖F‖IndGH IndHKV . �

Example 11.1.6 (Permutation representation) Let G be a finite group acting
transitively on a finite set X . Choose x0 ∈ X and let K = {g ∈ G : gx0 = x0} be
its stabilizer. As in Example 10.4.3, we denote by (λ,L(X )) the correspond-
ing permutation representation of G. Let now (ιK,C) denote the trivial (one
dimensional) representation of K. Then

IndGKC = { f ∈ L(G) : f (gk) = f (g),∀g ∈ G, k ∈ K} = L(G)K
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11.1 Induced representations 403

(the space of all right-K-invariant functions on G). The latter is isomorphic to
L(X ): the map f �→ f̃ , where f ∈ L(X ) and f̃ ∈ L(G)K is given by

f̃ (g) = f (gx0) (11.13)

for all g ∈ G, yields the desired G-isomorphism. We can rephrase the above
discussion by saying that the permutation representation λ and the induced
representation IndGKιK are equivalent. Recalling the identification X = G/K as
G-spaces, we can thus write:

(λ,L(G/K)) ∼ (IndGKιK,L(G)
K ). (11.14)

Exercise 11.1.7 Suppose that K ≤ H ≤ G, set X = G/K, Y = G/H, Z =
H/K, and suppose that x0 ∈ X (respectively, y0 ∈ Y ) is the point stabilized by
K (respectively H).

(1) Show that there exists a unique surjective map π : X → Y such that
π (x0) = y0 and π (gx) = gπ (x) for all x ∈ X and g ∈ G (that is, π is
G-equivariant).

(2) Show that, in the present setting, transitivity of induction has the fol-
lowing more explicit form: L(X ) ∼= IndGHL(Z) ∼= ⊕y∈YL(π−1(y)).

See [138] for some examples and applications of these simple facts.

Example 11.1.8 LetG be a finite group andN ≤ G a normal subgroup. Denote
by λG/N the left regular representation of G/N and by λ the permutation repre-
sentation of G on G/N (note that the corresponding representation spaces are
the same, namely L(G/N)). Then

λ(g) = λG/N (gN) (11.15)

for all g ∈ G. Indeed, if f ∈ L(G/N) and g, g0 ∈ G, one has

[λG/N (gN) f ](g0N) = f [(gN)−1(g0N)] = f (g−1g0N) = [λ(g) f ](g0N).

Example 11.1.9 Let G be a finite group and K ≤ G a subgroup. Let also χ

be a one-dimensional representation of K. Recall that χ : K → C satisfies:
|χ (k1)| = 1, χ (k1k2) = χ (k1)χ (k2), so that χ (k−1) = χ (k)−1 = χ (k), for all
k1, k2, k ∈ G, and χ (1K ) = 1. Then the representation space of IndGKχ , that we
denote by IndGKC, is made up of all f ∈ L(G) such that

f (gk) = χ (k) f (g) (11.16)

for all k ∈ K and g ∈ G. The corresponding G-action is again given by left
translation:

[IndGKχ (g) f ](g
′) = f (g−1g′)

for all f ∈ IndGKC and g, g′ ∈ G.
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404 Induced representations and Mackey theory

Now (11.7) becomes

IndGKC =
⊕
t∈T

λ(t ) (Cχ ) , (11.17)

where χ is extended to the whole G by setting χ (g) = 0 for all g ∈ G \ K (note
that, this way, f = χ ∈ L(G) satisfies (11.16)).

Exercise 11.1.10 Suppose that A,B are finite Abelian groups, B ≤ A and let χ
be a character of B. Show that a character ψ of A is contained in IndABχ if and
only ifψ (b) = χ (b) for all b ∈ B and, if this is the case, its multiplicity is equal
to 1.

Now we give a formula for the matrix coefficients and the character of an
induced representation.

Theorem 11.1.11 Let G be a finite group, K ≤ G a subgroup, and T ⊆ G a
complete set of representatives for the left cosets of K in G. Let also (σ,V ) be
a K-representation, {e1, e2, . . . , ed} an orthonormal basis for V and denote by
λ = IndGKσ the corresponding induced representation. Define fe j ∈ IndGKV as
in (11.5) and ft, j = λ(t ) fe j ∈ IndGKV for all t ∈ T and j = 1, 2, . . . , d. Then
{ ft, j : t ∈ T , j = 1, 2, . . . , d} is an orthonormal basis for IndGKV with respect
to the scalar product (11.3) and the corresponding matrix coefficients of λ are
given by the formula

〈λ(g) ft, j, fs,i〉IndGKV =
{
〈σ (s−1gt )e j, ei〉V if s−1gt ∈ K

0 otherwise

for all s, t ∈ T and i, j = 1, 2, . . . , d.

Proof. The fact that { ft, j : t ∈ T , j = 1, 2, . . . , n} is an orthonormal basis eas-
ily follows from (11.4) and the formula ft, j(s) = δste j, for s, t ∈ T . Now sup-
pose that g ∈ G and r ∈ T . Then there exist t1 ∈ T and k ∈ K such that g−1r =
t1k and therefore

[λ(g) ft, j](r) = ft, j(g
−1r)

= ft, j(t1k)

= δt,t1σ (k
−1)e j.

Since k = t−1
1 g−1r and

t = t1 ⇐⇒ g−1r ∈ tK ⇐⇒ r−1gt ∈ K,
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we deduce that

[λ(g) ft, j](r) =
{
σ (r−1gt )e j if r−1gt ∈ K

0 otherwise.

We can use this formula and (11.4) to compute the matrix coefficients of the
induced representation λ: for s, t ∈ T and i, j = 1, 2, . . . , d, we have

〈λ(g) ft, j, fs,i〉IndGKV =
∑
r∈T

〈[λ(g) ft, j](r), fs,i(r)〉V

=
{
〈σ (s−1gt )e j, ei〉V if s−1gt ∈ K

0 otherwise.

�

Corollary 11.1.12 (Frobenius character formula) Let G be a finite group,
K ≤ G a subgroup, and (σ,V ) a K-representation. Then the character of the
induced representation IndGKσ is given by

χ IndGKσ (g) =
∑
t∈T :

t−1gt∈K

χσ (t−1gt ). (11.18)

Proof. Let uσi, j denote the matrix coefficients of σ and uλs,i;t, j those of λ. Then
Theorem 11.1.11 yields:

uλs,i;t, j(g) =
{
uσi, j(s

−1gt ) if s−1gt ∈ K

0 otherwise,
(11.19)

that is, ifU (k) =
(
uσi, j(k)

)d
i, j=1

, then the matrix
(
uλt,i;s, j(g)

)
i, j=1,2,...,d

t,s∈T
is given in

block form by
(
U (t−1gs)

)
t,s∈T , where U (t−1gs) = 0 whenever t−1gs /∈ K. By

taking the trace of this block matrix, we immediately get the expression for the
character of λ in terms of the character of σ . �

There is another useful way to write Frobenius character formula. If C is a
conjugacy class in G, then C ∩ K is invariant under conjugation by elements of
K so that it is partitioned as

C ∩ K =
m∐
i=1

Di, (11.20)

where the Di’s are conjugacy classes in K.
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Proposition 11.1.13 Let G be a finite group, K ≤ G a subgroup, and (σ,V ) a
K-representation. Then we have:

χ IndGKσ (C) = |G|
|K| · |C|

m∑
i=1

|Di|χσ (Di), (11.21)

where χ (C) denotes the value χ (c) of the character χ at each c ∈ C.

Proof. If c, c′ ∈ C, then

|{g ∈ G : g−1cg= c′}| = |G|
|C| . (11.22)

Indeed, G acts transitively on C by conjugation (c �→ g−1cg, for all c ∈ C and
g ∈ G), and the stabilizer of c coincides with its centralizer, whose order is
|G|/|C|; see Lemma 10.4.2. Therefore, by Frobenius character formula, for c ∈
C we have

χ IndGKσ (C) =
∑
t∈T :

t−1ct∈K

χσ (t−1ct )

= 1

|K|
∑
k∈K

∑
t∈T :

t−1ct∈K

χσ (k−1t−1ctk)

(g= tk) = 1

|K|
∑
g∈G:

g−1cg∈K

χσ (g−1cg)

(by (11.22)) = 1

|K|
m∑
i=1

|G|
|C|
∑
k∈Di

χσ (k)

= |G|
|K| · |C|

m∑
i=1

|Di|χσ (Di).

�

Corollary 11.1.14 For a permutation representation (λ,L(X )) (cf. Example
11.1.6), formula (11.21) becomes:

χλ(C) = |X |
|C| |C ∩ K|.

Exercise 11.1.15 Deduce the fixed point character formula (Proposition
10.4.6) from Frobenius character formula.

In the last part of this section, we illustrate two fundamental results that con-
nect tensor products (cf. Section 10.5) and induced representations.
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11.1 Induced representations 407

Theorem 11.1.16 Let G be a finite group and K ≤ G a subgroup. Let (θ,W )
be a G-representation and (σ,V ) a K-representation. Then the map

φ : W
⊗

IndGKV → IndGK[(Res
G
KW )

⊗
V ] (11.23)

defined by setting

[φ(w ⊗ f )](g) = θ (g−1)w ⊗ f (g),

for all w ∈W, f ∈ IndGKV , and g ∈ G, is an isometric isomorphism of G-
representations, so that, in particular,

φ ∈ HomG
(
θ ⊗ IndGKσ, Ind

G
K[Res

G
Kθ ⊗ σ ]

)
.

Proof. The spaceW
⊗

IndGKV is spanned by all products w ⊗ f where w ∈W
and f ∈ V [G] satisfies f (gk) = σ (k−1) f (g), for all k ∈ K and g ∈ G. Let us
set, as usual, λ = IndGKσ . The space IndGK[(Res

G
KW )

⊗
V ] is made up of all

functions F ∈ (W
⊗

V )[G] such that

F (gk) = [θ (k−1)⊗ σ (k−1)]F (g), (11.24)

for all k ∈ K and g ∈ G, and it is spanned by all functions of the form
λ1(g)Fw⊗v , for g ∈ G, w ∈W , v ∈ V , where λ1 = IndGK[(Res

G
Kθ )⊗ σ ] is as

in (11.2) and Fw⊗v is given by (11.5). First of all, observe that φ(w ⊗ f ) ∈
IndGK[(Res

G
KW )

⊗
V ]. Indeed, φ(w ⊗ f ) ∈ (W

⊗
V )[G] and satisfies (11.24):

[φ(w ⊗ f )](gk) = θ (k−1g−1)w ⊗ f (gk)

= [θ (k−1)⊗ σ (k−1)]
(
θ (g−1)w ⊗ f (g)

)
= [θ (k−1)⊗ σ (k−1)] (φ(w ⊗ f )) (g).

Let us show that the map (11.23) is G-equivariant: for all g, g0 ∈ G we have

(φ {[θ (g)w]⊗ [λ(g) f ]}) (g0) = θ (g−1
0 g)w ⊗ f (g−1g0)

= [φ(w ⊗ f )](g−1g0)

= [λ1(g)φ(w ⊗ f )](g0),

that is, φ intertwines θ ⊗ λ and λ1. Now we prove that the map φ is surjective.
For w ∈W , v ∈ V , and k ∈ K we have

[φ(w ⊗ fv )](k) = θ (k−1)w ⊗ fv (k) = θ (k−1)w ⊗ σ (k−1)v = Fw⊗v (k)

and [φ(w ⊗ fv )](g) = 0 = Fw⊗v (g) if g ∈ G \ K, so that φ(w ⊗ fv ) = Fw⊗v .
Since the functions of the form λ1(g)Fw⊗v span IndGK[(Res

G
KW )

⊗
V ], we con-

clude that φ is surjective. Since

dim
[
W
⊗

IndGKV
]
= dimWdimV |G/K| = dim

{
IndGK[(Res

G
KW )

⊗
V ]
}
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408 Induced representations and Mackey theory

it is also injective, so that it is an isomorphism. We leave it to the reader to
check that φ is indeed an isometry. �

Corollary 11.1.17 Let G be a finite group, K ≤ G a subgroup, and x0 ∈ X =
G/K be the point stabilized by K. Let (θ,W ) (respectively, (λ,L(X ))) be a
representation (respectively, the corresponding permutation representation) of
G. Then the map

φ : W
⊗

L(X ) → IndGKRes
G
KW

defined by setting

[φ(w ⊗ f )](g) = f (gx0)θ (g
−1)w,

for all f ∈ L(X ),w ∈W, and g ∈ G, is an isometric isomorphism.

Proof. Apply Theorem 11.1.16 with σ = ιK the trivial representation of K.
In this case IndGKV ∼= L(X ) (see Example 11.1.6, in particular (11.14)) and
(ResGKW )

⊗
V = (ResGKW )

⊗
C ∼= ResGKW . �

In the last corollary, we have shown that IndGKRes
G
KW is isomorphic to

W
⊗

L(X ). This is the first elementary result that connects induction and
restriction. Sections 11.2, 11.4, and 11.5 are devoted to deeper results of this
kind. In particular, Mackey’s lemma in Section 11.5 examines the structure of
ResGHInd

G
KV , where V is a K-representation and H ≤ G is another subgroup.

Another property of the induction operation is additivity.

Proposition 11.1.18 Let G be a finite group and K ≤ G a subgroup. Let
(σ1,V1) and (σ2,V2) be two representations of K. Then

IndGK
(
ρ1
⊕

ρ2

)
∼ IndGK (ρ1)

⊕
IndGK (ρ2).

Proof. We leave it to the reader to check that the map

� :
(
IndGKV1 ⊕ IndGKV2

)→ IndGK (V1 ⊕V2),

defined by [�( f1 + f2)](g) = f1(g)+ f2(g), for all fi ∈ IndGKVi, i = 1, 2 and
g ∈ G is a bijective map in HomG(IndGK (ρ1)

⊕
IndGK (ρ2), Ind

G
K

(
ρ1
⊕

ρ2
)
). �

Exercise 11.1.19 Let G be a finite group and K ≤ G a subgroup. Let (σ,V )
be a K-representation. Consider the tensor product L(G)

⊗
V , its sub-

space V spanned by {δgk ⊗ v − δg ⊗ σ (k)v : g ∈ G, k ∈ K, v ∈ V }, and the G-
representation (γ ,L(G)

⊗
V ) given by

γ (g)(δg′ ⊗ v ) = δgg′ ⊗ v
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11.2 Frobenius reciprocity 409

for all g, g′ ∈ G and v ∈ V . Show that V is γ -invariant and that IndGKV ∼=
[L(G)

⊗
V ]/V as G-representations.

The above yields a classical, more algebraic, definition of an induced represen-
tation; see the monograph by Alperin and Bell [12].

11.2 Frobenius reciprocity

This section is devoted to the first fundamental result, due to Frobenius, that
relates the operations of induction and restriction for group representations. We
assume all the notation in Section 11.1; in particular, we suppose that (θ,W )
is a G-representation (with dθ = dimW ) and (σ,V ) is a K-representation. For
a more detailed analysis of Frobenius reciprocity, we refer to [137, 140, 37].

Theorem 11.2.1 (Frobenius reciprocity) For each T ∈ HomG(W, IndGKV )

define
∧
T : W → V by setting, for every w ∈W,

∧
Tw = [Tw](1G). (11.25)

Then
∧
T ∈ HomK (ResGKW,V ) and the map

HomG(W, IndGKV ) −→ HomK (ResGKW,V )

T �−→
∧
T

is an isomorphism of vector spaces. Its inverse is the map L �→
∨
L where, for

L ∈ HomK (ResGKW,V ), [∨
Lw

]
(g) = Lθ (g−1)w, (11.26)

for all w ∈W and g ∈ G.

Proof. First of all, we show that
∧
T ∈ HomK (ResGKW,V ):

∧
Tθ (k)w = {T [θ (k)w]}(1G)(

T ∈ HomG(W, IndGKV )
) = [λ(k)(Tw)](1G)

(by (11.2)) = [Tw](k−1)

(by (11.1)) = σ (k)[Tw](1G)

= σ (k)
∧
Tw

for all k ∈ K and w ∈W .
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410 Induced representations and Mackey theory

Conversely, if L ∈ HomK (ResGKW,V ) then from (11.26) we deduce that[∨
Lw

]
(gk) = Lθ (k−1)θ (g−1)w = σ (k−1)Lθ (g−1)w = σ (k−1)

[∨
Lw

]
(g),

for all w ∈W , k ∈ K and g ∈ G, so that
∨
Lw ∈ IndGKV . Moreover, if g0 ∈ G we

have[∨
Lθ (g)w

]
(g0) = Lθ (g−1

0 )θ (g)w = Lθ [(g−1g0)
−1)]w

=
[∨
Lw

]
(g−1g0) =

[
λ(g)

∨
Lw

]
(g0),

and this shows that
∨
L ∈ HomG(W, IndGKV ). Finally,[(∧

T

)∨
w

]
(g) =

∧
Tθ (g−1)w = [Tθ (g−1)w](1G)

= [λ(g−1)(Tw)
]
(1G) = [Tw](g)

and (∨
L

)∧
w =

[∨
Lw

]
(1G) = Lw,

for all w ∈W and g ∈ G, that is, (
∧
T )∨ = T and (

∨
L)∧ = L. It follows that the

linear maps T �→
∧
T and L �→

∨
L are one inverse to the other, and therefore are

isomorphisms. �

From Theorem 11.2.1, Lemma 10.6.1.(i), and Lemma 10.6.2 we deduce the
following:

Corollary 11.2.2 Suppose that W and V are irreducible. Then the multiplicity
of W in IndGKV equals the multiplicity of V in ResKW.

Corollary 11.2.3 Suppose that W and V are irreducible, and that W is con-
tained in IndGKV with multiplicity m. Then

dimW ≥ mdimV.

In particular, if dimW = 1 one has dimV = 1 and m = 1.

Proof. ResGKW contains m copies of V and dimResGKW = dimW . �

From the point of view of character theory, Frobenius reciprocity may be
formulated in the following form:
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11.2 Frobenius reciprocity 411

Proposition 11.2.4

1

|G| 〈χ
θ , χ IndGKσ 〉L(G) = 1

|K| 〈χ
ResGKθ , χσ 〉L(K).

Proof. Although this may be deduced from Corollary 11.2.2 (see Exercise
11.2.5), we reproduce the easy proof based on Frobenius character formula. Let
C j, j = 1, 2, . . . , n be the conjugacy classes of G and suppose that C j ∩ K =∐mj

i=1 Di, j (with Di, j ⊂ C j a K-equivalence class) as in (11.20). Then we have:

1

|G| 〈χ
θ , χ IndGKσ 〉L(G) = 1

|G|
n∑
j=1

|C j|χθ (C j )χ IndGKσ (C j )

(by (11.21)) = 1

|K|
n∑
j=1

mj∑
i=1

|Di, j|χθ (Di, j )χσ (Di, j )

= 1

|K| 〈χ
ResGKθ , χσ 〉L(K). �

Exercise 11.2.5 Deduce Proposition 11.2.4 from Proposition 10.2.18 and
Corollary 11.2.2.

Exercise 11.2.6 With the notation as in Theorem 11.2.1, show that the map

T �→ √|G/K|
∧
T is an isometry with respect to the scalar product in Exercise

10.6.10.

Exercise 11.2.7 (The other side of Frobenius reciprocity) For each T ∈
HomG(IndGKV,W ) define

◦
T ∈ Hom(V,W ) by setting

◦
Tv = T fv , for all v ∈ V

( fv is as in (11.5)).

(1) Show that
◦
T ∈ HomK (V,ResGKW ).

(2) Show that (T ∗)◦ =
(∧
T

)∗
.

(3) Show that the map

HomG(IndGKV,W ) −→ HomK (V,ResGKW )

T �−→
◦
T

is an isometric isomorphism of vector spaces and that its inverse is

the map L �→
1
L defined by setting

1
L f =∑t∈T θ (t )L f (t ) for all L ∈

HomK (V,ResGKW ) and f ∈ IndGKV .
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412 Induced representations and Mackey theory

We now examine Frobenius reciprocity in a particular case: from now on,
the K-representation (σ,V ) is one-dimensional and we shall identify it with
its character χ = χσ . We then denote by IndGKC the representation space of
λ = IndGKχ (see also Example 11.1.9).

We denote byWK,χ the χ -isotypic component in ResGKW , that is,

WK,χ = {w ∈W : θ (k)w = χ (k)w for all k ∈ K}. (11.27)

Note that when χ = ιK is the trivial K-representation, then

WK,ιK =WK = {w ∈W : θ (k)w = w for all k ∈ K}

is the subspace of K-invariant vectors inW .

Proposition 11.2.8 Suppose that WK,χ is nontrivial. With each u ∈WK,χ we
associate a linear map Tu : W → L(G) defined by setting

[Tuw](g) =
√

dθ
|G/K| 〈w, θ (g)u〉W , (11.28)

for all w ∈W and g ∈ G. Then:

(i) for all u ∈WK,χ we have Tu ∈ HomG(θ, IndGKχ );
(ii) if (θ,W ) is irreducible and ‖u‖W = 1 then Tu : W → IndGKC is isomet-

ric.

Proof.

(i) Let u ∈WK,χ and define a linear functional L : W → C by setting Lw =
〈w, u〉W , for all w ∈W (that is, in the notation of (10.53), L = ξ−1(u)).
Then L ∈ HomK (ResGKW, χ ):

Lθ (k)w = 〈θ (k)w, u〉W = 〈w, θ (k−1)u〉W = χ (k)〈w, u〉W = χ (k)Lw,

for all w ∈W , k ∈ K. Since Tu =
√

dθ
|G/K|

∨
L, from Theorem 11.2.1 we

deduce that Tu ∈ HomG(θ, IndGKχ ).
(ii) Suppose that {ui : i = 1, 2, . . . , dθ } is an orthonormal basis in W

with u1 = u. Then, for every w =∑dθ
i=1 αiui ∈W , αi ∈ C, we have
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11.3 Preliminaries on Mackey’s theory 413

(cf. (11.3)):

‖Tuw‖2IndGKχ = 1

|K| ·
dθ

|G/K|
∑
g∈G

〈w, σ (g)u〉W 〈w, σ (g)u〉W

= dθ
|G|

dθ∑
i, j=1

αiα j

∑
g∈G

〈ui, σ (g)u1〉W 〈uj, σ (g)u1〉W

(by(10.24)) =
dθ∑
i=1

|αi|2

= ‖w‖2W .

This shows that Tu is an isometry. �

11.3 Preliminaries on Mackey’s theory

In the present and next two sections, we use all the notation of Section 11.1.
We also suppose that H is another subgroup of G and that (ν,U ) is an H-
representation. We set λ1 = IndGHν. Moreover, we assume that S is a set of
representatives for the set H\G/K of all H-K double cosets in G, so that

G =
∐
s∈S

HsK, (11.29)

with 1G ∈ S (this is the representative of HK). For each s ∈ S, we set

Gs = H ∩ sKs−1. (11.30)

Clearly, Gs is a subgroup of H while s−1Gss is a subgroup of K. We start with
a simple but useful Lemma.

Lemma 11.3.1 Let h, h1 ∈ H, k, k1 ∈ K, and s ∈ S. Then we have

hsk = h1sk1 ⇔ ∃x ∈ Gs such that h1 = hx and k1 = s−1x−1sk.

Proof. We have hsk = h1sk1 if and only if skk−1
1 s−1 = h−1h1. By (11.30), this

holds if and only if h1 = hx and k1 = s−1x−1sk with x = h−1h1(= skk−1
1 s−1) ∈

Gs. �

Remark 11.3.2 From the lemma above it follows that

|HsK| = |H||K|
|Gs| .

Indeed, for each g ∈ HsK there exist exactly |Gs| pairs (h, k) ∈ H × K such that
g= hsk. Observe also that H\G/K can be interpreted as the set of H-orbits on
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414 Induced representations and Mackey theory

X = G/K: if x0 ∈ X is the point stabilized by K, then these orbits are

{Hsx0 : s ∈ S}.
Moreover, the subgroupGs can be identified with the stabilizer inH of the point
sx0.
We leave it as an exercise to check the above statements.

For all s ∈ S, we denote by (σs,Vs) the representation of Gs on Vs = V
defined by setting

σs(x) = σ (s−1xs) (11.31)

for all x ∈ Gs. We also define

S0 = {s ∈ S : HomGs (Res
H
Gs
ν, σs) is nontrivial}. (11.32)

11.4 Mackey’s formula for invariants

In this section, we expose a series of results of Mackey on the space of inter-
twining operators between two induced representations. The particular case of
the commutant of the representation obtained by inducing a one dimensional
representation will be analyzed more closely in Chapter 13. See also [140] and
[37].
We assume the notation from the previous section.

Definition 11.4.1 We denote by V = V (G,H,K, ν, σ ) the set of all maps
F : G→ Hom(U,V ) such that

F (hgk) = σ (k−1)F (g)ν(h−1)

for all g ∈ G, h ∈ H, and k ∈ K.

Lemma 11.4.2

(i) For s ∈ S0 and T ∈ HomGs (Res
H
Gs
ν, σs) define LT : G→ Hom(U,V )

by setting

LT (g) =
{
σ (k−1)Tν(h−1) if g= hsk ∈ HsK

0 otherwise.
(11.33)

Then LT is well defined and belongs to V .
(ii) Let F ∈ V . Then F (s) ∈ HomGs (Res

H
Gs
ν, σs) for all s ∈ S.

(iii) Let F ∈ V . Then F =∑s∈S0
LF (s) and the nontrivial elements in this

sum are linearly independent.
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11.4 Mackey’s formula for invariants 415

(iv) The map

V −→⊕
s∈S0

HomGs (Res
H
Gs
ν, σs)

F �−→ ⊕s∈S0F (s)
(11.34)

is an isomorphism of vector spaces.

Proof.

(i) It suffices to show that LT is well defined. Indeed, if hsk = h1sk1, then,
by Lemma 11.3.1, h1 = hx and k1 = s−1x−1sk with x ∈ Gs, so that

σ (k−1
1 )Tν(h−1

1 ) = σ (k−1s−1xs)Tν(x−1h−1)

(by (11.31)) = σ (k−1)σs(x)Tν(x
−1h−1)

(T ∈ HomGs (Res
H
Gs
ν, σs)) = σ (k−1)Tν(x)ν(x−1h−1)

= σ (k−1)Tν(h−1).

(ii) For all x ∈ Gs, by definition of V , we have

F (s)ν(x) = F (x−1s)

= F (s · s−1x−1s)

= σ (s−1xs)F (s)

= σs(x)F (s)

that is, F (s) ∈ HomGs (Res
H
Gs
ν, σs).

(iii) Clearly, F is determined by its values on S: indeed if g= hsk, with
h ∈ H, k ∈ K, and s ∈ S, we have

F (g) = F (hsk) = σ (k−1)F (s)ν(h−1) = LF (s)(g).

Moreover, this vanishes on the cosets HsK with s /∈ S0. As a conse-
quence, F =∑s∈S0

LF (s) and the nontrivial elements in this sum are
linearly independent because they are supported on different double
cosets.

(iv) Surjectivity of the map follows from (11.33). Indeed, T is the image of
LT . Injectivity is a consequence of (iii). �

For F ∈ V define the operator ξ (F ) ∈ Hom(IndGHU, IndGKV ) by setting

[ξ (F ) f ](g) =
∑
r∈G

F (r−1g) f (r), (11.35)

for all f ∈ IndGHU and g ∈ G. It is then immediate to check that ξ (F ) f ∈ IndGKV .
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416 Induced representations and Mackey theory

Also, for T ∈ HomG(IndGHU, IndGKV ) define the map FT : G→ Hom(U,V )
by setting

FT (g)u = 1

|H| [T fu](g) (11.36)

for all u ∈ U and g ∈ G, where fu is as in (11.5) (but with K,V now replaced
by H,U , respectively).

Theorem 11.4.3 We have ξ (F ) ∈ HomG(IndGHU, IndGKV ) for all F ∈ V and the
map

ξ : V −→ HomG(Ind
G
HU, IndGKV )

is an isomorphism of vector spaces. The corresponding inverse map is given by
T �→ FT .

Proof. Let F ∈ V , f ∈ IndGHU and g0, g ∈ G. Then we have

[λ(g)ξ (F ) f ](g0) = [ξ (F ) f ](g−1g0)

=
∑
r∈G

F (r−1g−1g0) f (r)

(setting q = gr) =
∑
q∈G

F (q−1g0) f (g
−1q)

=
∑
q∈G

F (q−1g0)[λ1(g) f ](q)

= [ξ (F )λ1(g) f ](g0),

that is, λ(g)ξ (F ) = ξ (F )λ1(g). This shows that ξ (F ) ∈ HomG(IndGHU, IndGKV ).
Let now h ∈ H, k ∈ K, g ∈ G, u ∈ U and T ∈ HomG(IndGHU, IndGKV ). Then

we have

FT (hgk)u = 1

|H| [T fu](hgk)

(T ∈ HomG(Ind
G
HU, IndGKV )) = σ (k−1)

{
1

|H| [Tλ1(h
−1) fu](g)

}
(by (11.6)) = σ (k−1)

{
1

|H| [T fν(h−1 )u](g)

}
= σ (k−1)FT (g)ν(h

−1)u.

This shows that FT ∈ V .
We now prove that ξ is a bijection. Let T ∈ HomG(IndGHU, IndGKV ) and F ∈

V . Since the functions λ1(g) fu, g ∈ G and u ∈ U , span IndGHU (cf. Proposition
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11.4 Mackey’s formula for invariants 417

11.1.2), we have that ξ (F ) = T if and only if

ξ (F )λ1(g) fu = Tλ1(g) fu (11.37)

for all g ∈ G and u ∈ U .
We have

[Tλ1(g) fu](g0) = [λ(g)T fu](g0) (T ∈ HomG(Ind
G
HU, IndGKV ))

= [T fu](g
−1g0)

= |H|FT (g−1g0)u (by (11.36))

and

[ξ (F )λ1(g) fu](g0) =
∑
r∈G

F (r−1g0) fu(g
−1r) (by (11.35))

=
∑
h∈H

F (h−1g−1g0)ν(h
−1)u (by (11.5) with g−1r = h)

= |H| · F (g−1g0)u. (by Definition 11.4.1)

for all u ∈ U , g, g0 ∈ G. From (11.37) we then deduce that ξ (F ) = T if and
only if F = FT . �

From Lemma 11.4.2.(iv) and Theorem 11.4.3 we deduce the following:

Corollary 11.4.4 (Mackey’s formula for invariants) The map

HomG(IndGHν, Ind
G
Kσ ) −→

⊕
s∈S0

HomGs (Res
H
Gs
ν, σs)

T �−→ ⊕s∈S0FT (s),
(11.38)

is an isomorphism of vector spaces.

Proof. This map is nothing but the composition of the isomorphisms ξ−1 and
(11.34). �
By taking dimensions we deduce:

Corollary 11.4.5 (Mackey’s intertwining number theorem)

dimHomG(Ind
G
Hν, Ind

G
Kσ ) =

∑
s∈S

dimHomGs (Res
H
Gs
ν, σs)

Note that in the above sum the only contribution to the right hand side comes
from the elements s ∈ S0. The following is one of the most useful results in
Mackey’s theory.

Corollary 11.4.6 (Mackey’s irreducibility criterion) Suppose H = K and
ν = σ . Then IndGKσ is irreducible if and only if the following conditions are
both met:
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(a) (σ,V ) is irreducible;
(b) for every s ∈ S \ {1G}, the Gs-representations ResKGs

σ and σs contain
no common irreducible subrepresentations.

Proof. First of all, note that G1G = K and σ1G = σ , so that Mackey’s intertwin-
ing number theorem (Corollary 11.4.5) yields

dimHomG(Ind
G
Kσ, Ind

G
Kσ ) = dimHomK (σ, σ )+

∑
s∈S\{1G}

dimHomGs (Res
K
Gs
σ, σs).

We conclude by recalling that from Corollary 10.6.4 it follows that IndGKσ
is irreducible if and only if dimHomG(IndGKσ, Ind

G
Kσ ) = 1 and then invoking

Corollary 10.2.6 (see also Problem 10.6.9). �

Remark 11.4.7 Now we explain the terminology for “invariant” in Corol-
lary 11.4.4. If (θ,W ) is a G-representation, its invariant subspace is {w ∈W :
θ (g)w = w, ∀g ∈ G}, that is, the isotypic component of the trivial represen-
tation ιG in θ . If (ξ,Z) is another representation of G, then, defining a G-
representation (η,Hom(W,Z)) by setting

η(g)T = ξ (g)Tθ (g−1),

for all g ∈ G and T ∈ Hom(W,Z), we have that HomG(W,Z) is exactly the
invariant subspace of η.

Exercise 11.4.8 Show that, forH = G and (ν,U ) = (θ,W ), Mackey’s formula
for invariants (11.38) reduces to Frobenius reciprocity (Theorem 11.2.1). More
precisely, show that the maps (11.25) and (11.26) and their properties may be
deduced from (11.33), (11.35), and (11.36). Examine the connections between
the case K = G and the other side of Frobenius reciprocity in Exercise 11.2.7.

Exercise 11.4.9 Deduce Lemma 10.4.14 from Corollary 11.4.5, taking into
account Remark 11.3.2.

Remark 11.4.10 We now examine the case in which σ = χ and ν = ψ

are one-dimensional (see Example 11.1.9). We have U = V = C and S0 =
{s ∈ S : ResHGs

ψ = χs}. Moreover, in the map (11.38), we have FT (s) =
1
|H| [Tψ](s) ∈ C, and the intertwining number theorem (Corollary 11.4.5) is just
the formula

dimHomG(Ind
G
Hψ, IndGKχ ) = |S0|.

Finally, in the case H = K and ψ = χ , the representation IndGKχ is irreducible
if and only if ResKGs

χ �= χs for all s ∈ S \ {1G} (equivalently, S0 = {1G}).
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11.5 Mackey’s lemma 419

Exercise 11.4.11 Suppose that H = K and ν = σ . Define a multiplication
operation in V = V (G,K,K, σ, σ ) (cf. Definition 11.4.1) by setting [F1 ∗
F2](g) =

∑
g1∈G F1(g

−1
1 g)F2(g1) for all F1,F2 ∈ V and g ∈ G. Also define the

map F �→ F∗ by setting F∗( f ) = [F (g−1)]∗, for all F ∈ V , g ∈ G.

(1) Show that V is an involutive algebra.
(2) Show that if ξ : V → HomG(IndGKσ, Ind

G
Kσ ) is as in (11.35), then we

gave ξ (F1 ∗ F2) = ξ (F1)ξ (F2) and ξ (F∗) = ξ (F )∗. Taking into account
Theorem 11.4.3, deduce that ξ is a ∗-isomorphism.

(3) With the notation in (10.49) and (11.5), show that [ξ (F )λ(t ) fv ](g) =
|K| · F (t−1g)v , for all F ∈ V , v ∈ V , t ∈ T and g ∈ G.

(4) Deduce that Tr[ξ (F )] = |G| · Tr[F (1G)].
Exercise 11.4.12 Let ξ : V (G,H,K, ν, σ ) → HomG(IndGHν, Ind

G
Kσ ) and

ξ̃ : V (G,H,H, ν, ν) → HomG(IndGHν, Ind
G
Hν) be as in (11.35).

(1) Let F1,F2 ∈ V (G,H,K, ν, σ ) and define F : G→ Hom(IndGHν, Ind
G
Hν)

by setting

F (g) = |H|
|K|

∑
g1∈G

[F2(g
−1g1)]

∗F1(g1),

for all g ∈ G. Show that F ∈ V (G,H,H, ν, ν) and ξ (F2)∗ξ (F1) = ξ̃ (F ).
(2) Given two finite-dimensional vector spaces Ũ and Ṽ and T1,T2 ∈

Hom(Ũ, Ṽ ), set

〈T1,T2〉Hom(Ũ,Ṽ ) = Tr(T ∗
2 T1).

Taking into account Exercise 11.4.11, deduce that

〈ξ (F1), ξ (F2)〉Hom(IndGHU,IndGKV )
= |H|2

|K|
∑
g∈G

〈F1(g),F2(g)〉Hom(U,V )

≡ |H|3
∑
s∈S

1

|Gs| 〈F1(s),F2(s)〉Hom(U,V ).

11.5 Mackey’s lemma

In Corollary 11.1.17 we have examined the composition Ind ◦ Res. The follow-
ing famous lemma, due to Mackey, considers the inverse composition, namely
Res ◦ Ind. It essentially constitutes a representation theoretic analogue of the
decomposition (11.29).
We assume the notation from Section 11.3.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.012
https://www.cambridge.org/core


420 Induced representations and Mackey theory

Theorem 11.5.1 (Mackey’s lemma) The map

ResGHInd
G
KV −→⊕

s∈S Ind
H
Gs
Vs

F �−→ ⊕s∈S fs,
(11.39)

where fs ∈ IndHGs
Vs is defined by setting fs(h) = F (hs) for all h ∈ H, is an iso-

morphism of vector spaces. Moreover, the subspace Zs of ResGHInd
G
KV isomor-

phic to IndHGs
Vs is given by

Zs = {F ∈ V [G] : F (hs′k) = δs,s′σ (k
−1)F (hs), ∀h ∈ H, k ∈ K and s′ ∈ S},

that is, it is made up of all functions in IndGKV that vanish outside HsK.

Proof. By definition of IndGKV and Zs, it is clear that

IndGKV =
⊕
s∈S

Zs. (11.40)

Suppose that F ∈ Zs and fs : H → V is as in the statement. Then, if x ∈ Gs we
have

fs(hx) = F (hxs) = F (hss−1xs) = σ (s−1x−1s)F (hs) = σs(x
−1) fs(h)

so that fs ∈ IndHGs
Vs. Vice versa, given f ∈ IndHGs

Vs consider the map Fs : G→
Vs defined by Fs(hs′k) = δs,s′σ (k−1) f (h) for k ∈ K, h ∈ H and s′ ∈ S. We claim
that Fs is well defined: indeed if hsk = h1sk1, by Lemma 11.3.1 we have h1 =
hx and k1 = s−1x−1sk with x ∈ Gs, so that

σ (k−1
1 ) f (h1) = σ (k−1)[σ (s−1xs) f (h1)]

= σ (k−1)[σs(x) f (h1)]

= σ (k−1) f (h1x
−1)

= σ (k−1) f (h).

Moreover,

Fs(hs
′k) = δs,s′σ (k

−1) f (h) = σ (k−1)Fs(hs),

so that Fs ∈ Zs. This shows that the map F �→ fs is an isomorphism between
Zs and IndHGs

Vs; since H acts on both spaces by left translation, we deduce that
this map is also an intertwiner. Recalling (11.40), this ends the proof. �

Exercise 11.5.2 Show that the isomorphism in Corollary 11.4.4 may be
deduced from the isomorphism in Exercise 11.2.7.(3), from Mackey’s lemma
(Theorem 11.5.1), and Frobenius reciprocity (Theorem 11.2.1). Deduce also
the explicit form of the isomorphism (11.34).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.012
https://www.cambridge.org/core


11.6 The Mackey-Wigner little group method 421

Theorem 11.5.3 (Mackey’s tensor product theorem)

IndGHν ⊗ IndGKσ ∼
⊕
s∈S

IndGGs

[
ResHGs

ν ⊗ σs
]
.

Proof. We have:

IndGHν ⊗ IndGKσ ∼ IndGH
[
ν ⊗ ResGH (Ind

G
Kσ )
]
(by Theorem 11.1.16)

∼ IndGH

[
ν ⊗

(⊕
s∈S

IndHGs
σs

)]
(by Mackey’s lemma)

∼ IndGH

{⊕
s∈S

IndHGs

[
ResHGs

ν ⊗ σs
]}

(by Theorem 11.1.16)

∼
⊕
s∈S

IndGGs

[
ResHGs

ν ⊗ σs
]
,

where the last equivalence follows from Proposition 11.1.5 and Proposition
11.1.18. �

11.6 The Mackey-Wigner little group method

In this section we present a powerful method to construct irreducible represen-
tations (sometimes exhausting the whole dual) for a class of finite groups. We
actually examine a particular case that will suffice for our subsequent purposes.
For a more general treatment, we refer to our monograph [34] (see also [31]).
Let G be a finite group and suppose that A ≤ G is an Abelian normal sub-

group. We assume the notation in Section 2.3.
There is a natural action of G on the dual of A: if χ ∈ Â and g ∈ G we define

the g-conjugate gχ ∈ Â of χ by setting

gχ (a) = χ (g−1ag) (11.41)

for all a ∈ A. It is easy to check that g1 (g2χ ) = g1g2χ for all g1, g2 ∈ G and that
1Gχ = χ , so that G-conjugation is indeed an action on Â. The stabilizer of an
element χ ∈ Â is the subgroup

Kχ = StabG(χ ) = {g ∈ G : gχ = χ},
which is called the inertia group of χ . Note that A ≤ Kχ since A is Abelian.
We say that χ ∈ Â has an extension to Kχ if there exists a one-dimensional rep-

resentation χ̃ of Kχ such that χ̃ (a) = χ (a) for all a ∈ A, that is, ResKχ

A χ̃ = χ .

Now consider the quotient groupKχ/A. Givenψ ∈ K̂χ/Awe define its inflation
to Kχ as the irreducible representation ψ of Kχ given by settingψ (h) = ψ (hA)
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422 Induced representations and Mackey theory

for all h ∈ Kχ (compare with (11.15)). Clearly, this is just the composition of
the canonical homomorphism Kχ → Kχ/A with ψ : Kχ/A→ GL(Vψ ), where
Vψ is the representation space of ψ .

Theorem 11.6.1 Let χ ∈ Â and suppose that χ has an extension χ̃ to Kχ . Then

IndKχ

A χ =
⊕

ψ∈K̂χ /A

dψ (χ̃ ⊗ ψ ), (11.42)

where, as usual, dψ denotes the dimension of ψ ∈ K̂χ/A. Moreover, the G-
representations

IndGKχ
(χ̃ ⊗ ψ ), ψ ∈ K̂χ/A, (11.43)

are irreducible and pairwise inequivalent.

Proof. From (11.23) we deduce that

IndKχ

A χ = IndKχ

A (χ ⊗ ιA) = IndKχ

A

[(
ResKχ

A χ̃
)
⊗ ιA

]
= χ̃ ⊗ IndKχ

A ιA = χ̃ ⊗ λ,

where ιA denotes the trivial representation of A and λ is the inflation of the reg-
ular representation λ of Kχ/A (cf. Example 11.1.8). Since λ = ⊕

ψ∈K̂χ /A
dψψ ,

we have λ = ⊕
ψ∈K̂χ /A

dψψ , from which (11.42) immediately follows.
Now suppose that S is a complete set of representatives for the double Kχ

cosets in G (with 1G ∈ S) and, as in (11.30) and (11.31) (with H = K = Kχ ),
set Gs = Kχ ∩ sKχ s−1 and

(χ̃ ⊗ ψ )s(x) = (χ̃ ⊗ ψ )(s−1xs),

for all x ∈ Gs and s ∈ S. Since s−1as ∈ A for all a ∈ A, we have ψ (s−1asA) =
ψ (A), and therefore

(χ̃ ⊗ ψ )s(a) = sχ (a)ψ (A)

for all a ∈ A, so that (recalling Proposition 10.2.15.(i))

ResGs
A (χ̃ ⊗ ψ )s ∼ dψ

sχ.

In particular, for s �= 1G the Gs-representations Res
Kχ

Gs
(χ̃ ⊗ ψ ) and (χ̃ ⊗ ψ )s

cannot have common irreducible subrepresentations because these would lead
to common subrepresentations between their restrictions to A, but sχ �= χ

because s /∈ Kχ . From Corollary 11.4.6 we deduce that IndGKχ
(χ̃ ⊗ ψ ) is irre-

ducible.
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11.6 The Mackey-Wigner little group method 423

Finally, denote now by μ the representation IndGKχ
(χ̃ ⊗ ψ ) and by Z its rep-

resentation space. If f ∈ Z and a ∈ A then, for all g ∈ G, we have:

[μ(a) f ](g) = f (a−1g) = f (g · g−1a−1g) = (χ̃ ⊗ ψ )(g−1ag) f (g) = gχ (a) f (g).

It follows that, in the notation as in Theorem 11.5.1 (with ν = σ = χ̃ ⊗ ψ) we
have: Z1G = { f ∈ Z : μ(a) f = χ (a) f ,∀a ∈ A}. Indeed, Z1G is the space of all
f ∈ Z supported on Kχ . Moreover, in the decomposition

ResGKχ
IndGKχ

(χ̃ ⊗ ψ ) ∼=
⊕
s∈S

IndKχ

Gs
(χ̃ ⊗ ψ )s,

Z1G is the representation space of χ̃ ⊗ ψ (because G1G = Kχ ). This means that
the action ofG on theχ -isotypic component of ResGA Ind

G
Kχ
(χ̃ ⊗ ψ ) corresponds

exactly to χ̃ ⊗ ψ , and this implies that the representations in (11.43) are pair-
wise inequivalent, because different representations come from differentψs. In
other words, IndGKχ

(χ̃ ⊗ ψ ) uniquely determines ψ . �

Theorem 11.6.2 (The little group method) Suppose that every χ ∈ Â has an
extension χ̃ to its inertia group Kχ . Define on Â an equivalence relation ≈ by
setting χ1 ≈ χ2 if there exists g ∈ G such that gχ1 = χ2. Let X be a complete
set of representatives of the corresponding quotient space Â/ ≈. Then

Ĝ =
{
IndGKχ

(χ̃ ⊗ ψ ) : χ ∈ X, ψ ∈ K̂χ/A
}
. (11.44)

More precisely, the right hand side in (11.44) is a complete list of all irreducible
G-representations and, for different values of χ and ψ , the corresponding rep-
resentations are inequivalent.

Proof. From Theorem 11.6.1 it follows that the representations in the list are
irreducible. Moreover, from (11.42) and transitivity of induction (cf. Proposi-
tion 11.1.5), for any χ ∈ X we deduce that

IndGAχ ∼=
⊕

ψ∈K̂χ /A

dψ Ind
G
Kχ
(χ̃ ⊗ ψ ). (11.45)

Suppose that T is a complete set of left (in this case, also right and dou-
ble) cosets of A if G. Set λ = IndGAχ and denote by IndGAC the correspond-
ing representation space (cf. Example 11.1.9). For t ∈ T and g ∈ G, we have
[λ(t )χ](g) �= 0 only if g= a1t ∈ At = tA and

[λ(a)λ(t )χ] (g) = χ (t−1a−1g) = χ (t−1g · g−1a−1g)

= gχ (a)χ (t−1g) = tχ (a) [λ(t )χ] (g).
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424 Induced representations and Mackey theory

Thus,

λ(a) [λ(t )χ] = tχ (a) [λ(t )χ] ,

and (11.17) now implies that

ResGA Ind
G
Aχ ∼

⊕
t∈T

tχ, (11.46)

which is clearly a particular case of (11.39). It follows that if χ1, χ2 ∈ X are
distinct, then two irreducible representations of the form IndGKχ1

(χ̃1 ⊗ ψ1) and

IndGKχ2
(χ̃2 ⊗ ψ2) as in (11.44) cannot be equivalent because, by virtue of (11.45)

and (11.46), their restrictions to A contain inequivalent representations (the
G-conjugates of χ1 and χ2, respectively). The inequivalence of two represen-
tations of the form IndGKχ

(χ̃ ⊗ ψ1) and IndGKχ
(χ̃ ⊗ ψ2), with the same χ but

ψ1 �= ψ2, has been already proved in Theorem 11.6.1.
Now suppose that (θ,W ) is a G-irreducible representation. Then ResGAθ

decomposes into the direct sum of characters of A. If ξ ∈ Â is contained in
ResGAθ then there exists w ∈W , w �= 0, such that θ (a)w = ξ (a)w. For any
g ∈ G we have:

θ (a)[θ (g)w] = θ (g · g−1ag)w = θ (g)θ (g−1ag)w

= ξ (g−1ag)θ (g)w = gξ (a)[θ (g)w],

that is, ResGAθ contains all the g-conjugates of ξ and, in particular, an element
χ ∈ X . By Frobenius reciprocity, θ is contained in IndGAχ . Keeping in mind
(11.45), this implies that θ equals one of the representations in (11.44). �

11.7 Semidirect products with an Abelian group

In this section we apply the little group method to an important class of semidi-
rect products (cf. Section 8.14), namely we suppose that the normal subgroup
is Abelian.

Theorem 11.7.1 Let G be a finite group and suppose that G = A� H with A
an Abelian (normal) subgroup. Given χ ∈ Â, its inertia group Kχ coincides
with A� Hχ , where Hχ = StabH (χ ) = {h ∈ H : hχ = χ}. Moreover, any χ ∈
Â may be extended to a one-dimensional representation χ̃ ∈ Â� Hχ by setting

χ̃ (ah) = χ (a) ∀a ∈ A, h ∈ Hχ . (11.47)

Finally, with the notation used in Theorem 11.6.2, we have:

Ĝ = {IndGA�Hχ
(χ̃ ⊗ ψ ) : χ ∈ X, ψ ∈ Ĥχ }.
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11.7 Semidirect products with an Abelian group 425

Proof. For a, a1 ∈ A and h ∈ H we have

ahχ (a1) = χ (h−1a−1a1ah) = χ (h−1a−1h)χ (h−1a1h)χ (h
−1ah)

= χ (h−1a1h) = hχ (a1)

thus showing that the inertia subgroup of χ coincides with A� Hχ . Let χ ∈ Â
and let us show that the extension of χ defined by (11.47) is a representation.
By definition of Hχ , we have that χ is invariant by conjugation with elements
in Hχ so that, if a1, a2 ∈ A and h1, h2 ∈ Hχ , we have

χ̃ (a1h1 · a2h2) = χ̃ (a1h1a2h
−1
1 · h1h2) = χ (a1h1a2h

−1
1 )

= χ (a1)χ (a2) = χ̃ (a1h1)χ̃ (a2h2).

Finally, the last statement is just an application of Theorem 11.6.2. �
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12

Fourier analysis on finite affine groups
and finite Heisenberg groups

In this chapter we study the representation theory of two finite matrix groups,
the affine group (or ax+ b group) and the Heisenberg group, with entries in a
finite field or in the finite ring Z/nZ.
We consider specific problems ofHarmonicAnalysis: ourmain results (taken

from [15]), consist in a revisitation of the Discrete Fourier Transform and of the
Fast Fourier Transform from the point of view of the representation theory of
the Heisenberg group. Other sources are the monograph by Terras [159], our
book on the representation theory of wreath products of finite groups [34], and
[142]. The results of Section 12.1 will play a fundamental role in Chapter 14.
We closely follow Notation 1.1.17, that is, we use Zn when we want to

emphasize that our arguments are based only on the structure of the additive
Abelian group of the integers mod n, while we use Z/nZ when the whole struc-
ture of a finite ring is used, that is, multiplication enters the picture. We think
that this distinction is important in view of possible generalizations of some of
our arguments, for instance to more general Abelian (or even noncommutative)
groups, and to other rings.

12.1 Representation theory of the affine group Aff(Fq)

Let q be a power of a prime number and denote by Fq the field with q elements
(as in Chapter 6). Recall, cf. Example 10.4.5, that the (general) affine group (of
degree one) over Fq is the subgroup Aff(Fq) of GL(2,Fq) defined by

Aff(Fq) =
{(

a b
0 1

)
: a ∈ F∗

q, b ∈ Fq

}
.

426
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12.1 Representation theory of the affine group Aff(Fq) 427

Note that Aff(Fq) acts doubly transitively (cf. Exercise 10.4.16.(5)) on Fq ≡{(
x
1

)
: x ∈ Fq

}
by multiplication:

(
a b
0 1

)(
x
1

)
=
(
ax+ b

1

)
. (12.1)

We begin with some elementary algebraic properties and use the notion of
a semidirect product of groups (cf. Definition 8.14.2). Consider the following
Abelian subgroups of Aff(Fq):

A =
{(
a 0
0 1

)
: a ∈ F∗

q

}
∼= F∗

q and U =
{(

1 b
0 1

)
: b ∈ Fq

}
∼= Fq. (12.2)

Lemma 12.1.1

(i) The inverse of

(
a b
0 1

)
∈ Aff(Fq) is

(
a b
0 1

)−1

=
(
a−1 −a−1b
0 1

)
;

(ii) the subgroup U is normal and one has

Aff(Fq) ∼= U � A ≡ Fq � F∗
q; (12.3)

(iii) the conjugacy classes of the group Aff(Fq) are the following:

� C0 =
{(

1 0
0 1

)}
;

� C1 =
{(

1 b
0 1

)
: b ∈ F∗

q

}
;

� Ca =
{(

a b
0 1

)
: b ∈ Fq

}
, where a ∈ F∗

q, a �= 1.

Proof.

(i) This is a trivial calculation. From this, one easily deduces the identity(
u v

0 1

)(
a b
0 1

)(
u v

0 1

)−1

=
(
a (1− a)v + bu
0 1

)
(12.4)

for all u, a ∈ F∗
q and v, b ∈ Fq.

(ii) The normality ofU follows from (12.4), after taking a = 1. Since(
a b
0 1

)
=
(
a 0
0 1

)(
1 a−1b
0 1

)
for all a ∈ F∗

q and b ∈ Fq, we deduce that Aff(Fq) = AU . Then (12.3)

follows from the fact that A ∩U =
{(

1 0
0 1

)}
= {1Aff(Fq )}.

(iii) This is a case-by-case analysis by means of (12.4). �
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Since Aff(Fq) is a semidirect product with an Abelian normal subgroup (cf.
(12.3)), we can apply the little group method (Theorem 11.7.1) in order to get a
complete list of all irreducible representations of Aff(Fq). As usual, F̂q (respec-
tively F̂∗

q) will denote the dual of the additive group Fq (respectively of the
multiplicative group F∗

q).
From Lemma 12.1.1.(ii) and (12.4), after identifying A with the multiplica-

tive group F∗
q (via the map

(
a 0
0 1

)
�→ a) and U with the additive group Fq

(via the map

(
1 b
0 1

)
�→ b), it follows that the conjugacy action (cf. (11.41))

of A ≡ F∗
q on Û ≡ F̂q is given by

aχ (b) = χ (a−1b) (12.5)

for all χ ∈ Û, b ∈ Fq, and a ∈ F∗
q.

Denote by χ0 ≡ 1 the trivial character ofU .

Lemma 12.1.2 The action of A on Û has exactly two orbits, namely {χ0} and
F̂q \ {χ0}. Moreover, the stabilizer of χ ∈ Û is given by

StabA(χ ) =
{
{1A} if χ �= χ0

A if χ = χ0.

Proof. It is clear that χ0 is a fixed point. From now on, let χ ∈ Û be a nontrivial
character. For a ∈ Fq let us set

aχ∗ =
{
a−1

χ if a ∈ F∗
q

χ0 if a = 0,

that is, aχ∗(x) = χ (ax) for all x ∈ Fq. We claim that the map a �→ aχ∗ yields
an isomorphism from Fq onto F̂q. Indeed, it is straightforward to check that
(a+b)χ∗(x) = aχ∗(x)bχ∗(x) for all a, b, x ∈ Fq. Moreover, if a �= 0 we have
aχ∗ �= χ0 since the map x �→ ax is a bijection of Fq. This shows that the homo-
morphism a �→ aχ∗ is injective. Since |Fq| = |F̂q|, it is in fact bijective. As a
consequence, we have that {aχ : a �= 0} = {aχ∗ : a �= 0} coincides with the set
of all nontrivial characters. �

Theorem 12.1.3 The group Aff(Fq) has exactly q− 1 one-dimensional rep-
resentations and one (q− 1)-dimensional irreducible representation. The first
ones are obtained by associating with each ψ ∈ Â the group homomorphism
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� : Aff(Fq) → T defined by

�

(
a b
0 1

)
= ψ (a) (12.6)

for all

(
a b
0 1

)
∈ Aff(Fq). The (q− 1)-dimensional irreducible representation

is given by

π = IndAff(Fq )U χ, (12.7)

where χ is any nontrivial character of U. Moreover, the character χπ of π is
given by:

χπ

(
a b
0 1

)
=

⎧⎪⎪⎨⎪⎪⎩
q− 1 if a = 1 and b = 0

−1 if a = 1 and b �= 0

0 otherwise.

(12.8)

Proof. This is just an application of the little group method (Theorem 11.7.1).
Indeed, by Lemma 12.1.2, the inertia group of the trivial character χ0 ∈ Û is
Aff(Fq). This provides the q− 1 one-dimensional representations simply by
taking any character ψ ∈ Â. Moreover, the inertia group of any nontrivial char-
acter χ ∈ Û isU since, by Lemma 12.1.2, StabA(χ ) = {1A}.

Finally, from (11.18) with T = A, and using again (12.5), we immediately
get

χπ

(
a b
0 1

)
=
{∑

α∈F∗
q
χ (α−1b) if a = 1

0 otherwise.

Then (12.8) follows from Corollary 7.1.3. �
We now give a concrete realization of π .

Proposition 12.1.4 Fix χ ∈ F̂q \ {χ0} and set[
π�

(
a b
0 1

)
f

]
(x) = χ (bx−1) f (a−1x), (12.9)

for all f ∈ L(F∗
q ),

(
a b
0 1

)
∈ Aff(Fq) and x ∈ F∗

q. Then (π
�,L(F∗

q )) is a repre-

sentation of Aff(Fq) and

π� ∼ π = IndAff(Fq )U χ.

Proof. From Definition 11.1.1 it follows that the representation space of π is

W = { f̃ : Aff(Fq) → C : f̃ (gu) = χ (u) f̃ (g),∀g ∈ Aff(Fq), u ∈ U
}
.
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Then for f̃ ∈W and

(
a b
0 1

)
∈ Aff(Fq) we have

f̃

(
a b
0 1

)
= f̃

[(
a 0
0 1

)(
1 ba−1

0 1

)]
= χ (ba−1) f̃

(
a 0
0 1

)

so that the mapW � f̃ �→ f ∈ L(F∗
q ), where f (x) = f̃

(
x 0
0 1

)
for all x ∈ F∗

q,

is a well defined isomorphism of vector spaces. Moreover,[
π

(
a b
0 1

)
f̃

](
x 0
0 1

)
= f̃

(
a−1x −a−1b
0 1

)
= χ (−bx−1) f (a−1x)

= χ (bx−1) f (a−1x). �

Corollary 12.1.5

ResAff(Fq )A π ∼
⊕
ψ∈Â

ψ.

Proof. If ψ ∈ Â (∼= F̂∗
q), then ψ ∈ L(F∗

q ) satisfies[
π

(
a 0
0 1

)
ψ

]
(x) = ψ (a−1x) = ψ (a)ψ (x)

for all a, x ∈ F∗
q. �

Exercise 12.1.6 Check that π�, defined by (12.9), is an irreducible representa-
tion of Aff(Fq) without using the theory of induced representations.

Corollary 12.1.7

ResAff(Fq )U π =
⊕

χ∈Û\{χ0}
χ.

Proof. Since π = IndAff(Fq )U χ for any nontrivial character χ ∈ Û and dim π =
q− 1 equals the cardinality of the set of all nontrivial characters ofU , the state-
ment follows from Frobenius reciprocity. �

Exercise 12.1.8 Recalling the notation in (12.6) and (12.8), directly prove the
following:

(1) ResAff(Fq )U � = χ0 and ResAff(Fq )A � = ψ .
(2) Deduce (by using Frobenius reciprocity and Corollary 12.1.5) that

IndAff(Fq )U χ0 = ⊕ψ∈Â� and IndAff(Fq )A ψ = π ⊕�.
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(3) Show a connection between (12.8) and the character formula in Exam-
ple 10.4.7, taking into account Exercise 10.4.16.

Exercise 12.1.9 Consider Fq as a subfield of Fqm , m ≥ 2; see Section 6.6.

(1) Denote by πq (resp. πqm ) the (q− 1)-dimensional irreducible repre-
sentation of Fq (resp. the (qm − 1)-dimensional of Fqm ). Prove that

Ind
Aff(Fqm )
Aff(Fq )

πq = qm−1πqm .
Hint: the restrictions of the one-dimensional representations of
Aff(Fqm ) cannot contain πq.

(2) For ξ ∈ F̂qm , set ξ� = Res
Fqm
Fq

ξ and denote by� the corresponding one-
dimensional representation of Aff(Fqm ). With the notation in Theorem
12.1.3, prove that

Ind
Aff(Fqm )
Aff(Fq )

� = qm−1 − 1

q− 1
πqm ⊕

⎛⎜⎜⎜⎝⊕
ξ∈F̂qm :
ξ�=ψ

�

⎞⎟⎟⎟⎠ .

Hint: Examine Res
Aff(Fqm )
Aff(Fq )

�.

See [140] for a detailed analysis of the commutant of Ind
Aff(Fqm )
Aff(Fq )

πq.

We end this section with a brief treatment of the automorphism group of
Aff(Fq). First, we recall some elementary facts of group theory; see the mono-
graphs by Robinson [129], Rotman [132], and Machì [103], for more details.
Let G be a finite group and denote by Aut(G) its automorphism group.

With each g ∈ G we associate the inner automorphism given by: ξg(h) =
ghg−1, for all h ∈ G. The inner automorphisms form a subgroup of Aut(G),
denoted Inn(G). If g ∈ G and α ∈ Aut(G) then α ◦ ξg ◦ α−1 = ξα(g); in partic-
ular, Inn(G) is normal in Aut(G).

A subgroupN is characteristic if it is invariant with respect to every automor-
phism ofG: α(N) = N for all α ∈ Aut(G). Clearly, a subgroup is normal if and
only if it is invariant with respect to every inner automorphism and therefore a
characteristic subgroup is also normal. Two particular characteristic groups are:
the center Z(G) = {g ∈ G : gh = hg for all h ∈ G} and the derived subgroup
G′, which is the subgroup generated by all commutators, namely, the elements
of the form ghg−1h−1, g, h ∈ G. Recall that ifN is normal inG then the quotient
group G/N is Abelian if and only if G′ ≤ N, and that, if G′ ≤ H ≤ G, then H
is normal in G. Finally, given g ∈ G, the inner automorphism ξg is trivial if and
only if g ∈ Z(G). As a consequence, Inn(G) ∼= G/Z(G).
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Exercise 12.1.10 Verify all the statements in the last two paragraphs.

Exercise 12.1.11

(1) Prove that the center of Aff(Fq) is trivial while its derived subgroup
isU .

(2) For u ∈ F∗
q and v ∈ Fq denote by ξu,v the inner automorphism of

Aff(Fq) associated with the element

(
u v

0 1

)
, that is, ξu,v

(
a b
0 1

)
=(

a (1− a)v + bu
0 1

)
for all a ∈ F∗

q and b ∈ Fq. Prove that for all

choices of

(
a b
0 1

)
∈ Aff(Fq), with a �= 1 and

(
1 c
0 1

)
∈ U with c �= 0,

there exists ξu,v such that

ξu,v

(
a b
0 1

)
∈ A and ξu,v

(
1 c
0 1

)
=
(
1 1
0 1

)
.

(3) Deduce the following fact: for each nontrivial α ∈ Aut(Aff(Fq)) there
exists ξu,v ∈ Inn(Aff(Fq)) such that:

ξu,v ◦ α(A) = A and ξu,v ◦ α

(
1 1
0 1

)
=
(
1 1
0 1

)
.

(4) Suppose that q = pn, p prime number, and denote by σ the Frobe-
nius automorphism of Fq (cf. Section 6.4). With the notation in (3),
let us set β = ξu,v ◦ α. Prove that there exists 0 ≤ k ≤ n− 1 such that

β

(
a b
0 1

)
=
(
σ k(a) σ k(b)
0 1

)
for all

(
a b
0 1

)
∈ Aff(Fq).

Hint: First of all, consider the restrictions β|A and β|U . Then apply β to
(12.4) with a = b = 1 and v = 0.

(5) Deduce that Aut
(
Aff(Fq)

) ∼= Aff(Fq) � Aut(Fq).

12.2 Representation theory of the affine group Aff(Z/nZ)

In this section we examine the representation theory of the group

Aff(Z/nZ) =
{(

a b
0 1

)
: a ∈ U (Z/nZ), b ∈ Z/nZ

}
,

that is, the affine group over the ring Z/nZ. As far as we know, most of the
results presented here are new. We use the notation in Chapter 1. Clearly, for
n = p prime we have Aff(Z/nZ) = Aff(Fp).
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First of all, in order to generalize the arguments in the proof of Lemma 12.1.2,
we study the action γ of U (Z/nZ) on Z/nZ given by multiplication:

γ (a)b = ab,

for all a ∈ U (Z/nZ) and b ∈ Z/nZ. From the results in Section 1.5 it follows
that it coincides with the action of Aut(Zn) on Zn. This action has been exten-
sively studied in [4]. We limit ourselves to report some basic results, which
form an interesting complement to Gauss’ results in Proposition 1.1.20 and
Proposition 1.2.13. We first introduce the following notation: for n ∈ N, we
denote by D(n) the set of all positive divisors of n. Moreover for r ∈ D(n) we
set A(r) = {0 ≤ k ≤ n− 1 : gcd(k, n) = n/r} (cf. (1.6)), and regard A(r) as a
subset of Z/nZ. In particular, A(n) ≡ U (Z/nZ) and A(1) = {0}.
Theorem 12.2.1 The decomposition of Z/nZ into the orbits of γ is

Z/nZ =
∐
r∈D(n)

A(r). (12.10)

Moreover, the stabilizer of nr ∈ A(r) is

Ur(Z/nZ) = {a ∈ U (Z/nZ) : a ≡ 1 mod r} (12.11)

and

U (Z/nZ)

Ur(Z/nZ)
∼= U (Z/rZ). (12.12)

Proof. For each r ∈ D(n) let

Orb(n/r) =
{
a
n

r
mod n : a ∈ U (Z/nZ)

}
be the orbit containing n/r, Clearly, if gcd(a, n) = 1 then also gcd(a, r) = 1,
so that gcd(an/r, n) = gcd(a, r)n/r = n/r, and this yields

Orb(n/r) ⊆ A(r). (12.13)

The solutions a ∈ Z of the congruence equation anr ≡ n
r mod n are given by

Proposition 1.2.13 (and its proof): selecting 1 as a fixed solution, they are:

1+ jr, j = 0, 1, . . . ,
n

r
− 1.

Among these numbers, we must select those belonging to U (Z/nZ), and this
proves (12.11).
Now consider the map

" : U (Z/nZ) ≡ A(n) → U (Z/rZ)
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434 Fourier analysis on finite affine groups and finite Heisenberg groups

given by"(a) = b, if a = b+ jr with 0 ≤ b ≤ r − 1 and j ≥ 0, that is, b is the
remainder of the division of a by r. Clearly, it is well defined: if gcd(a, n) =
1 then gcd(b, r) = 1. Indeed, gcd(b, r)|a and r|n force gcd(b, r)| gcd(a, n).
Moreover, it is straightforward to check that it is a homomorphism, namely
"(a1a2) ≡ "(a1)"(a2) mod r. Let us prove that it is surjective. Let b ∈
U (Z/rZ), that is 0 ≤ b ≤ r − 1 and gcd(b, r) = 1. Consider the integer

a = b+ p1p2 · · · pmr,
where p1, p2, . . . , pm are the (distinct) primes that divide n but not b. Now, if
p is a prime and p|n then we have two possibilities:

� if p |b then p � p1p2 · · · pmr and therefore p cannot divide a;
� if p � b then p|p1p2 · · · pm and therefore again p cannot divide a.

In conclusion, p does not divide a and we have proved that gcd(a, n) = 1. As
clearly, b = "(a), this ensures that " is surjective. Finally, from (12.11) we
deduce that Ur(Z/nZ) = Ker" and this implies (12.12). In particular,

|Ur(Z/nZ)| = ϕ(n)

ϕ(r)
,

where ϕ is the Euler totient function (see Definition 1.1.18). Then we have:

ϕ(r) = |A(r)| (by (1.8))

≥ |Orb(n/r)| (by (12.13))

= |U (Z/nZ)|
|Ur(Z/nZ)| (by (10.44))

= ϕ(r),

which forces the equality in (12.13), and (12.10) follows. �

We recall (cf. Definition 1.1.6 and Exercise 1.1.5) that the greatest common
divisor gcd(m, n, k) of three integers m, n, k is the largest positive integer that
divides each of m, n, k and it equals the smallest positive integer that may be
written in the form um+ vn+ wk, with u, v,w ∈ Z; in fact {um+ vn+ wk :
u, v,w ∈ Z} is the principal ideal inZ generated by gcd(m, n, k). Compare with
Section 1.1. See also the monographs by Apostol [13] and Nathanson [118]. In
the following, we consider the action of Aff(Z/nZ) on Z/nZ, in analogy with
(12.1), as well as the subgroups (cf. (12.2))

A =
{(
a 0
0 1

)
: a ∈ U (Z/nZ)

}
and U =

{(
1 b
0 1

)
: b ∈ Z/nZ

}
.
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Lemma 12.2.2

(i) The subgroup U is normal and one has

Aff(Z/nZ) ∼= U � A ≡ Zn � U (Z/nZ); (12.14)

(ii) the conjugacy classes of the group Aff(Z/nZ) are listed as follows:

� C0 =
{(

1 0
0 1

)}
;

� Cr =
{(

1 b
0 1

)
: b ∈ A(r)

}
, where r ∈ D(n);

� Ca,d =
{(

a b
0 1

)
: b ∈ Z/nZ and gcd(a− 1, n, b) = d

}
,

where a ∈ U (Z/nZ), a �= 1, and d ∈ D(gcd(a− 1, n)).

Proof.

(i) See the proof of the corresponding statement in Lemma 12.1.1.
(ii) By (12.4), for a = 1 the computation of the conjugacy orbits reduces

to the computation of the γ -orbits in Theorem 12.2.1 and, this way, we
determine the orbits Cr, r ∈ D(n).

Now suppose that a ∈ U (Z/nZ), a �= 1, and b ∈ Z/nZ. Again by
(12.4), we have to determine those c ∈ Z/nZ such that the equation

v (1− a)+ ub = c (12.15)

has solutions u ∈ U (Z/nZ) and v ∈ Z/nZ. First of all, note that if we
think of a, b, c, u, v as integers, then this equation may be rewritten in
the form

v (1− a)+ ub+ kn = c and gcd(u, n) = 1, (12.16)

with v, u, k ∈ Z (k serves as another unknown). By the properties of the
gcd, equation (12.16) has a solution only if gcd(1− a, b, n)|c. Since we
can switch the role of b and c in (12.15) (because u is invertible mod n),
we conclude that this equation has a solution only if gcd(1− a, b, n) =
gcd(1− a, c, n).

Now suppose that gcd(1− a, b, n) = gcd(1− a, c, n); we want
to show that (12.16) has a solution. Set r = gcd(1− a, n), so
that gcd(b, r) = gcd(1− a, b, n) = gcd(1− a, c, n) = gcd(c, r). Then
there exist v, k ∈ Z such that r = v (1− a)+ kn. With this position,
(12.16) becomes:

ub+ r = c and gcd(u, n) = 1.
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Moreover, in the last equation r may be replaced by any of its mul-
tiples hr, h ∈ Z, because this corresponds to the replacement of v, k
by vh, kh, respectively. Therefore, to solve (12.16) it suffices to solve
ub ≡ c mod r, which, multiplied by n

r , yields the equivalent equation

u
nb

r
≡ nc

r
mod n and gcd(u, n) = 1.

By Theorem 12.2.1 the last equation has a solution because

gcd

(
nb

r
, n

)
= gcd

(n
r
b,
n

r
r
)
= n

r
gcd(b, r) = n

r
gcd(c, r) = gcd

(nc
r
, n
)
.

�

Since Aff(Z/nZ) is a semidirect product with an Abelian normal subgroup
(cf. (12.14)), we can again apply Theorem 11.7.1 (the little group method) to
get a complete list of all irreducible representations of Aff(Z/nZ). As usual,
Ẑ/nZ (respectively ̂U (Z/nZ)) will denote the dual of the additive group Z/nZ
(respectively the multiplicative group U (Z/nZ)). After identifying A with the

multiplicative group U (Z/nZ) (via the map

(
a 0
0 1

)
�→ a) andU with the addi-

tive group Z/nZ (via the map

(
1 b
0 1

)
�→ b), it follows from (12.4) that the

conjugacy action (cf. (11.41)) of A on Û ≡ Ẑ/nZ is given by

aχ (b) = χ (a−1b) (12.17)

for all χ ∈ Û, b ∈ Z/nZ, and a ∈ U (Z/nZ). For 0 ≤ k ≤ n− 1, denote by χk

the character of U given by: χk(b) = exp 2πkbi
n , for all 0 ≤ b ≤ n− 1, so that

(12.17) becomes: aχk = χa−1k.

Lemma 12.2.3 The orbits of the action of A on Û are:

!r = {χk : k ∈ A(r)}, r ∈ D(n).

Moreover, the stabilizer of χn/r ∈ !r is the group Ur(Z/nZ).

Proof. This is an immediate consequence of Theorem 12.2.1. �

Now we may apply the little group method.

Theorem 12.2.4

̂Aff(Z/nZ) =
{
πr,ψ = IndAff(Z/nZ)U�Ur (Z/nZ)

(
χ̃n/r ⊗ ψ

)
: r ∈ D(r), ψ ∈ ̂Ur(Z/nZ)

}
.
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More precisely, the right hand side is a complete list of irreducible, pairwise
inequivalent representations of Aff(Z/nZ). Moreover,

dimπr,ψ = ϕ(r),

and Aff(Z/nZ) has ϕ(n)
ϕ(r) irreducible, pairwise inequivalent representations of

dimension ϕ(r).

Note that∑
r∈D(n)

∑
ψ∈ ̂Ur (Z/nZ)

(
dimπr,ψ

)2 = ∑
r∈D(n)

ϕ(n)

ϕ(r)
· ϕ(r)2 = ϕ(n)

∑
r∈D(n)

ϕ(r)

(by Proposition 1.1.20) = ϕ(n)n

(by (12.14)) = |Aff(Z/nZ)| ,
in agreement with Theorem 10.2.25.(iii).

12.3 Representation theory of the Heisenberg group H3(Z/nZ)

This section is based on [142]. A recent application of the material in this sec-
tion is in [24].
The Heisenberg group over Z/nZ is the matrix group

H3(Z/nZ) =
⎧⎨⎩
⎛⎝1 x z
0 1 y
0 0 1

⎞⎠ : x, y, z ∈ Z/nZ

⎫⎬⎭ .

Exercise 12.3.1 Show that H3(Z/nZ) is isomorphic to the direct product
Z/nZ × Z/nZ × Z/nZ endowed with the multiplication

(x, y, z) · (u, v,w) = (x+ u, y+ v, xv + w + z), (12.18)

for all x, y, z, u, v,w ∈ Z/nZ. In particular, check that

(x, y, z)−1 = (−x,−y,−z+ xy), (12.19)

(x, y, z)−1(u, v,w) = (u− x, v − y,w − z+ xy− xv ), (12.20)

(x, y, z)(u, v,w)(x, y, z)−1 = (u, v,w + xv − yu), (12.21)

and

(x, y, z) = (0, y, z)(x, 0, 0) = (0, 0, z) · (0, y, 0) · (x, 0, 0). (12.22)

In what follows, we use the notation in Exercise 12.3.1 rather than the matrix
notation.
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Proposition 12.3.2 The conjugacy classes of H3(Z/nZ) are:

Ca,b,c =
{
(a, b, c+ k gcd(a, b, n)) : k = 0, 1, . . . ,

n

gcd(a, b, n)
− 1

}
,

a, b ∈ Z/nZ and c = 0, 1, . . . , gcd(a, b, n)− 1.

Proof. By (12.21), the conjugacy class containing a fixed element (a, b, c) ∈
H3(Z/nZ) is

{(a, b, c+ xb− ya) : x, y ∈ Z/nZ}.
We argue as in the proof of Lemma 12.2.2(ii). We fix an elementm ∈ Z/nZ and
study the equation xb− ya = m in the unknowns x, y ∈ Z/nZ. This is equiva-
lent to

xb− ya+ kn = m (12.23)

in the unknowns x, y, k ∈ Z (we think of a, b,m as integers). Clearly,
(12.23) has a solution if and only if gcd(a, b, n)|m. Therefore, two elements
(a, b, c), (u, v,w) ∈ H3(Z/nZ) are conjugate if and only if a = u, b = v , and
c ≡ w mod gcd(a, b, n). �

Proposition 12.3.3 The Heisenberg group is the semidirect product

H3(Z/nZ) ∼= Z2
n �φ Zn, (12.24)

where Z2
n = {(0, v,w) : v,w ∈ Zn} and Zn = {(x, 0, 0) : x ∈ Zn} are viewed

as additive groups, and φ is the Zn-action on Z2
n given by

φx(v,w) = (v,w + xv ),

for all x ∈ Zn and (v,w) ∈ Z2
n (here x, v,w are viewed as elements in Z/nZ).

Proof. This follows from (12.21) and (12.22). Just note that, in particular,
(x, 0, 0)(0, v,w)(x, 0, 0)−1 = (0, v,w + xv ). �

We next apply Theorem 11.7.1, with

G = H3(Z/nZ), A = Z2
n, and H = Zn.

To this end, we need some preliminary results. Recall that the elements of Â
are the characters χs,t , s, t = 0, 1, . . . , n− 1, given by

χs,t (v,w) = exp

(
2π i

n
(sv + tw)

)
, (12.25)

for all u, v ∈ Zn; see Section 2.3.
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Proposition 12.3.4 The orbits of H on Â are:

Rk,t =
{
χs,t : s ≡ k mod gcd(t, n)

}
,

for 0 ≤ t ≤ n− 1 and 0 ≤ k ≤ gcd(t, n)− 1. Moreover, the stabilizer of χs,t ∈
Rk,t does not depend on the choice of s and it is given by

Hχs,t =
{
(x, 0, 0) ∈ H : x ≡ 0 mod

n

gcd(t, n)

}
∼= Zgcd(t,n).

Proof. The action of H on Â is given explicitly by:

(x,0,0)χs,t (v,w) = χs,t (v,w − xv )

= exp

[
2π i

n
[sv + t(w − xv )]

]
= exp

{
2π i

n
[(s− tx)v + tw]

}
= χs−tx,t (v,w).

Then χs1,t1 and χs2,t2 belong to the same H-orbit if and only if t1 = t2 = t
and there exists x ∈ Z such that s1 − tx ≡ s2 mod n. By Proposition 1.2.13
this equation has a solution if and only if s1 ≡ s2 mod gcd(t, n). Finally, we
observe that the stabilizer of χs,t is made up of those x ∈ H such that xt = 0
mod n. �

In more explicit form,

Rk,t =
{
χs,t : s = k + j gcd(t, n), 0 ≤ j ≤ n

gcd(n, t )
− 1

}
and

Hχs,t =
{(

j
n

gcd(t, n)
, 0, 0

)
: 0 ≤ j ≤ gcd(n, t )− 1

}
.

Moreover, for a given t with 0 ≤ t ≤ n− 1 we have the following particular
cases:

� If t = 0 then gcd(0, n) = n andRk,0 = {χk,0}, k = 0, 1, . . . , n− 1: now each
orbit consists of a single element and its stabilizer is Hχk,0 = H.

� If gcd(t, n) = 1 then we have exactly one orbit of n elements, namelyR0,t =
{χs,t : s = 0, 1, . . . , n− 1}, and the stabilizer is trivial: Hχs,t = {(0, 0, 0)}.
According to the preceding analysis, we can choose

X = {χk,t : 0 ≤ t ≤ n− 1, 0 ≤ k ≤ gcd(t, n)− 1}
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as a set of representatives of the quotient space Â/ ≈ (cf. Theorem 11.6.2). By
(11.47) and (12.22) we deduce that the extension of these characters toA� Hχk,t

is given by

χ̃k,t (x, y, z) = χk,t (y, z), (12.26)

for all (x, y, z) ∈ A� Hχk,t . We also need a parameterization of the characters
of the groups Hχk,t

∼= Zgcd(t,n): they are given by

ψgcd(t,n),h( j) = exp

(
2π i

gcd(t, n)
h j

)
,

h, j = 0, 1, . . . , gcd(t, n)− 1. Their inflation to A� Hχk,t is given by

ψgcd(t,n),h(x, y, z) = ψgcd(t,n),h

(
x gcd(t, n)

n

)
≡ exp

(
2π i

n
hx

)
,

for all (x, y, z) ∈ A� Hχk,t (so that n
gcd(t,n) |x). We now have all necessary tools

needed to apply Theorem 11.7.1.

Theorem 12.3.5

̂H3(Z/nZ) =
{
πk,t,h = IndH3(Z/nZ)

A�Hχk,t

(
χ̃k,t ⊗ ψgcd(t,n),h

)
:

0 ≤ t ≤ n− 1, 0 ≤ h, k ≤ gcd(t, n)− 1
}
. (12.27)

More precisely, the right hand side is a complete list of irreducible, pairwise
inequivalent representations of H3(Z/nZ). Moreover,

dimπk,t,h = n

gcd(t, n)

and, for each d ∈ D(n), the group H3(Z/nZ) has exactly d2ϕ(n/d) irreducible,
pairwise inequivalent representations of dimension n

d . In particular, it has n
2

one-dimensional representations (case d = n) and ϕ(n) irreducible represen-
tations of maximal dimension n (case d = 1).

As for Aff(Z/nZ), note that

∑
d∈D(n)

∑
0≤t≤n−1:
gcd(t,n)=d

d−1∑
k,h=1

(
dimπk,t,h

)2 = ∑
d∈D(n)

(n
d

)2
· d2ϕ(n/d)

(by Proposition 1.1.20) = n3

= |H3(Z/nZ)| ,
in agreement with Theorem 10.2.25.(iii).
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Proposition 12.3.6 Fix 0 ≤ t ≤ n− 1 and 0 ≤ h, k ≤ d − 1, where d =
gcd(t, n). Then a matrix form of πk,t,h is given by the map

H3(Z/nZ) � (x, y, z) → #k,t,h(x, y, z) =
(
#k,t,h;r,s(x, y, z)

) n
d−1

r,s=0
,

where #k,t,h;r,s(x, y, z) = 0 if nd � (x+ s− r) and

#k,t,h;r,s(x, y, z) = exp

(
2π i

n
[ky+ t(z− ry)+ h(x+ s− r)]

)
, (12.28)

otherwise.

Proof. If (x, y, z) ∈ H3(Z/nZ) we may compute the remainder of x modulo n
d ,

namely the integer 0 ≤ r ≤ n
d − 1 given by the Euclidean division: x = q nd + r.

Therefore (x, y, z) = (r, 0, 0)(q nd , y, z− ry), where (q nd , y, z− ry) ∈ A� Hχk,t

and

H3(Z/nZ) =
n
d−1∐
r=0

(r, 0, 0)
(
A� Hχk,t

)
(12.29)

is the decomposition of H3(Z/nZ) into left cosets of A� Hχk,t ; see (10.49).
Moreover, if 0 ≤ r, s ≤ n

d − 1 then

(r, 0, 0)−1(x, y, z)(s, 0, 0) = (x+ s− r, y, z− ry)

belongs to A� Hχk,t if and only if n
d |(x+ s− r). If this is the case, we have

(
χ̃k,t ⊗ ψd,h

)
(x+ s− r, y, z− ry) = χk,t (y, z− ry)ψd,h

(
(x+ s− r)d

n

)
.

Then (12.28) follows from (11.19), taking into account the explicit formulas
for χ̃k,t and ψd,h. �

We now study some particular cases of (12.28).

� For t = 0 we get the n2 one-dimensional representations, given by:

#k,0,h(x, y, z) = exp

[
2π i

n
(ky+ hx)

]
,

for (x, y, z) ∈ H3(Z/nZ), 0 ≤ k, h ≤ n− 1.
� Suppose that x = 1 and y = z = 0. Then the number 1+ s− r is divisible by
n
d in the following two cases: if 1+ s− r = 0, and therefore the correspond-
ing entry is equal to 1, and if s = n

d − 1, r = 0, so that the entry is equal to
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exp( 2π id h). Therefore,

#k,t,h(1, 0, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

...
...

. . . 1
exp( 2π id h) 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

� For y = z = 0 we have (x, 0, 0) = (1, 0, 0)x and therefore:

#k,t,h(x, 0, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

...
...

. . . 1
exp( 2π id h) 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠

x

. (12.30)

� Suppose that x = 0. Then n
d |(s− r) if and only if s = r, so that the matrix is

diagonal and the r-th coefficient is

exp

(
2π i

n
[ky+ t(z− ry)]

)
= exp

[
2π i

n
(ky+ tz)

]
exp

(
−rty2π i

n

)
.

Therefore

#k,t,h(0, y, z) = exp

[
2π i

n
(ky+ tz)

]

·

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 exp

(−ty 2π in ) 0 · · · 0

0 0 exp
(−2ty 2π in

) ...
...

...
. . . 0

0 0 0 · · · exp
[− ( nd − 1

)
ty 2π in

]

⎞⎟⎟⎟⎟⎟⎟⎠ .

(12.31)

In particular, if also y = 0, then the matrix is scalar: #k,t,h(0, 0, z) =
exp
(
2π i
n tz
)
In/d .

� Finally, we observe that we can use (12.22) to reduce the computation
of #k,t,h(x, y, z) to the cases (12.30) and (12.31), because #k,t,h(x, y, z) =
#k,t,h(0, y, z)#k,t,h(x, 0, 0).
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Exercise 12.3.7 Prove the following explicit expression for the character χk,t,h
of the representation πk,t,h:

χk,t,h(x, y, z) = 1n/d (x)1n/d (y)
n

d
exp

[
2π i

n
(hx+ ky+ tz)

]
, (12.32)

where

1n/d (x) =
{
1 if n

d |x
0 otherwise.

Exercise 12.3.8

(1) By means of Proposition 10.2.18 and (12.32) prove that

ResH3(Z/nZ)
H πk,t,h =

⊕
0≤�≤n−1:
�≡h mod d

χ�

and

ResH3(Z/nZ)
A πk,t,h =

⊕
0≤s≤n−1:
s≡k mod d

χs,t,

where χ�(x) = exp
(
2π i
n �x

)
for all 0 ≤ x ≤ n− 1 (characters of H ≡

Zn) and χs,t is as in (12.25).
(2) By means of Frobenius reciprocity, deduce that

IndH3(Z/nZ)
H χ� ∼

⊕
0≤t≤n−1

0≤k≤gcd(t,n)−1

πk,t,h(t,�),

where h(t, �) is the remainder of the division of � by gcd(t, n), and

IndH3(Z/nZ)
A χs,t ∼

⊕
0≤h≤d−1

πk,t,h,

where k is the remainder of the division of s by d.

12.4 The DFT revisited

The connection between classical Fourier analysis and the continuous Heisen-
berg group has been well studied and we refer to the expository paper [76],
and Folland’s monograph [62]. In one of our main sources, namely [15], this
connection is extended to the finite case and our purpose is to give a clear expo-
sition of these facts; see also [142].We focus on the key point: by means of suit-
able realizations of the irreducible representation π0,1,0, the Heisenberg group
may be seen as a group of unitary transformations of L(Z/nZ), and the Fourier
transform intertwines two different such realizations.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.013
https://www.cambridge.org/core
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For the moment, we fix a positive integer n and we set χ (k) = exp
(
2π i
n k
)
,

for k ∈ Z. Also, to simplify notation, we set G = H3(Z/nZ). Moreover, in the
notation of (12.27), we set π = π0,1,0 and we denote by Vπ its representation
space. From (11.16), and (12.18) with u = 0, it follows that Vπ is made up of
all functions f : G→ C such that

f (x, y+ v, xv + z+ w) = χ (−w) f (x, y, z), (12.33)

for all (x, y, z) ∈ G and v,w ∈ Z/nZ. Indeed, in (12.25) we have χ0,1(v,w) =
χ (w), in (12.26) and (12.27) the subgroup Hχ0,1 is trivial, and, finally, π =
IndGAχ0,1. From (12.33) and the identity (x, y, z) = (x, 0, 0)(0, y, z− xy), it fol-
lows that f ∈ L(G) belongs to Vπ if and only if it satisfies the condition:

f (x, y, z) = χ (−z+ xy) f (x, 0, 0), (12.34)

for all (x, y, z) ∈ G, so that it is determined by its values on the subgroup H. In
other words, in (11.17) T ≡ H (actually, this is a particular case of (12.29)).
Finally, we observe that from (12.20) with v = w = 0 it follows that

[π (x, y, z) f ](u, 0, 0) = f (u− x,−y,−z+ xy). (12.35)

We now translate π into an equivalent representation on L(Z/nZ) showing
its relevance to the DFT on a cyclic group. We need a series of notation
and identities. First of all, invoking (12.34) we can define the linear operator
U : Vπ → L(Z/nZ) by setting

[U f ](x) = f (x, 0, 0), (12.36)

for all f ∈ Vπ and x ∈ Z/nZ. Its inverse is given by[
U−1 f

]
(x, y, z) = χ (−z+ xy) f (x), (12.37)

for all f ∈ L(Z/nZ) and (x, y, z) ∈ G. It is immediate to show thatU (and there-
foreU−1) is an isometric isomorphism; just recall the definition of scalar prod-
uct in an induced representation (11.3). Then we set

π�(x, y, z) = Uπ (x, y, z)U−1 (12.38)

for all (x, y, z) ∈ G. Clearly, π� is a unitary representation of G on L(Z/nZ),
equivalent to π . But another description of π� will reveal its importance. We
introduce three unitary operators Tx (translation operator),My (multiplier oper-
ator), and Sz on L(Z/nZ) by setting:

[Tx f ](u) = f (u− x), [My f ](u) = χ (−yu) f (u), [Sz f ](u) = χ (z) f (u),

for all f ∈ L(Z/nZ) and x, y, z, u ∈ Z/nZ. Note that Tx has already been defined
in Section 2.4.
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Lemma 12.4.1 We have the following commutation relation:

TxMy = SxyMyTx, (12.39)

for all x, y ∈ Z/nZ.

Proof. Let f ∈ L(Z/nZ) and x, y, u ∈ Z/nZ. Then[
TxMy f

]
(u) = [My f

]
(u− x) = χ (−yu+ xy) f (u− x)

= χ (−yu+ xy) [Tx f ] (u) = χ (xy)
[
MyTx f

]
(u) = [SxyMyTx f

]
(u). �

The Fourier transform intertwines Tx and My: from Exercise 2.4.7 (see also
Lemma 4.1.1) it follows that

FTx = MxF and FMy = T−yF . (12.40)

We use the normalized Fourier transform, see Section 4.1. Note also the
analogous identities for the inverse Fourier transform: F−1Tx = M−xF−1 and
F−1My = TyF−1.

Theorem 12.4.2

(i) The irreducible representation π� defined in (12.38) may be expressed
in the form:

π�(x, y, z) = SzMyTx, (12.41)

(x, y, z) ∈ G. Moreover, it is a faithful representation of G as a group of
unitary operators on L(Z/nZ).

(ii) The map J : G→ G defined by setting J(x, y, z) = (−y, x, z− xy), for
all (x, y, z) ∈ G, is an order four automorphism of G.

(iii) The G-representation π$ = π� ◦ J is equivalent to π� and the equiva-
lence is realized by the Fourier transform:

Fπ�(x, y, z) = π$(x, y, z)F , (12.42)

for all (x, y, z) ∈ G.

Proof.

(i) For all f ∈ L(Z/nZ), (x, y, z) ∈ G, and u ∈ Z/nZ, we have:[
π�(x, y, z) f

]
(u) = [Uπ (x, y, z)U−1 f

]
(u)

(by (12.36)) = [π (x, y, z)U−1 f
]
(u, 0, 0)

(by (12.35)) = [U−1 f
]
(u− x,−y,−z+ xy)

(by (12.37)) = χ (z− uy) f (u− x)

= [SzMyTx f
]
(u).
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Moreover, if (x, y, z) ∈ Kerπ� then π�(x, y, z)δ0 = δ0, that is, χ (z−
uy)δx(u) = δ0(u) for all u ∈ Z/nZ. It follows that x = 0 = y = z.

(ii) This follows from easy calculations. For instance, J2(x, y, z) =
(−x,−y, z) yields J4 = IdG.

(iii) First of all, note that from (12.41) and (12.39) we deduce that:

π$(x, y, z) = π�(−y, x, z− xy) = Sz−xyMxT−y = SzT−yMx.

Therefore, using the identities in (12.40) we get:

Fπ�(x, y, z) = FSzMyTx = SzT−yFTx = SzT−yMxF = π$(x, y, z)F .

�

Note that, in the proof above, we have also obtained the following explicit
form of π�:

[π�(x, y, z) f ](u) = χ (z− uy) f (u− x). (12.43)

In other words, Gmay be seen as the group generated by the translation opera-
tors Tx and themultiplier operatorsMy; then the operators Sz enter the picture by
virtue of the commutation relation (12.39). The automorphism J switches the
role of x and y, giving a different realization of G as a group of unitary opera-
tors. The Fourier transform intertwines the translation and multiplier operators
and therefore also the different realizations of G. That is, J corresponds to the
conjugation by F , in formulæ π$ = Fπ�F−1. Note also that the order of J as
an automorphism of G coincides with the order of F as a unitary operator; see
Proposition 4.1.2. We may also express all of this by saying that the diagram
in Figure 12.1 is commutative

G

π

π

J

U(L(Z/nZ))

F(·)F−1

G
π

U(L(Z/nZ))

Figure 12.1. The commutative diagram showing that the Fourier transform F
intertwines the representations π$ and π�. Here, U(L(Z/nZ)) is the group of unitary

operators on L(Z/nZ), and F (·)F−1 indicates conjugation by F .

Finally, note that the J-image of the group Z2
n in (12.24) is nothing but

{(u, 0,w) : u,w ∈ Zn}.
Exercise 12.4.3 Define π� by means of (12.41). Then, using the commutation
relations (12.39), prove that π� is a representation ofG and, furthermore, using
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the converse to Schur’s lemma (Exercise 10.2.9) and Theorem 2.4.10, prove
that it is irreducible.

12.5 The FFT revisited

In this section, following again [15], we derive an operator form of the Fast
Fourier Transform by means of intertwining operators between different real-
izations of the representation π0,1,0. We begin by fixing two integers m, n ≥ 2
and setting G = H3(Z/nmZ). We introduce the subgroups

K1 = {(rn, sm, 0) : 0 ≤ r ≤ m− 1, 0 ≤ s ≤ n− 1}
and

K2 = {(sm, rn, 0) : 0 ≤ r ≤ m− 1, 0 ≤ s ≤ n− 1},
both isomorphic to Zm ⊕ Zn. Clearly, an element (x, y, z) ∈ G belongs to K1 if
and only if z = 0, n|x, and m|y, while it belongs to K2 if and only if z = 0,m|x,
and n|y. In what follows, we use some notation similar to that in Chapter 5. In
particular, for 0 ≤ u, v ≤ nm− 1 we set

u = s̃+ rn, v = r̃ + sm, with 0 ≤ s, s̃ ≤ n− 1, 0 ≤ r, r̃ ≤ m− 1.

(12.44)

We also use the notation χ (u) = exp( 2π imn u) and π�, π$ as in Section 12.4, but
now n is replaced with nm. Then we define Z1 as the space of all f ∈ L(G) such
that:

f (u, v,w) = χ (s̃sm− w) f (̃s, r̃, 0) (12.45)

for all (u, v,w) ∈ G, where u, v are as in (12.44). Finally, we define the Weil-
Berezin mapW1 : L(Z/nmZ) → L(G) by setting

[W1 f ] (x, y, z) = 1

m
√
n
χ (xy− z)

m−1∑
�=0

f (�n+ x)χ (�ny), (12.46)

for all f ∈ L(Z/nmZ) and (x, y, z) ∈ G.

Proposition 12.5.1

(i) In the notation of Example 11.1.6, L(G/K1) is the space of all f ∈ L(G)
such that:

f (u, v,w) = f (̃s, r̃,w − s̃sm) (12.47)

for all (u, v,w) ∈ G, where s, s̃, r, r̃ are as in (12.44).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.013
https://www.cambridge.org/core


448 Fourier analysis on finite affine groups and finite Heisenberg groups

(ii) Z1 is a subspace of L(G/K1) and it is invariant with respect to the left
regular representation λ of G.

(iii) Denote by λ1 the restriction of the left regular representation of G to Z1
and endow this space with the norm of L(G/K1) (recall (11.3)). Then
the W1-image of L(Z/nmZ) is exactly Z1 and W1 is an isometry that
intertwines π� with λ1: for all (x, y, z) ∈ G

W1π
�(x, y, z) = λ1(x, y, z)W1. (12.48)

Proof.

(i) A function f ∈ L(G) is right K1-invariant if and only if

f (u+ rn, v + sm,w + usm) = f (u, v,w), (12.49)

for all (u, v,w) ∈ G and (rn, sm, 0) ∈ K1. Moreover, in the notation of
(12.44), each element of G may be written uniquely in the form

(u, v,w) = (̃s, r̃,w − s̃sm)(rn, sm, 0).

Therefore

{(̃s, r̃,w) : 0 ≤ s̃ ≤ n− 1, 0 ≤ r̃ ≤ m− 1, 0 ≤ w ≤ mn− 1}

is a set of representatives for the left cosets of K1 in G and our assertion
is a particular case of (11.7) and (11.17); see also Example 11.1.6.

(ii) If f satisfies (12.45), then it also satisfies (12.47). Indeed, (12.45), with
s = r = 0 and w replaced with w − s̃sm, yields

f (̃s, r̃,w − s̃sm) = χ (s̃sm− w) f (̃s, r̃, 0), (12.50)

and therefore, for arbitrary u, v,w,

f (u, v,w) = χ (s̃sm− w) f (̃s, r̃, 0) (by (12.45))

= f (̃s, r̃,w − s̃sm). (by (12.50))

It follows that Z1 ≤ L(G/K1). Note also that if f ∈ Z1 then

f (u, v,w) = χ (−w) f (u, v, 0), (12.51)

because both sides are equal to χ (−w)χ (s̃sm) f (̃s, r̃, 0). Moreover, it is
easy to check that Z1 is exactly the set of all f ∈ L(G) that verify both
(12.47) and (12.51). Finally, by means of (12.20), we deduce that if f
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satisfies (12.51) then

[λ(x, y, z) f ](u, v,w) = f (u− x, v − y,w − z+ xy− xv )

= χ (−w)χ (z− xy+ xv ) f (u− x, v − y, 0)

= χ (−w) f (u− x, v − y,−z+ xy− xv )

= χ (−w)[λ(x, y, z) f ](u, v, 0).

That is, the space of all functions satisfying condition (12.51) is λ-
invariant. Therefore, also Z1 is λ-invariant, because it is the subspace
of all functions in L(G/K1) satisfying (12.51).

(iii) For f ∈ L(Z/nmZ) and assuming (12.44), we have:

m
√
n[W1 f ](u, v,w) = m

√
n[W1 f ](̃s+ rn, r̃ + sm,w)

= χ (−w + s̃̃r + s̃sm+ r̃rn)

·
m−1∑
�=0

f (�n+ rn+ s̃)χ (�(̃r + sm)n)

= χ (−w + s̃̃r + s̃sm+ r̃rn)
m−1∑
�=0

f ((�+ r)n+ s̃)χ (�̃rn)

(t = �+ r) = χ (−w + s̃̃r + s̃sm)
m−1∑
t=0

f (tn+ s̃)χ (t̃rn)

= m
√
nχ (−w + s̃sm)[W1 f ](̃s, r̃, 0).

Therefore, by (12.45), the image of W1 is contained in Z1. Moreover,
for f1, f2 ∈ L(Z/nmZ) we have:

〈W1 f1,W1 f2〉Z1 =
1

nm

∑
(x,y,z)∈G

[W1 f1](x, y, z)[W1 f2](x, y, z)

= 1

n2m3

∑
z∈Z/nmZ

m−1∑
�1,�2=0

∑
x∈Z/nmZ

f1(�1n+ x) f2(�2n+ x)

·
∑

y∈Z/nmZ
χ (�1ny)χ (�2ny)

(by (2.7)) = 1

m

m−1∑
�1=0

∑
x∈Z/nmZ

f1(�1n+ x) f2(�1n+ x)

= 〈 f1, f2〉L(Z/nmZ).
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It follows thatW1 is an isometry. Finally, for (x, y, z), (u, v,w) ∈ G and
f ∈ L(Z/nmZ) we have:

[λ1(x, y, z)W1 f ] (u, v,w) = [W1 f ] (u− x, v − y,−z+ xy+ w − xv )

= 1

m
√
n
χ (z− w + uv − uy)

·
m−1∑
�=0

f (�n+ u− x)χ (�n(v − y))

(by (12.43)) = 1

m
√
n
χ (−w + uv )

·
m−1∑
�=0

[π�(x, y, z) f ](�n+ u)χ (�nv )

= [W1π
�(x, y, z) f

]
(u, v,w). �

In Exercise 12.5.9 we outline a different proof of the fact thatW1 is an inter-
twining operator, also showing how to derive its expression.
Now we concentrate on K2. First of all, we change the notation in (12.44):

for 0 ≤ u, v ≤ nm− 1 we set

u = r̃ + sm, v = s̃+ rn, with 0 ≤ s, s̃ ≤ n− 1, 0 ≤ r, r̃ ≤ m− 1.

(12.52)

Then we define Z2 as the space of all f ∈ L(G) such that

f (u, v,w) = χ (r̃rn− w) f (̃r, s̃, 0) (12.53)

for all (u, v,w) ∈ G, where u, v are as in (12.52). Moreover, we define
W2 : L(Z/nmZ) → L(G) by setting

[W2 f ] (x, y, z) = 1

n
√
m
χ (xy− z)

n−1∑
t=0

f (tm− x)χ (−tmy), (12.54)

for all f ∈ L(Z/nmZ), (x, y, z) ∈ G. Finally, we define M : L(G) → L(G) by
setting M f = f ◦ J, where J is as in Theorem 12.4.2(ii), that is,

[M f ](x, y, z) = f (−y, x, z− xy)

for all f ∈ L(G) and (x, y, z) ∈ G.

Proposition 12.5.2

(i) Z2 is a subspace of L(G/K2) and it is the M-image of Z1.
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(ii) If we set λ2(x, y, z) = Mλ1(x, y, z)M−1, that is,

Mλ1(x, y, z) = λ2(x, y, z)M, (12.55)

then λ2 is a representation of G on Z2 equivalent to λ1 (by means of
(12.55)). Moreover,

[λ2(x, y, z) f ](u, v,w) = f (y− u, v + x,w − z− yv ),

for all (x, y, z), (u, v,w) ∈ G and f ∈ Z2.
(iii) Endow the space Z2 with the norm of L(G/K2) (recall (11.3)). Then

the W2-image of L(Z/nmZ) is exactly Z2 and W2 is an isometry that
intertwines π$ with λ2. Moreover, if F is the Fourier transform on Znm

then

W2 = MW1F−1. (12.56)

Proof.

(i) The proof that Z2 ≤ L(G/K2) is the same of that in Proposition
12.5.1(ii); see also Exercise 12.5.3. Moreover, using the notation in
(12.52), for all f ∈ Z1 we have:

[M f ](̃r + sm, s̃+ rn,w) = f (−s̃− rn, r̃ + sm,w − r̃s̃− r̃rn− s̃sm)

(by (12.51)) = χ (−w + r̃rn) f (−s̃− rn, r̃ + sm,−r̃s̃− s̃sm)

(by (12.49)) = χ (−w + r̃rn) f (−s̃, r̃,−r̃s̃)
= χ (−w + r̃rn)[M f ](̃r, s̃, 0),

so that M f ∈ Z2.
(ii) From its definition and the fact that M is an isometry between Z1 and

Z2 it follows that λ2 is a G-representation on Z2. Moreover, for all
(x, y, z), (u, v,w) ∈ G, we get[
Mλ1(x, y, z)M

−1 f
]
(u, v,w) = [λ1(x, y, z)M−1 f

]
(−v, u,w − uv )

(by (12.20)) = [M−1 f
]
(−v−x, u−y,w−uv−z+xy−xu)

= f (u− y, v + x,w − z− yv ).

(iii) For all (x, y, z) ∈ G, we have:

MW1F−1π$(x, y, z) = MW1π
�(x, y, z)F−1 (by (12.42))

= Mλ1(x, y, z)W1F−1 (by (12.48))

= λ2(x, y, z)MW1F−1 (by (12.55)).
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Therefore, it suffices to prove directly (12.56). Indeed, for every f ∈
L(Z/nmZ) we have:[
MW1F−1 f

]
(x, y, z) = [W1F−1 f

]
(−y, x, z− xy)

(by (12.46)) = χ (−z)
m
√
n

m−1∑
�=0

[
F−1 f

]
(�n− y)χ (�nx)

= χ (−z)
nm

√
m

m−1∑
�=0

nm−1∑
u=0

f (u)χ (u(�n− y))χ (�nx)

= χ (−z)
nm

√
m

nm−1∑
u=0

f (u)χ (−uy)
m−1∑
�=0

χ (�(x+ u)n)

(by (2.7)) = χ (−z)
n
√
m

nm−1∑
u=0

u≡−x mod m

f (u)χ (−uy)

(u = −x+ tm) = χ (xy− z)

n
√
m

n−1∑
t=0

f (tm− x)χ (−tmy).
�

Exercise 12.5.3

(1) Let G be a finite group, J an automorphism of G, K ⊂ G a subgroup,
and set [M f ](g) = f (J(g)), for all g ∈ G and f ∈ L(G). Prove that the
M-image of L(G/K) is L

(
G/J−1(K)

)
.

(2) Prove that Z2 ≤ L(G/K2) (cfr. Proposition 12.5.2.(i)) by showing that
J−1(K1) = K2.

As a direct consequence of (12.56), we get immediately the first formulation
of the main result of this section.

Corollary 12.5.4 The Discrete Fourier Transform on Znm has the following
factorization:

F =W−1
2 MW1. (12.57)

In other words, the diagram in Figure 12.2 is commutative.
We now introduce some notation in order to give a second version of (12.57).

We define the linear operators C1 : Z1 → L (Z/nZ × Z/mZ) and C2 : Z2 →
L (Z/mZ × Z/nZ) by setting

[C1 f1](̃s, r̃) = f1(̃s, r̃, 0) and [C2 f2](̃r, s̃) = f1(̃r, s̃, 0),

for all f j ∈ Zj, j = 1, 2, 0 ≤ s̃ ≤ n− 1 and 0 ≤ r̃ ≤ m− 1. From (12.45) and
(12.53) it follows that C1 and C2 are isomorphisms of vector spaces. Then we
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L(Z/nmZ)
W1

F

Z1

M

L(Z/nmZ)
W2

Z2

Figure 12.2. The commutative diagram representing the factorization (12.57) of the
Fourier transform F . Compare it with the diagram in Figure 12.1: note that, in both

cases, the DFT is connected with the action of the automorphism J.

set

W̃1 = C1W1 and W̃2 = C2W2.

That is, [W̃1 f1](̃s, r̃) = [W1 f1](̃s, r̃, 0), and similarly for W̃2. Finally, we define
M̃ : L (Z/nZ × Z/mZ) → L (Z/mZ × Z/nZ) by setting

[M̃ f ](̃r, s̃) = χ (̃rs̃) f (−s̃, r̃).

Proposition 12.5.5

(i) We have M̃ = C2MC
−1
1 , that is, the diagram

Z1
C1 ��

M

��

L (Z/nZ × Z/mZ)

M̃
��

Z2
C2 �� L (Z/mZ × Z/nZ)

is commutative.
(ii) The Discrete Fourier Transform on Zmn may be factorized in the form:

F = W̃−1
2 M̃W̃1. (12.58)

Proof.

(i) For f ∈ L (Z/nZ × Z/mZ) and (̃r, s̃) ∈ Z/mZ × Z/nZ we have:[
C2MC

−1
1 f
]
(̃r, s̃) = [MC−1

1 f
]
(̃r, s̃, 0) = [C−1

1 f
]
(−s̃, r̃,−s̃̃r)

(by (12.51)) =χ (̃s̃r) f (−s̃, r̃).

(ii) From the definition of W̃1,W̃2, from (i) and from (12.57) it follows that

W̃−1
2 M̃W̃1 =W−1

2 C−1
2 M̃C1W1 =W−1

2 MW1 = F . �
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In other words, also the diagram in Figure 12.5 is commutative.

L(Z/nmZ)
W1

F

L (Z/nZ × Z/mZ)

M

L(Z/nmZ)
W2

L (Z/mZ × Z/nZ)

Figure 12.3. The commutative diagram representing the factorization (12.58) of the
Fourier transform F . Compare it with the diagram in Figure 12.2.

In order to give the third and final factorization of the DFT, we introduce the
following five operators

D1 : L(Z/nmZ) −→ L (Z/nZ × Z/mZ)

D2 : L(Z/nmZ) −→ L (Z/mZ × Z/nZ)

R1 : L (Z/nZ × Z/mZ) −→ L (Z/nZ × Z/mZ)

R2 : L (Z/mZ × Z/nZ) −→ L (Z/mZ × Z/nZ)

T : L (Z/nZ × Z/mZ) −→ L (Z/mZ × Z/nZ)

defined by setting

[D1 f ](̃s, r̃) = f (̃rn+ s̃)

[D2 f ](̃r, s̃) = f (̃sm+ r̃)

[R1 f1](̃s, r̃) = χ (̃s̃r) f1(̃s,−r̃)
[R2 f2](̃r, s̃) = χ (−s̃̃r) f2(−r̃,−s̃)
[T f1](̃r, s̃) = χ (−s̃̃r) f1(̃s, r̃),

for all f ∈ L(Z/nmZ), f1 ∈ L (Z/nZ × Z/mZ), f2 ∈ L (Z/mZ × Z/nZ), and
0 ≤ s̃ ≤ n− 1, 0 ≤ r̃ ≤ m− 1. Finally, we introduce the following notation:
we denote by Fk (respectively F−1

k , Ik) the normalized Fourier transform, cf.
Exercise 2.4.13, (respectively its inverse, the identity operator) onZ/kZ. More-
over, we identify L (Z/nZ × Z/mZ) with L (Z/nZ)⊗ L (Z/mZ); see Section
8.7 and Section 10.5.

Proposition 12.5.6 We have:

(In ⊗ Fm)D1 =
√
nmR1W̃1,(

Im ⊗ F−1
n

)
D2 =

√
nmR2W̃2,

and

R2M̃R1 = T.
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Proof. Indeed, for f ∈ L(Z/nmZ), (̃s, r̃) ∈ Z/nZ × Z/mZ, we have:

[(In ⊗ Fm)D1 f ] (̃s, r̃) = 1√
m

m−1∑
�=0

[D1 f ](̃s, �)χ (−�ñr)

= 1√
m

m−1∑
�=0

f (�n+ s̃)χ (−�ñr)

(by (12.46)) = √
nmχ (̃s̃r)[W1 f ](̃s,−r̃, 0)

= √
nm
[
R1W̃1 f

]
(̃s, r̃).

Similarly,

[(
Im ⊗ F−1

n

)
D2 f

]
(̃r, s̃) = 1√

n

n−1∑
t=0

[D2 f ](̃r, t )χ (tms̃)

= 1√
n

n−1∑
t=0

f (tm+ r̃)χ (tms̃)

= √
nmχ (−s̃̃r)[W2 f ](−r̃,−s̃, 0)

= √
nm
[
R2W̃2 f

]
(̃r, s̃).

Finally, for f ∈ L (Z/nZ × Z/mZ),[
R2M̃R1 f

]
(̃r, s̃) = χ (−s̃̃r) [M̃R1 f

]
(−r̃,−s̃)

= [R1 f ] (̃s,−r̃)
= χ (−s̃̃r) f (̃s, r̃). �

Finally, we are in position to present the third version of (12.57), which is an
operator version of the matrix factorizations in Section 5.5; see, in particular,
the Vector Form in Exercise 5.5.1.

Theorem 12.5.7

Fnm = D−1
2 (Im ⊗ Fn) T (In ⊗ Fm)D1. (12.59)

Proof. From Proposition 12.5.5.(ii) and Proposition 12.5.6, noting also that
R−1
1 = R1, we get:

F = W̃−1
2 M̃W̃1

= D−1
2 (Im ⊗ Fn)R2 · M̃ · R1 (In ⊗ Fm)D1

= D−1
2 (Im ⊗ Fn) T (In ⊗ Fm)D1. �
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The factorization (12.59) is equivalent to the commutativity of the following
diagram:

L(Z/nmZ)
D1 ��

Fnm

��

L (Z/nZ × Z/mZ)

In⊗Fm

��
L (Z/nZ × Z/mZ)

T

��
L (Z/mZ × Z/nZ)

Im⊗Fn

��
L(Z/nmZ)

D2 �� L (Z/mZ × Z/nZ) .

Clearly, the significance of the machinery developed in this section is not
in the proof of (12.59) (see the following exercise), but in the group theoretic
interpretation of each operator involved and of the various formulas obtained.

Exercise 12.5.8 Give a direct proof of (12.59), based only on the definition of
the operators involved.

In the following exercise, we present an alternative approach to Proposition
12.5.1.(ii). In particular, we show how the machinery developed in Chapter 10
and Chapter 11 may be used to derive the exact form of the Weil-Berezin map
(12.46).

Exercise 12.5.9

(1) Let d be a divisor of mn. Set d1 = gcd(m, d), m1 = m/d1, d2 = d/d1,
and d3 = gcd(n, d), n1 = n/d3, d4 = d/d3. Prove that d2|d3 and give an
example in which d3 > d2.

(2) Arguing as in Exercise 12.3.8, and with the preceding notation, prove
that the multiplicity of πk,t,h in the permutation representation L(G/K1)
is equal to d3/d2 if h ≡ 0 mod d1 and k ≡ 0 mod d3, and, otherwise,
it is equal to zero. In particular, L(G/K1) is not multiplicity-free, in
general.

(3) Show that the multiplicity of π0,1,0 in L(G/K1) is equal to 1 in two
ways: (i) by using the results in (2); (ii) by showing that the space of
K1-invariant vectors in L(Z/mnZ) with respect to the representation π�

is one-dimensional and it is spanned by the function ϕ = 1√
m

∑m−1
r=0 δrn.
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(4) Use Proposition 11.2.8 and (3) to prove Proposition 12.5.1.(iii), in par-
ticular to get the expression forW1 in (12.46) (that is,W1 = Tϕ).

12.6 Representation theory of the Heisenberg group H3(Fq)

This section is based on Chapter 18 of Terras’ monograph [159]; see also the
exposition in [34]. Some details are similar to those in Section 12.3 so that they
are omitted and/or left as exercises.
Let Fq be a finite field, q = pr with p a prime number. TheHeisenberg group

over Fq is the matrix group

H3(Fq) =
⎧⎨⎩
⎛⎝1 x z
0 1 y
0 0 1

⎞⎠ : x, y, z ∈ Fq

⎫⎬⎭ .

Clearly, all the identities in Exercise 12.3.1 still hold. In particular, we shall
denote the elements of H3(Fq) by (x, y, z) ∈ Fq × Fq × Fq ≡ F3

q with the mul-
tiplication as in (12.18).

Exercise 12.6.1

(1) From (12.21) deduce that the conjugacy classes of H3(Fq) are:
� Cw = {(0, 0,w)}, w ∈ Fq (q one-element classes);
� Cu,v = {(u, v,w) : w ∈ Fq}, u, v ∈ Fq, (u, v ) �= (0, 0)
(q2 − 1 classes of q elements each).

(2) Prove also that

H3(Fq) ∼= F2
q �φ Fq,

where F2
q = {(0, v,w) : v,w ∈ Fq} and Fq = {(x, 0, 0) : x ∈ Fq} are

viewed as additive groups and φ is the Fq-action on F2
q given by

φx(v,w) = (v,w + xv )

with x, v,w ∈ Fq.

Using the notation fromTheorem 11.7.1 (withG = H3(Fq),A = F2
q andH =

Fq), given χs,t ∈ Â (cf. (7.4)), we have

Hχs,t =
{
{1H} if t �= 0

H if t = 0.
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Indeed, from
(x,0,0)χs,t (v,w) = χs,t (v,w − xv )

= χprinc(sv + t(w − xv ))

= χprinc((s− tx)v + tw)

= χs−tx,t (v,w)

we deduce that (x,0,0)χs,t = χs,t if and only if either t = 0 (in this case, the ≈
equivalence class of each χs,0 reduces to the element χs,0 itself, and therefore
Hχs,0 = H), or t �= 0 and x = 0 (so that Hχs,t = {1H}).

According to the preceding analysis, we can choose

X = {χs,0 : s ∈ Fq} ∪ {χ0,t : t ∈ Fq, t �= 0}
as a set of representatives of the quotient space Â/ ≈ (cf. Theorem 11.6.2).
Then, for every s, u ∈ Fq if we denote by ψs,u ∈ Ĥ3(Fq) the character defined
by

ψs,u(x, y, z) = χprinc(sy+ ux)

recalling that Hχs,0 = H (so that A� Hχs,0 = H3(Fq)) and that χu ∈ Ĥ3(Fq)

denotes the inflation of χu ∈ ̂H3(Fq)/A = Ĥ = F̂q, we have

IndH3(Fq )
A�Hχs,0

(χ̃s,0 ⊗ χu)(x, y, z) = (χ̃s,0 ⊗ χu)(x, y, z)

= χs,0(y, z)χu(x)

= χprinc(sy+ ux)

= ψs,u(x, y, z)

so that

IndH3(Fq )
A�Hχs,0

(χ̃s,0 ⊗ χu) = ψs,u.

On the other hand, if t �= 0, then Hχ0,t = {1H} (so that A� Hχ0,t = A) and we
may set

πt := IndH3(Fq )
A�Hχ0,t

(χ̃0,t ) = IndH3(Fq )
A χ0,t ∈ Ĥ3(Fq). (12.60)

From Theorem 11.7.1 we deduce that Ĥ3(Fq) consists exactly of the q2 one-
dimensional representations ψs,u, s, u ∈ Fq, and the q− 1 representations πt ,
t ∈ F∗

q, of dimension [H3(Fq) : A] = |H| = |Fq| = q.

Exercise 12.6.2 Use (12.60) to show that a matrix realization of πt , t ∈ F∗
q, is

given by

U (x, y, z) = χprinc(tz)D(ty)W (x),
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for all x, y, z ∈ Fq, where D(ty) is the q× q diagonal matrix

D(ty) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 · · · 0
0 χ (−ty) 0 0 · · · 0
0 0 χ (−αty) 0 · · · 0
...

...
...

. . .
...

0 0 0 0 · · · χ (−αq−2ty)

⎞⎟⎟⎟⎟⎟⎠
α being a generator of the cyclic group F∗

q, andW (x) being the q× q permuta-
tion matrix defined by

W (x)i, j = δi( j + x),

for all i, j ∈ Fq.
Hint: Use equation (12.22) and observe that S = {(i, 0, 0) : i ∈ Fq} = H = Fq

is a system of representatives for the left cosets of A = F2
q in G = H3(Fq). Use

the identities

(−i, 0, 0)(0, 0, z)( j, 0, 0) = ( j − i, 0, z)

(−i, 0, 0)(0, y, 0)( j, 0, 0) = ( j − i, y,−iy)
(−i, 0, 0)(x, 0, 0)( j, 0, 0) = ( j − i+ x, 0, 0)

for all i, j, x, y, z ∈ Fq. To get the matrix D(ty) set i, j = 0, 1, α, α2, . . . , αq−2.
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13

Hecke algebras and multiplicity-free triples

In this chapter we develop the basic theory of finite multiplicity-free triples.
This is a subject that has not yet received the attention it deserves. As far as we
know, the only book that treats this topic is Macdonald’s [105]. The classical
theory of finite Gelfand pairs, which constitutes a particular yet fundamental
case, was essentially covered in our first monograph [29]. Other references on
the material of this chapter include [139, 140], [37], [152], and [25].

13.1 Preliminaries and notation

Let G be a finite group and K ≤ G a subgroup. We assume all the basic nota-
tion in Section 11.1 and Section 11.3 (the latter with H = K). In addition, we
suppose that χ is a one-dimensional representation of K. We consider the rep-
resentation space IndGKC of IndGKχ as a subspace of the group algebra L(G) (see
Example 11.1.9) and we define ψ ∈ L(K) by setting

ψ (k) = 1

|K|χ (k) ≡
1

|K|χ
(
k−1
)

(13.1)

for all k ∈ K. Then, regarding L(K) as a subalgebra of L(G), we define the
convolution operator P : L(G) → L(G) by setting P f = f ∗ ψ , that is,

[P f ](g) = 1

|K|
∑
k∈K

f (gk)χ (k)

for all f ∈ L(G) and g ∈ G.

Proposition 13.1.1 The function ψ satisfies the identities

ψ ∗ ψ = ψ and ψ∗ = ψ. (13.2)

460
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13.1 Preliminaries and notation 461

Moreover, P is the orthogonal projection of L(G) onto IndGKC. In other words,

IndGKC = { f ∗ ψ : f ∈ L(G)} ≡ { f ∈ L(G) : f ∗ ψ = f }. (13.3)

Proof. The first identity in (13.2) follows from (10.36) and, together with the
first formula in (10.34), ensures that P is an idempotent. The second identity
follows immediately from the analogous properties of characters (cf. Propo-
sition 10.2.15.(ii)). This, together with the second formula in (10.34), implies
that P is self-adjoint. This shows that P is an orthogonal projection. Moreover,
from (11.16) we deduce that

[P f ](g) = [ f ∗ ψ](g) = 1

|K|
∑
k∈K

f (gk)χ (k) = f (g)
1

|K|
∑
k∈K

1 = f (g)

for all f ∈ IndGKC and g ∈ G, that is, P f = f (and, in particular, RanP ⊇
IndGKC). Finally, let us show that the range of P is contained in (and therefore
equals) IndGKC. Indeed, for all f ∈ L(G), g ∈ G and k1 ∈ K we have

[P f ](gk1) = 1

|K|
∑
k∈K

f (gk1k)χ (k)

(k2 = k1k) = 1

|K|
∑
k2∈K

f (gk2)χ (k
−1
1 k2)

= χ (k1)[P f ](g),

that is, P f satisfies (11.16) and therefore P f ∈ IndGKC. We conclude that
RanP = IndGKC. �

Let now J ⊆ Ĝ denote the set of all irreducible G-representations contained
in IndGKχ . For (θ,Wθ ) ∈ J, denote by mθ > 0 its multiplicity in IndGKχ , that is,

IndGKχ ∼
⊕
θ∈J

mθ θ . (13.4)

FromCorollary 10.6.6we deduce that IndGKχ is multiplicity free (that is,mθ = 1
for all θ ∈ J) if and only if EndG(IndGKχ ) is commutative, and, if this is the case,
Corollary 10.6.7 ensures that

EndG(Ind
G
KC) ∼= CJ . (13.5)

Finally, note that now (11.30) becomes Gs = K ∩ sKs−1, and (11.32) becomes

S0 = {s ∈ S : χ (x) = χ (s−1xs), ∀x ∈ Gs}. (13.6)
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462 Hecke algebras and multiplicity-free triples

13.2 Hecke algebras

Definition 13.2.1 TheHecke algebraH(G,K, χ ) associated withG, K, and χ ,
is

H(G,K, χ )={ f ∈L(G) : f (k1gk2) = χ (k1k2) f (g), for all g∈G, k1, k2∈K
}
.

Note that, in the notation of Definition 11.4.1, we have

H(G,K, χ ) = V (G,K,K, χ, χ ).

Remark 13.2.2 When χ = ιK (see Example 11.1.6), the Hecke algebra
H(G,K, χ ) equals the subalgebra of all bi-K-invariant functions

L(K\G/K) = { f ∈ L(G) : f (k1gk2) = f (g), for all g ∈ G, k1, k2 ∈ K}.

Note that, under the isomorphism (11.13), L(K\G/K) corresponds to the sub-
space L(G/K)K of all functions in L(G/K) that are invariant under the action
of K, that is, that are constant on the orbits of K on G/K.

Theorem 13.2.3 H(G,K, χ ) is an involutive subalgebra of L(G). Moreover,

(i) H(G,K, χ ) is contained in IndGKC and in fact

H(G,K, χ ) = {ψ ∗ f ∗ ψ : f ∈ L(G)} ≡ { f ∈ L(G) : f = ψ ∗ f ∗ ψ}.

(ii) The map

H(G,K, χ ) −→ EndG
(
IndGKC

)
f �−→ Tf |IndGKC

(13.7)

is a ∗-anti-isomorphism of algebras and

KerTf ⊇
[
IndGKC

]⊥ ≡ KerP

(see Proposition 13.1.1), for all f ∈ H(G,K, χ ).

Proof. We leave it to the reader the easy task to check that the vector space
H(G,K, ψ ) is closed under convolution and involution, thus showing that it is
an involutive subalgebra of L(G).
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13.2 Hecke algebras 463

(i) Suppose that f = ψ ∗ f ∗ ψ , that is, f = 1
|K|2χ ∗ f ∗ χ . Then for all

k1, k2 ∈ K, g ∈ G, we have

f (k1gk2) = 1

|K|2 [χ ∗ f ∗ χ ](k1gk2)

= 1

|K|2
∑

r∈k−1
2 g−1K
k∈K

χ (k1gk2r) f (r
−1k)χ (k−1)

(u = k2r and h = k2k) = 1

|K|2
∑

u∈g−1K
h∈K

χ (k1gu) f (u
−1h)χ (h−1k2)

= 1

|K|2
∑

u∈g−1K
h∈K

χ (k1)χ (gu) f (u
−1h)χ (h−1)χ (k2)

= 1

|K|2χ (k1) · [χ ∗ f ∗ χ](g) · χ (k2)

= χ (k1) f (g)χ (k2),

so that f ∈ H(G,K, χ ).
Vice versa, if f ∈ H(G,K, χ ) then, for all g ∈ G and k1, k2 ∈ K, we

have:

[ψ ∗ f ∗ ψ](g) = 1

|K|2 [χ ∗ f ∗ χ ](g)

= 1

|K|2
∑
r∈g−1K
k2∈K

χ (gr) f (r−1k2)χ (k−1
2 )

(setting k1 = gr) = 1

|K|2
∑

k1,k2∈K
χ (k1) f (k

−1
1 gk2)χ (k−1

2 )

( f ∈ H(G,K, χ )) = f (g).

It is now easy to check that H(G,K, ψ ) is contained in IndGKC:
indeed, if f = ψ ∗ f ∗ ψ then

P f = f ∗ ψ = ψ ∗ f ∗ ψ ∗ ψ = ψ ∗ f ∗ ψ = f , (13.8)

and we can invoke (13.3).
(ii) Let f ∈ H(G,K, χ ). Then if f ′ ∈ KerP we have

Tf f
′ = f ′ ∗ f = f ′ ∗ ψ ∗ f ∗ ψ = [P f ′] ∗ f ∗ ψ = 0,

so that f ′ ∈ KerTf . This shows the inclusion KerP ⊆ KerTf .
Also, if f ′′ ∈ IndGKC we have

P(Tf f
′′) = P( f ′′ ∗ f ) = P( f ′′ ∗ ψ ∗ f ) = f ′′ ∗ ψ ∗ f ∗ ψ = f ′′ ∗ f = Tf f

′′,
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464 Hecke algebras and multiplicity-free triples

that is, Tf (IndGKC) ⊆ IndGKC. It follows that the restriction of the anti-
isomorphism (10.33) to the subalgebra H(G,K, χ ) yields the desired
anti-isomorphism (13.7). �

The following is a useful computational rule.

Lemma 13.2.4 For all f1 ∈ H(G,K, χ ) and f2 ∈ L(G) we have

[ f1 ∗ ψ ∗ f2 ∗ ψ](1G) = [ f1 ∗ f2](1G). (13.9)

Proof. Indeed, from (13.8) we deduce f1 ∗ ψ ∗ f2 ∗ ψ = f1 ∗ f2 ∗ ψ so that

[ f1 ∗ ψ ∗ f2 ∗ ψ](1G) = [ f1 ∗ f2 ∗ ψ](1G)

=
∑
h∈G

∑
k∈K

f1(kh) f2(h
−1)ψ (k−1) = [ψ ∗ f1 ∗ f2](1G) = [ f1 ∗ f2](1G).

�

Definition 13.2.5 The Curtis and Fossum basis of H(G,K, χ ) is the set {as :
s ∈ S0} of functions in L(G) defined by setting

as(g) =
{

1
|K|χ (k1)χ (k2) if g= k1sk2 for some k1, k2 ∈ K

0 if g /∈ KsK
(13.10)

for all g ∈ G.

Note that (13.10) is well-defined: indeed, if k1sk2 = k3sk4 then by Lemma
11.3.1 there exists x ∈ Gs such that k1 = k3x and k2 = s−1x−1sk4, and therefore

χ (k1)χ (k2) = χ (k3)χ (k4)χ (x)χ (s
−1x−1s) = χ (k3)χ (k4),

because s ∈ S0 (see (13.6)). See also Lemma 13.2.6 below.
Clearly, for each f ∈ H(G,K, χ ) we have:

f = |K|
∑
s∈S0

f (s)as. (13.11)

Moreover, for s, t ∈ S0

〈as, at〉L(G) = δs,t
1

|Gs| . (13.12)

Indeed, for s �= t the supports of as and at are disjoint, so that these functions
are orthogonal. For s = t we have:

∑
g∈KsK |as(g)|2 = |KsK|

|K|2 = 1
|Gs| (see Remark

11.3.2). From (13.11) and (13.12) we deduce that

f (s) = |Gs|
|K| 〈 f , as〉L(G). (13.13)
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13.2 Hecke algebras 465

Note also that changing the double cosets representatives will multiply each
basis element by some root of 1 (if χ = ιK , such a root is just 1). Finally, a1G ≡
ψ and, more generally, as(k1sk2) = |K|ψ (k1)ψ (k2), for all k1, k2 ∈ K.

Lemma 13.2.6 For all s ∈ S0 we have

as = |K|
|Gs|ψ ∗ δs ∗ ψ.

Proof. Let s ∈ S0. First of all, observe that

[ψ ∗ δs ∗ ψ](g) = 1

|K|2
∑
t∈g−1K
k∈K

χ (gt )δs(t
−1k)χ (k−1) (13.14)

for all g ∈ G. Moreover, δs(t−1k) �= 0 only if t−1k = s and this forces

g= gt · t−1 = gt · s · k−1 ∈ KsK

so that if g /∈ KsK then the above convolution is 0. Let g= k1sk2 with k1, k2 ∈
K. Then (13.14) becomes (setting t = ks−1)

[ψ ∗ δs ∗ ψ](k1sk2) = 1

|K|2
∑
k∈K

χ (k1sk2ks−1)χ (k−1)

(x = sk2ks−1) = 1

|K|2
∑
x∈Gs

χ (k1)χ (x)χ (s−1x−1sk2)

(χ (x) = χs(x)) = 1

|K|2χ (k1)χ (k2)
∑
x∈Gs

χ (x)χ (x)

= |Gs|
|K|2χ (k1)χ (k2)

= as(k1sk2). �

For all r, s ∈ S0 there exist complex numbers μrst , t ∈ S0, such that

ar ∗ as =
∑
t∈S0

μrstat . (13.15)

The numbers μrst , r, s, t ∈ S0, are called the structure constants of the Hecke
algebra H(G,K, χ ) relative to the basis {as : s ∈ S0}.
Lemma 13.2.7 The structure constants are given by the following formula:

μrst = |K|
∑

g∈(KrK)∩(tKs−1K)

ar(g)as(g
−1t ),

for all r, s, t ∈ S0.
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466 Hecke algebras and multiplicity-free triples

Proof. On the one hand, from (13.10) and (13.15) we have

[ar ∗ as](t ) = 1

|K|μrst (13.16)

for all r, s, t ∈ S0. On the other hand, just computing the convolution, we get:

[ar ∗ as](t ) =
∑
g∈G

ar(g)as(g
−1t )

=
∑

g∈(KrK)∩(tKs−1K)

ar(g)as(g
−1t ).

(13.17)

Comparing (13.16) and (13.17), the lemma follows. �

13.3 Commutative Hecke algebras

Definition 13.3.1 Let G be a finite group, K ⊂ G a subgroup, and χ a one-
dimensionalK-representation.We say that (G,K, χ ) is amultiplicity-free triple
provided the Hecke algebra H(G,K, χ ) is commutative.
Moreover, we say that (G,K) is a Gelfand pair provided that (G,K, ιK ) is a

multiplicity-free triple, that is, H(G,K, ιk )(∼= L(K\G/K)) is commutative.

Theorem 13.3.2 The following conditions are equivalent.

(a) (G,K, χ ) is a multiplicity-free triple;
(b) the induced representation IndGKχ decomposes without multiplicity;
(c) dimWK,χ

θ ≤ 1 for each irreducible G-representation (θ,Wθ ) (cf. Defi-
nition (11.27)).

Moreover, if these equivalent conditions are satisfied, with the notation of
Remark 11.4.10 (with H = K and ν = χ ) and (13.4), we have

dimH(G,K, χ ) = |J| = |S0|.
Proof. From Corollary 10.6.6 it follows that (G,K, χ ) is a multiplicity-free
triple if and only if IndGKχ decomposes without multiplicity; see also (13.5).
Moreover, from Frobenius reciprocity (Theorem 11.2.1) this is equivalent to the
fact that χ has multiplicity at most one in the restriction toK of each irreducible
G-representation. Finally, if IndGKχ is multiplicity free, we may invoke Remark
11.4.10, (13.5), and (13.6) to conclude that dimH(G,K, χ ) = dimCJ = |J| =
|S0|. �

Now we examine a series of sufficient conditions for the commutativity of
the Hecke algebra. An anti-automorphism of G is a bijective map τ : G→ G

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.014
https://www.cambridge.org/core


13.3 Commutative Hecke algebras 467

such that:

τ (g1g2) = τ (g2)τ (g1)

for all g1, g2 ∈ G. It is involutive if τ 2 = idG, where idG is the identity map
on G. Clearly, τ (1G) = 1G and τ (g−1) = τ (g)−1 for all g ∈ G. Note that the
map inv: G→ G, defined by inv(g) = g−1 for all g ∈ G, is an involutory anti-
automorphism, while if τ is as above, then g �→ τ (g−1) is an automorphism
of G.
Let τ be an anti-automorphism of G. We define a linear map

L(G) −→ L(G)
f �−→ f τ

by setting

f τ (g) = f (τ (g)) (13.18)

for all f ∈ L(G), g ∈ G.
Given an algebra A, a bijective linear map ϕ : A → A such that ϕ(a1a2) =

ϕ(a2)ϕ(a1) for all a1, a2 ∈ A, is called an anti-automorphism of A. If in addi-
tion, ϕ2 = idA, where idA is the identity map on A, then one says that ϕ is
involutive.

Lemma 13.3.3 Let τ be an (involutive) anti-automorphism of G. Then the map
f �→ f τ is an (involutive) anti-automorphism of L(G).

Proof. It is clear that the map f �→ f τ is a linear isomorphism. Let f1, f2, f ∈
L(G) and g ∈ G. We have

( f1 ∗ f2)
τ (g) = ( f1 ∗ f2) (τ (g)) =

∑
h∈G

f1 (τ (g)h) f2(h
−1)

=
∑
h∈G

f1
(
τ [τ−1(h)g]

)
f2
(
τ
[
τ−1(h)−1])

=
∑
h∈G

f τ2
(
τ−1(h)−1

)
f τ1
(
τ−1(h)g

)
= ( f τ2 ∗ f τ1

)
(g).

Moreover, if τ is involutive, so is the maps f �→ f τ . Indeed,

[( f τ )τ ](g) = [ f τ ](τ (g)) = f (τ 2(g)) = f (g). �

The next proposition is just a generalization of the following well known and
easy fact: if A is a subalgebra of the full matrix algebra Mn(F), n ∈ N where
F is any field, and each matrix A ∈ A is symmetric, then A is commutative.
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468 Hecke algebras and multiplicity-free triples

Proposition 13.3.4 Let τ be an anti-automorphism of G and A a subalgebra
of L(G) such that f τ = f for all f ∈ A. Then A is commutative.

Proof. For all f1, f2 ∈ A we have:

f1 ∗ f2 = ( f1 ∗ f2)
τ = f τ2 ∗ f τ1 = f2 ∗ f1. �

Remark 13.3.5 In Proposition 13.3.4, the anti-automorphism f �→ f τ may be
replaced by any anti-automorphism � : L(G) → L(G).

Corollary 13.3.6 Let τ be an anti-automorphism of G. Suppose that

f τ = f for all f ∈ H(G,K, χ ). (13.19)

Then (G,K, χ ) is a multiplicity-free triple.
Moreover, condition (13.19) is satisfied if:

(i) (Bump and Ginzburg [25]) τ (K) = K, χτ = χ , and for every s ∈ S0

there exist k1, k2 ∈ K such that τ (s) = k1sk2 and χ (k1)χ (k2) = 1;
(ii) (symmetric Gelfand pairs) χ = ιK, τ = inv, and g−1 ∈ KgK for all g ∈

G.

Proof.

(i) In this case, it is immediate to check that the elements in the Curtis-
Fossum basis (Definition 13.2.5) satisfy aτs = as, for all s ∈ S0.

(ii) This is just a particular case of (i). �
Exercise 13.3.7 Assume the notation in Proposition 10.4.12 with X = G/K.
Prove that (G,K) is a symmetric Gelfand pair (i.e. satisfies the conditions in
(ii) of Corollary 13.3.6) if and only if the orbits of G on X × X are symmetric,
that is, for all x, y ∈ X , the pairs (x, y) and (y, x) belong to the same G-orbit.

A group G is said to be ambivalent if g−1 is conjugate to g for all g ∈ G.

Exercise 13.3.8 Denote by G̃ the diagonal subgroup of G× G, that is, G̃ =
{(g, g) : g ∈ G} ∼= G.

(1) Prove that L(G) = ⊕σ∈ĜM
σ (see Theorem 10.5.9) is the decomposition

of L(G) into irreducible G× G-representations.
(2) Deduce that (G× G, G̃) is a Gelfand pair.
(3) Prove that the Gelfand pair (G× G, G̃) is symmetric if and only if G is

ambivalent.

Exercise 13.3.9 (Weakly symmetric Gelfand pairs) Suppose that there
exists ξ ∈ Aut(G) such that g−1 = Kξ (g)K, for all g ∈ G. Show that (G,K) is
a Gelfand pair; see [53].
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13.4 Spherical functions: intrinsic theory 469

Exercise 13.3.10
(
Aff(Fq),U

)
is a Gelfand pair: this follows immediately

fromExercise 12.1.8. Use the characterization of the automorphisms of Aff(Fq)
in Exercise 12.1.11 to deduce that it is not weakly symmetric.

13.4 Spherical functions: intrinsic theory

In this section we introduce and develop the theory of spherical function (asso-
ciated with a multiplicity-free triple) in an intrinsic way, that is, we consider
and analyze all the properties of spherical functions without appealing to their
explicit form as matrix coefficients (this will be treated in Section 13.5).
Let (G,K, χ ) be a multiplicity-free triple.

Definition 13.4.1 An element φ ∈ H(G,K, χ ) is called a spherical function if
it satisfies the following conditions:

φ(1G) = 1 (13.20)

and, for all f ∈ H(G,K, χ ) there exists λφ, f ∈ C such that

φ ∗ f = λφ, fφ. (13.21)

Condition (13.21) may be reformulated in the following way: φ is an eigen-
vector of the convolution operator Tf , for every f ∈ H(G,K, χ ). Moreover, by
means of (13.20) and (13.21) we get λφ, f = [φ ∗ f ](1G). As a consequence,
the following equivalent formulation of (13.21) holds (recall that, by definition
of a multiplicity-free triple, the Hecke algebra H(G,K, χ ) is commutative):

φ ∗ f = [φ ∗ f ](1G)φ = [ f ∗ φ](1G)φ = f ∗ φ. (13.22)

Nowwe give the basic functional identity satisfied by all spherical functions;
it involves the function ψ defined in (13.1).

Theorem 13.4.2 A function φ ∈ L(G), φ �= 0, is spherical if and only if it sat-
isfies the functional identity∑

k∈K
φ(gkh)ψ (k) = φ(g)φ(h), (13.23)

for all g, h ∈ G.

Proof. Suppose that φ ∈ L(G), φ �= 0, satisfies (13.23). Choose h ∈ G such
that φ(h) �= 0; writing (13.23) in the form φ(g) = 1

φ(h)

∑
k∈K φ(gkh)ψ (k)
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we get

[φ ∗ ψ](g) = 1

φ(h)

∑
k,k1∈K

φ(gk1kh)ψ (k)ψ (k−1
1 )

(k1k = k2) = 1

φ(h)

∑
k2∈K

φ(gk2h)[ψ ∗ ψ](k2)

(by (13.2)) = 1

φ(h)

∑
k2∈K

φ(gk2h)ψ (k2)

(by (13.23)) = φ(g)

for all g ∈ G, showing that φ ∗ ψ = φ. Similarly, one proves that ψ ∗ φ = φ.
As a consequence, ψ ∗ φ ∗ ψ = ψ ∗ φ = φ, that is, (cf. Theorem 13.2.3.(i))
φ ∈ H(G,K, χ ). Then, taking h = 1G in (13.23) we get

φ(g)φ(1G) =
∑
k∈K

φ(gk)ψ (k) = [φ ∗ ψ](g) = φ(g)

for all g ∈ G, and therefore (recall that φ �= 0) φ(1G) = 1. Finally, for all f ∈
H(G,K, χ ) and g ∈ G, we have

[φ ∗ f ](g) = [φ ∗ f ∗ ψ](g)

=
∑
h∈G

∑
k∈K

φ(gkh) f (h−1)ψ (k)

(by (13.23)) = φ(g)
∑
h∈G

φ(h) f (h−1)

= [φ ∗ f ](1G)φ(g)

so that also (13.22) is satisfied. It follows that φ is spherical.
Conversely, suppose that φ is spherical. For all g ∈ G, define Fg ∈ L(G) by

setting

Fg(h) =
∑
k∈K

φ(gkh)ψ (k),

for all h ∈ G. For f ∈ H(G,K, χ ) and g, g1 ∈ G we then have

[Fg ∗ f ](g1) =
∑
k∈K

∑
h∈G

φ(gkg1h) f (h
−1)ψ (k)

(by (13.22)) = [φ ∗ f ](1G)
∑
k∈K

φ(gkg1)ψ (k)

= [φ ∗ f ](1G)Fg(g1).

(13.24)
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For all g ∈ G, we also define Jg ∈ L(G) by setting

Jg(h) =
∑
k∈K

f (hkg)ψ (k)

for all h ∈ G. We claim that Jg ∈ H(G,K, χ ). Indeed,

[ψ ∗ Jg ∗ ψ](h) =
∑

k,k1,k2∈K
ψ (k1) f (k

−1
1 hk−1

2 kg)ψ (k2)ψ (k)

(k3 = k−1
2 k) =

∑
k,k3∈K

[ψ ∗ f ](hk3g)ψ (kk−1
3 )ψ (k−1)

=
∑
k3∈K

f (hk3g)[ψ ∗ ψ](k−1
3 )

=
∑
k3∈K

f (hk3g)ψ (k3)

= Jg(h).

This shows that ψ ∗ Jg ∗ ψ = Jg. Moreover, for g1 ∈ G we have

[φ ∗ Jg1 ](1G) =
∑
h∈G

φ(h−1)
∑
k∈K

f (hkg1)ψ (k)

(hk = t ) =
∑
t∈G

[∑
k∈K

ψ (k−1)φ(kt−1)

]
f (tg1)

=
∑
t∈G

[ψ ∗ φ](t−1) f (tg1)

=
∑
t∈G

φ(t−1) f (tg1)

= [φ ∗ f ](g1)

(by (13.22)) = [φ ∗ f ](1G)φ(g1).

(13.25)

It follows that, for g, g1 ∈ G,

[Fg ∗ f ](g1) =
∑
h∈G

∑
k∈K

φ(gkg1h)ψ (k) f (h−1)

(kg1h = t ) =
∑
t∈G

φ(gt )
∑
k∈K

ψ (k) f (t−1kg1)

= [φ ∗ Jg1 ](g)
(by (13.22)) = [φ ∗ Jg1 ](1G)φ(g)
(by (13.25)) = [φ ∗ f ](1G)φ(g1)φ(g).

(13.26)
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From (13.24) and (13.26) we get

[φ ∗ f ](1G)Fg(g1) = [φ ∗ f ](1G)φ(g1)φ(g),

and taking f ∈ H(G,K, χ ) such that [φ ∗ f ](1G) �= 0 this yields∑
k∈K

φ(gkg1)ψ (k) = Fg(g1) = φ(g1)φ(g),

which is exactly (13.23) with h replaced by g1. In order to complete the proof,
we are only left to show the existence of such an f . Since φ �= 0, we can find
f1 ∈ L(G) such that [φ ∗ f1](1G) �= 0. Then, keeping in mind (13.9), we have
that f = ψ ∗ f1 ∗ ψ ∈ H(G,K, χ ) satisfies [φ ∗ f ](1G) �= 0. �

Definition 13.4.3 A linear functional � : H(G,K, χ ) → C is multiplicative if

�( f1 ∗ f2) = �( f1)�( f2)

for all f1, f2 ∈ H(G,K, χ ).

Theorem 13.4.4 Let φ be a spherical function and set

�( f ) =
∑
g∈G

f (g)φ(g−1) ≡ [ f ∗ φ](1G) (13.27)

for all f ∈ H(G,K, χ ). Then � is a linear multiplicative functional on
H(G,K, χ ). Moreover, any nontrivial linear multiplicative functional on
H(G,K, χ ) is of this form.

Proof. Let � as in (13.27). For f1, f2 ∈ H(G,K, χ ), by means of a repeated
application of (13.22), we get:

�( f1 ∗ f2) = [( f1 ∗ f2) ∗ φ](1G)

= [ f1 ∗ ( f2 ∗ φ)](1G)

= [[ f2 ∗ φ](1G) f1 ∗ φ](1G)

= [ f1 ∗ φ](1G)[ f2 ∗ φ](1G)

= �( f1)�( f2).

This shows that � is multiplicative. Conversely, suppose that � is a nontrivial
multiplicative linear functional on H(G,K, χ ). We extend � to a linear func-
tional on the whole L(G) by considering the map f2 �→ �(ψ ∗ f2 ∗ ψ ) for all
f2 ∈ L(G). By Riesz theorem, we can find an element ϕ ∈ L(G) such that

�(ψ ∗ f2 ∗ ψ ) =
∑
g∈G

f2(g)ϕ(g
−1) (13.28)
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for all f2 ∈ L(G). From (13.9) we deduce that if f1 ∈ H(G,K, χ ) then

�( f1) = [ f1 ∗ ϕ](1G) = [ f1 ∗ ψ ∗ ϕ ∗ ψ](1G).

Therefore, setting φ = ψ ∗ ϕ ∗ ψ ∈ H(G,K, χ ), we then have

�( f1) = [φ ∗ f1](1G) (13.29)

for all f1 ∈ H(G,K, χ ). With this position, (13.9) also yields

�(ψ ∗ f2 ∗ ψ ) = [φ ∗ ψ ∗ f2 ∗ ψ](1G) = [φ ∗ f2](1G) =
∑
h∈G

φ(h) f2(h
−1)

for all f2 ∈ L(G), and therefore in (13.28) the function ϕ may be replaced by
the function φ. Since � is multiplicative, for f1 ∈ H(G,K, χ ) and f2 ∈ L(G)
the expression

�( f1 ∗ ψ ∗ f2 ∗ ψ ) = [φ ∗ f1 ∗ ψ ∗ f2 ∗ ψ](1G)

(by (13.9)) = [φ ∗ f1 ∗ f2](1G)

=
∑
h∈G

[φ ∗ f1](h) f2(h
−1)

must be equal to

�( f1)�(ψ ∗ f2 ∗ ψ ) =
∑
h∈G

�( f1)φ(h) f2(h
−1).

Since f2 ∈ L(G) was arbitrary, we get the equality [φ ∗ f1](h) = �( f1)φ(h),
so that, in particular, φ satisfies condition (13.21). Taking h = 1G and choosing
f1 ∈ H(G,K, χ ) such that �( f1) �= 0 (recall that � is nontrivial), and keeping
in mind (13.29), this gives�( f1) = [φ ∗ f1](1G) = �( f1)φ(1G). It follows that
φ(1G) = 1. In conclusion, φ is a spherical function. �

Corollary 13.4.5 The number of distinct spherical functions is equal to |J|, the
number of irreducible G-representations contained in IndGKχ .

Proof. We have H(G,K, χ ) ∼= CJ (see (13.5)) and every linear multiplicative
functional on CJ is of the form CJ � λ �→ λ(θ ), for a fixed θ ∈ J. �

In the following we use the notation in (10.9).

Proposition 13.4.6 Let φ and μ be two distinct spherical functions. Then the
following holds.

(i) φ(g−1) = φ(g) for all g ∈ G, that is, φ∗ = φ;
(ii) φ ∗ μ = 0;
(iii) 〈λG(g1)φ, λG(g2)μ〉L(G) = 0 for all g1, g2 ∈ G, in particular φ and μ

are orthogonal: 〈φ,μ〉L(G) = 0.
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474 Hecke algebras and multiplicity-free triples

Proof.

(i) By definition of a spherical function, one has

φ∗ ∗ φ = [φ∗ ∗ φ](1G)φ = ‖φ‖2φ.
As a consequence, since (φ∗ ∗ φ)∗ = φ∗ ∗ φ, we have

[φ∗ ∗ φ](g) = [φ∗ ∗ φ](g−1) = [φ∗ ∗ φ](1G) · φ(g−1) = ‖φ‖2φ(g−1)

and therefore we must have φ = φ∗.
(ii) By commutativity,

[φ ∗ μ](1G)φ(g) = [φ ∗ μ](g) = [μ ∗ φ](g) = [μ ∗ φ](1G)μ(g).

Therefore, if φ �= μ, necessarily [φ ∗ μ](1G) = [μ ∗ φ](1G) = 0 and
this also yields φ ∗ μ = 0.

(iii) Let g1, g2 ∈ G. Then

〈λG(g1)φ, λG(g2)μ〉 = 〈φ, λG(g−1
1 g2)μ〉 =

∑
h∈G

φ(h)μ
[
(g−1

1 g2)−1h
]

=
∑
h∈G

φ(h)μ∗(h−1g−1
1 g2) = [φ ∗ μ∗](g−1

1 g2) = [φ ∗ μ](g−1
1 g2) = 0,

where the last equality follows from (ii). �

Theorem 13.4.7 For each spherical function φ define Uφ = 〈λG(g)φ : g ∈ G〉,
the subspace of L(G) spanned by all translates of φ. Then

IndGKC =
⊕
φ

Uφ,

where the sum runs over all spherical functions, is the decomposition of IndGKC
into irreducible G-representations.

Proof. Each subspaceUφ is clearly G-invariant and contained in IndGKC (recall
Theorem 13.2.3). Moreover, by virtue of Lemma 13.4.6.(iii), if φ andμ are dis-
tinct then the spacesUφ andUμ are orthogonal. Finally, we can invoke Corollary
13.4.5 to conclude that eachUφ is irreducible and that the sum

⊕
φUφ exhausts

the whole IndGKC. �

The spaceUφ is called the spherical representation associated with the spher-
ical function φ.

13.5 Harmonic analysis on the Hecke algebra H(G,K, χ )

The first purpose of this section is to present a different realization of spherical
functions as matrix coefficients associated with spherical representations.
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Suppose again that (G,K, χ ) is a multiplicity-free triple. Let J be as in
(13.5) (but now mθ = 1 for all θ ∈ J). For each θ ∈ J choose a vector wθ ∈
WK,χ of norm one (recall (11.27)). Such wθ is unique up to a scalar multiple
of modulus one (usually called a phase factor); see Theorem 13.3.2. More-
over, we are in the multiplicity free case of Theorem 10.6.3: for each θ ∈ J
we may choose Tθ ∈ HomG(Wθ , IndGKC), which is also an isometry, so that
HomG(Wθ , IndGKC) = 〈Tθ 〉 and

IndGKC =
⊕
θ∈J

TθWθ (13.30)

is an explicit orthogonal decomposition. Clearly, our choice of wθ and (11.28)
in Proposition 11.2.8 may be used to get an explicit form for Tθ = Twθ :

[Tθw](g) =
√

dθ
|G/K| 〈w, θ (g)wθ 〉Wθ

, (13.31)

for all w ∈Wθ and g ∈ G. Again, Tθ is defined up to a phase factor. Note that
now the map (13.7) is a ∗-isomorphism because the algebras involved are com-
mutative.

Proposition 13.5.1 Let (13.30) be an explicit decomposition of IndGKC into
irreducible, inequivalent G-representation. Then for f ∈ H(G,K, χ ) the fol-
lowing hold:

(i) the decomposition of IndGKC into eigenspaces of the convolution opera-
tor Tf is given by (13.30);

(ii) if λ f (θ ) denotes the eigenvalue of Tf associated with the subspace TθWθ

then the map

H(G,K, χ ) −→ CJ

f �−→ λ f ,

is an algebra isomorphism.

Proof.

(i) By Theorem 13.2.3.(ii) and multiplicity freeness of IndGKχ , the convolu-
tion operator Tf intertwines each irreducible representation TθWθ with
itself so that, by Schur’s lemma, it is a multiple of the identity on each
irreducible space.

(ii) If f1 ∈ H(G,K, χ ), f ∈ IndGKC, and f =∑θ∈J fθ with fθ ∈ TθWθ , then
Tf1 ( f ) =

∑
θ∈J λ f1 (θ ) fθ . Therefore Tf1∗ f2 = Tf1Tf2 yields

λ f1∗ f2 = λ f1λ f2

for all f1, f2 ∈ H(G,K, χ ). �
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476 Hecke algebras and multiplicity-free triples

An explicit expression of λ f will be given in Proposition 13.5.4.
For each θ define φθ ∈ L(G) by setting

φθ (g) = 〈wθ , θ (g)wθ 〉Wθ
(13.32)

for all g ∈ G.

Theorem 13.5.2 The function φθ is spherical and it is associated with Wθ ,
that is, in the notation of Theorem 13.4.7, we have Uφθ = TθWθ . Moreover, the
spherical functions satisfy the following orthogonality relations:

〈φθ , φρ〉L(G) = |G|
dθ

δθ,ρ, (13.33)

for θ, ρ ∈ J.

Proof. By (13.31) we have φθ =
√

|G/K|
dθ

Tθwθ and therefore, by Proposition

11.2.8, φθ belongs to the subspace of IndGKC isomorphic to Wθ , namely to
TθWθ in (13.30). Now we use the functional identity (13.23) to show that φθ

is a spherical function. We need to prove a preliminary identity. First of all,
we choose an orthonormal basis {ui : i = 1, 2, . . . , dθ } for Wθ in the follow-
ing way. Let ResGKθ = χ ⊕ (⊕ηmηη

)
be the decomposition of ResGKθ into irre-

ducible K-representations (the η’s are pairwise distinct and each of them is
distinct from χ ; mη is the multiplicity of η). We suppose that u1 = wθ and
that each ui, 2 ≤ i ≤ dθ , belongs to some irreducibleWη. Then by (10.24) we
have ∑

k∈K
〈u1, θ (k)u1〉Wθ

〈θ (k)ui, u j〉Wθ
= |K|δ1iδ1 j. (13.34)

Since θ (k)u1 = χ (k)u1 we have ψ (k) = 1
|K| 〈u1, θ (k)u1〉 and therefore (13.34)

may be written in the form〈∑
k∈K

ψ (k)θ (k)ui, u j

〉
Wθ

= δ1iδ1 j

and this yields ∑
k∈K

ψ (k)θ (k)ui = δi1u1 (13.35)
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for all i = 1, 2, . . . , dθ . We are now in position to check (13.23):∑
k∈K

φθ (gkh)ψ (k) =
∑
k∈K

〈wθ , θ (gkh)wθ 〉Wθ
ψ (k)

=∗
dθ∑
i=1

〈θ (g−1)wθ , ui〉Wθ

∑
k∈K

〈θ (kh)u1, ui〉Wθ
ψ (k)

=
dθ∑
i=1

〈θ (g−1)wθ , ui〉Wθ
〈θ (h)u1,

∑
k∈K

ψ (k−1)θ (k−1)ui〉Wθ

(by (13.35)) = φθ (g)φθ (h),

where equality =∗ follows from θ (kh)u1 =
∑dθ

i=1〈θ (kh)u1, ui〉Wθ
ui: recall that

{ui : i = 1, 2, . . . , dθ } is an orthonormal basis. Finally, (13.33) is a particular
case of (10.24). �

Remark 13.5.3 Suppose that (G,K, χ ) is a multiplicity-free triple. Then
(G,K, χ ) is also multiplicity-free. Indeed, H(G,K, χ ) = H(G,K, χ ), that is,
the functions inH(G,K, χ ) are the conjugates of the functions inH(G,K, χ ).
Moreover, if {φθ : θ ∈ J} are the spherical functions with respect to χ then their
conjugates {φθ : θ ∈ J} are the spherical functions with respect to χ (this may
be deduced, for instance, directly fromDefinition 13.4.1). Finally, from (11.18)

it follows that χ IndGKχ = χ IndGKχ and therefore θ ∈ Ĝ is contained in IndGKχ if
and only if its conjugate θ ′ (cf. Section 10.5) is contained in IndGKχ . Indeed, φθ

equals the spherical function with respect to χ associated with θ ′.
Moreover, from (13.32) it follows that φθ is not a matrix coefficient of

θ but of θ ′. This happens because φθ belongs to the sub-representation of
IndGKC ≤ L(G) isomorphic to θ but, by Theorem 10.5.9, the restriction of the
left regular representation λ toMθ

∗,1 is isomorphic to θ ′, that is,Wθ ∼ Mθ ′
∗,1.

The spherical Fourier transform is the linear map

F : H(G,K, χ ) −→ L(J)

defined by setting, for f ∈ H(G,K, χ ) and θ ∈ J,

[F f ](θ ) =
∑
g∈G

f (g)φθ (g).

From the orthogonality relations (13.33) we immediately deduce the inversion
formula:

f = 1

|G|
∑
θ∈J

dθF f (θ )φθ
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and the Plancherel formula:

〈 f1, f2〉L(G) = 1

|G|
∑
θ∈J

dθF f1(θ )F f2(θ ),

for all f , f1, f2 ∈ H(G,K, χ ). In particular, ‖ f‖2L(G) = 1
|G|
∑

θ∈J dθ |F f (θ )|2.
Finally, the convolution formula

F ( f1 ∗ f2) = (F f1)(F f2)

follows from the inversion formula and (10.35).
Now we are in position to give an explicit formula for the eigenvalues λ f (θ ),

θ ∈ J, in Proposition 13.5.1.(ii).

Proposition 13.5.4 For all f ∈ H(G,K, χ ) we have

λ f = F f .

Proof. Let f ∈ H(G,K, χ ) and θ ∈ J. It suffices to compute λ f (θ ) for the
eigenvector φθ :

[Tfφ
θ ](g) = [ f ∗ φθ ](g)

(by (13.22)) = [ f ∗ φθ ](1G)φ
θ (g)

=
∑
h∈G

f (h)φθ (h−1)φθ (g)

(by Proposition 13.4.6.(i)) = [F f ](θ )φθ (g). �

Proposition 13.5.5 The operator Eθ : IndGKC −→ L(G) defined by setting

Eθ f = dθ
|G| f ∗ φθ ,

for all f ∈ IndGKC, is the orthogonal projection from IndGKC onto TθWθ .

Proof. First of all, note that, for g ∈ G and f ∈ IndGKC, we have:

[Eθ f ](g) = dθ
|G|
∑
h∈G

f (h)φθ (h−1g)

= dθ
|G|
∑
h∈G

f (h)φθ (g−1h) = dθ
|G| 〈 f , λG(g)φ

θ 〉L(G),

where λG is as in (10.9). Therefore, for η ∈ J \ {θ} and h ∈ G,[
EθλG(h)φ

η
]
(g) = dθ

|G| 〈λG(h)φ
η, λG(g)φ

θ 〉L(G) = 0
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by Proposition 13.4.6.(iii), that is,
⊕

η∈J,η �=θ

TηWη ⊆ KerEθ . Similarly,

[
EθλG(h)φ

θ
]
(g) = dθ

|G| 〈λG(h)φ
θ , λG(g)φ

θ 〉L(G)

= dθ
|G| 〈φ

θ , λG(h
−1g)φθ 〉L(G)

= dθ
|G| [φ

θ ∗ φθ ](h−1g)

(by (13.22)) = dθ
|G| [φ

θ ∗ φθ ](1G)φ
θ (h−1g)

(φθ ∗ φθ (1g) = ‖φθ‖2L(G) = |G|/dθ ) = λG(h)φ
θ (g).

We then conclude by using Theorem 13.4.7. �

We now show that the spherical function φθ and the character χθ may be
expressed one in terms of the other.

Proposition 13.5.6 For all g ∈ G we have:

χθ (g) = dθ
|G|
∑
h∈G

φθ (h−1gh) (13.36)

and

φθ (g) = [χθ ∗ ψ](g). (13.37)

Proof. Clearly, (13.36) is just a particular case of (10.25), keeping into account
(13.32). On the other hand, using the bases in (13.35) we have

[χθ ∗ ψ](g) =
∑
k∈K

dθ∑
i=1

〈θ (gk−1)ui, ui〉ψ (k)

=
∑
k∈K

dθ∑
i=1

〈θ (g)
∑
k∈K

ψ (k−1)θ (k−1)ui, ui〉

(by (13.35)) = φθ (g). �

In what follows, for f ∈ L(G) and θ ∈ J we set

χθ ( f ) =
∑
g∈G

χθ (g) f (g) ≡ 〈χθ , f 〉
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and, similarly,

φθ ( f ) =
∑
g∈G

φθ (g) f (g) ≡ 〈φθ , f 〉.

We use the Curtis-Fossum basis in Definition 13.2.5.

Proposition 13.5.7 (Curtis-Fossum) Let θ ∈ J. Then the following hold:

(i) The spherical function φθ can be expressed as

φθ =
∑
s∈S0

|Gs|φθ (as) as.

(ii) The orthogonality relations for the spherical functions may be written
in the form: ∑

s∈S0

|Gs|φθ (as)φρ (as) = δθ,ρ
|G|
dθ

, ρ ∈ J.

(iii) The dimension dθ is given by

dθ = |G|∑
s∈S0

|Gs| · |φθ (as)|2 .

Proof.

(i) This is an immediate consequence of (13.11) and (13.13).
(ii) From (i) and (13.12) we have:

〈φθ , φρ〉L(G) =
∑
s∈S0

|Gs|2φθ (as)φρ (as)‖as‖2L(G) =
∑
s∈S0

|Gs|φθ (as)φρ (as).

Then we may invoke (13.33).
(iii) It follows immediately from (ii). �

Remark 13.5.8 When χ = ιK and (G,K) is a Gelfand pair, it is customary to
use the isomorphism (11.13) to define the spherical functions as K-invariant
functions on X (see Remark 13.2.2). That is, for θ ∈ J we define ϕθ ∈ L(X )
by setting ϕθ (x) = φθ (g) if gx0 = x. Then the orthogonality relations become:∑

x∈X ϕθ (x)ϕρ (x) = δθ,ρ
|X |
dθ
. We refer to [29] for an extensive treatment of this

case.

Exercise 13.5.9 Prove that, in the setting of Exercise 13.3.8, the spherical func-
tion in Mθ is equal to 1

dθ
χθ .

Exercise 13.5.10 Let G be a finite group and suppose it acts doubly transi-
tively on a set X . Denote by K the stabilizer of a fixed element x0 ∈ X . Show
that (G,K) is a symmetric Gelfand pair, that L(X ) =W0 ⊕W1 (cf. Proposition
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2.1.1) is the decomposition into spherical representations, and that the corre-
sponding spherical functions are given by φ0 ≡ 1 and

φ1(x) =
{
1 if x = x0

− 1
1−|X | otherwise

for all x ∈ X .

Exercise 13.5.11 From Exercise 12.1.8 we deduce that
(
Aff(Fq),A, ψ

)
is a

multiplicity-free triple for any character ψ ∈ Â. By means of (13.31) and/or
(13.37) applied to (12.8), show that the spherical functions are given by:

φπ

(
a b
0 1

)
=
{
ψ (a) if b = 0

− 1
q−1ψ (a) otherwise,

and φ�

(
a b
0 1

)
= ψ (a), for all

(
a b
0 1

)
∈ Aff(Fq).
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Representation theory of GL(2,Fq)

This chapter is devoted to the representation theory of the general linear group
GL(2,Fq). It contains an exposition of all the results in Piatetski-Shapiro’s
monograph [123]. We have added some more details and reinterpreted the
whole theory in terms of our “multiplicity-free triples” developed in the pre-
ceding chapter. Section 7.3, on generalized Kloosterman sums, also plays here
a fundamental role. In the final sections, we present a complete set of formu-
las for the decomposition of induced representations Ind

Fqm
Fq

and of inner tensor
products.

14.1 Matrices associated with linear operators

First of all, we need to study the conjugacy classes in GL(2,F). For this pur-
pose, we recall some basic facts of linear algebra over an arbitrary field F and,
subsequently, we concentrate on the finite case. If the field F is algebraically
closed, we shall make use of the Jordan canonical form, while, in the general
case, our standard tool will be the rational canonical form.
Let F be a field and denote by Mn(F) the algebra of all n× n matrices with

entries in F. Then the multiplicative group GL(n,F) = U (Mn(F)), consisting
of all invertible matrices, acts on Mn(F) by conjugation. The action of an ele-
ment A ∈ GL(n,F) on Mn(F) is then given by:

B �→ ABA−1

for all B ∈ Mn(F). The orbits under this action are the conjugacy classes of
Mn(F) and the choice of a suitable canonical element in the conjugacy class of
a matrix B ∈ Mn(F) is called a canonical form for B.

482
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14.2 Matrices associated with linear operators 483

We identify the n-dimensional vector space Fn with the vector space
Mn,1 of n-dimensional column vectors. Also we fix an (ordered) basis Y =
(Y1,Y2, . . . ,Yn) of Fn.
Let L : Fn → Fn be a linear operator. Then the matrix C = C(L;Y) =(
ci, j
)n
i, j=1 representing the operator L with respect to the basis Y is defined

by

L(Yj ) =
n∑
i=1

ci, jYi

for all j = 1, 2, . . . , n.
Vice versa, with each B ∈ Mn(F) we associate the linear operator LB : Fn →

Fn defined by setting LB(X ) = BX for all X ∈ Fn.
Let also X = (X1,X2, . . . ,Xn) denote the canonical (ordered) basis of Fn,

that is,

X1 =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠ , X2 =

⎛⎜⎜⎜⎜⎜⎝
0
1
0
...
0

⎞⎟⎟⎟⎟⎟⎠ , . . . , Xn =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
...
1

⎞⎟⎟⎟⎟⎟⎠ .

Then, for j = 1, 2, . . . , n, the vector LB(Xj ) equals the j-th column of the
matrix B. In other words, the matrix C(LB;X) representing LB with respect
to the canonical basis is the matrix B itself.
Let A = A(Y) ∈ GL(n,F) denote the change of basis matrix, that is, the

unique invertible matrix A such thatYj = A−1Xj, equivalently, Xj = AYj, for all
j = 1, 2, . . . , n. Then the matrixC = C(LB;Y) representing the linear operator
LB in the basis Y is given byC = ABA−1. Indeed, if

BYj = LB(Yj ) =
n∑
i=1

ci, jYi,

then

ABA−1Xj = ABYj = A
n∑
i=1

ci, jYi =
n∑
i=1

ci, jAYi =
n∑
i=1

ci, jXi = CXj

for all j = 1, 2, . . . , n.
This shows that finding a canonical form C for B corresponds to choosing a

suitable basis Y in Fn such that C = C(LB;Y).
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484 Representation theory of GL(2,Fq)

14.2 Canonical forms for M2(F)
We now describe a canonical form for matrices inM2(F).
We denote by F[λ] the F-vector space of all polynomials with coefficients in

F and indeterminate λ.

Let B =
(
α β

γ δ

)
∈ M2(F).

Given t(λ) = anλn + an−1λ
n−1 + · · · + a1λ+ a0 ∈ F[λ] we set t(B) =

anBn + an−1Bn−1 + · · · + a1B+ a0I ∈ M2(F), where I ∈ M2(F) denotes the
identity matrix.
The characteristic polynomial q = qB ∈ F[λ] of the matrix B is defined as

q(λ) = det(λI − B) = det

(
λ− α β

γ λ− δ

)
= λ2 − λ(α + δ)+ (αδ − βγ ).

Exercise 14.2.1 Show, by a direct calculation, that q(B) = 0 ∈ M2(F)
(Cayley-Hamilton theorem). Moreover, given λ1 ∈ F show that q(λ1) = 0 if
and only if λ1 is an eigenvalue of B (i.e. there exists an eigenvector Y ∈ F2 \ {0}
such that BY = λ1Y ).

The minimal polynomial p = pB ∈ F[λ] of B is the monic polynomial of
least degree such that p(B) = 0. We clearly have two cases:

(a) deg(p) = 1. Then p(λ) = λ− λ1 for some λ1 ∈ F and p(B) = 0
implies that B = λ1I is a scalar matrix.

(b) deg(p) = 2. Then p(λ) = q(λ) and B is not a scalar matrix. We further
distinguish three subcases:
(b1) p(λ) has two distinct roots in F: there exist λ1, λ2 ∈ F, λ1 �=

λ2, such that p(λ) = (λ− λ1)(λ− λ2), equivalently, B has two
distinct eigenvalues. Let Y1,Y2 ∈ F2 be two corresponding eigen-
vectors: BY1 = λ1Y1 and BY2 = λ2Y2. Then Y1 and Y2 are linearly
independent: if α1Y1 + α2Y2 = 0, with α1, α2 ∈ F, by applying B
to both sides we deduce that α1λ1Y1 + α2λ2Y2 = 0 so that

α2(λ1 − λ2)Y2 = λ1(α1Y1 + α2Y2)− (α1λ1Y1 + α2λ2Y2) = 0.

Since λ1 �= λ2, we deduce that α2 = 0 and, in turn, α1 = 0.
The matrix C = C(LB;Y) representing LB in the basis Y =

(Y1,Y2) is then given by

C =
(
λ1 0
0 λ2

)
that is,C is a diagonal matrix with distinct diagonal terms.
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14.2 Canonical forms forM2(F) 485

Note also that the matrices

(
λ1 0
0 λ2

)
and C(LB; (Y2,Y1)) =(

λ2 0
0 λ1

)
are conjugate. Indeed:

(
0 1
1 0

)(
λ1 0
0 λ2

)(
0 1
1 0

)
=
(
λ2 0
0 λ1

)
. (14.1)

(b2) p(λ) = (λ− λ1)2, where λ1 ∈ F. Then there exists an eigenvector
Y1 associated with λ1, so that BY1 = λ1Y1. Moreover, there exists a
vector Ỹ ∈ F2 (any vector that is not a scalar multiple of Y1) such
that (B− λ1I )̃Y �= 0, because B− λ1I �= 0. Then (B− λ1I)2Ỹ =
p(B)̃Y = 0 implies (exercise) that there exists α′ ∈ F \ {0} such
that

(B− λ1I )̃Y = α′Y1. (14.2)

Setting Y2 = 1
α′ Ỹ equation (14.2) becomes

BY2 = λ1Y2 + Y1

and, in the basis Y = (Y1,Y2), the operator LB is represented by
the matrixC = C(LB;Y) given by

C =
(
λ1 1
0 λ1

)
,

which constitutes the simplest (non-trivial) example of a Jordan
canonical form.

(b3) p(λ) = λ2 + α′λ+ β ′, where α′, β ′ ∈ F, is irreducible over F.
Consider a vector Y1 �= 0. Then Y2 = BY1 is not a multiple of Y1
(otherwiseY1 would be an eigenvector) and thereforeY = (Y1,Y2)
is a basis for F2. Since B2 + α′B+ β ′I = 0 (cf. Exercise 14.2.1),
we have that BY2 = B2Y1 = −α′BY1 − β ′Y1 = −β ′Y1 − α′Y2, so
that, in the basis Y, the operator LB is represented by the matrix
C = C(LB;Y) given by

C =
(
0 −β ′

1 −α′

)
. (14.3)

This is the simplest (non-trivial) example of a rational canonical
form.

From the previous case-by-case analysis we immediately deduce the follow-
ing:
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486 Representation theory of GL(2,Fq)

Theorem 14.2.2 Two matrices inM2(F) are conjugate if and only if they have
the same minimal and characteristic polynomials. For non-scalar matrices it
suffices that they have the same characteristic polynomial.

Remark 14.2.3 In Mn(F) with n > 2, Theorem 14.2.2 is no longer true and
the full machinery for the rational canonical form and the theory of invariant
factors (or invariant polynomials, or elementary divisors) must be used to get
a parameterization of the conjugacy classes, i.e. in the terminology of linear
algebra, to establish if two matrices are similar.
If the field F is algebraically closed, the Jordan canonical formmay be used

in place of the rational canonical form. See, for instance, Herstein’s book [71].

We now introduce four important subgroups of GL(2,F), namely,

B =
{(

α β

0 δ

)
: α, δ ∈ F∗, β ∈ F

}
(the Borel subgroup)

D =
{(

α 0
0 δ

)
: α, δ ∈ F∗

}
(the subgroup of diagonal matrices)

U =
{(

1 β

0 1

)
: β ∈ F

}
(the subgroup of unipotent matrices)

Z =
{(

α 0
0 α

)
: α ∈ F∗

}
(the center),

where, as usual, F∗ denotes the multiplicative subgroup of F consisting of all
nonzero elements.
Clearly,U is Abelian and isomorphic to the additive group of F:(

1 β1

0 1

)(
1 β2

0 1

)
=
(
1 β1 + β2

0 1

)
for all β1, β2 ∈ F; see Section 12.1.
Moreover,U is a normal subgroup of B:(

α β

0 δ

)(
1 β ′

0 1

)(
α β

0 δ

)−1

=
(
α αβ ′ + β

0 δ

)(
α−1 −βδ−1α−1

0 δ−1

)
=
(
1 αδ−1β ′

0 1

)
for all β, β ′ ∈ F and α, δ ∈ F∗.

Recall that given a group G, the derived subgroup (or commutator sub-
group) of G is the subgroup G′ = [G,G] generated by the commutators
[g, h] = g−1h−1gh, with g, h ∈ G. Moreover, setting G(0) = G and G(k) =
[G(k−1),G(k−1)] for k = 1, 2, . . ., one says that G is solvable provided there
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14.2 Canonical forms forM2(F) 487

exists k0 ∈ N such that G(k0 ) = {1G}. Finally, given g ∈ G and a subgroup
H ≤ G, the centralizer of g in H is the subgroup {h ∈ H : hg= gh} ≤ H. See
also Section 12.1.

Lemma 14.2.4

(i) The centralizer inGL(2,F) of the matrix
(
λ1 0
0 λ2

)
, with λ1 �= λ2 ∈ F,

is the subgroup D.

(ii) The centralizer inGL(2,F) of the matrix
(
λ1 1
0 λ1

)
, with λ1 ∈ F, is the

subgroup ZU, which equals

{(
α β

0 α

)
: α ∈ F∗, β ∈ F

}
.

(iii) B = U � D, i.e. B is the semidirect product of U by D. Moreover, U is
the derived subgroup of B, and B is solvable.

(iv) Setting w =
(
0 1
1 0

)
, we have the Bruhat decomposition:

GL(2,F) = B
∐

BwU ≡ B
∐

UwB,

where
∐

denotes a disjoint union. Moreover, every element g ∈
GL(2,F) \ B may be uniquely written in the form g= uwb with u ∈ U
and b ∈ B.

Proof. The proof is nothing but easy calculations, which we leave to the reader
as an exercise.

For instance, (iv) follows from the fact that if

(
α β

γ δ

)
∈ GL(2,F) \ B (so

that γ ∈ F∗) then, as one easily checks,(
α β

γ δ

)
=
(
β − αγ−1δ α

0 γ

)(
0 1
1 0

)(
1 γ−1δ

0 1

)

=
(
1 αγ−1

0 1

)(
0 1
1 0

)(
γ δ

0 β − αγ−1δ

)
,

and these factorizations are unique. �

Another important subgroup is

Aff(F) =
{(

α β

0 1

)
: α ∈ F∗, β ∈ F

}
,

the affine group over F (cf. Example 10.4.5 and Section 12.1).
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488 Representation theory of GL(2,Fq)

Exercise 14.2.5 Show the following:

(1) Z ∩ Aff(F) = {I} and Z · Aff(F) = Aff(F) · Z = B;
(2) Aff(F) is a normal subgroup of B and deduce that B ∼= Aff(F)× Z

(direct product);
(3) Aff(F) = U � A (semi-direct product), where A is the subgroup{(

α 0
0 1

)
: α ∈ F∗

}
∼= F∗; see Section 12.1.

14.3 The finite case

From now on, we concentrate on the finite case, that is, we consider the group
GL(2,Fq), where Fq is a finite field of order q = ph, where p is a prime number
and h ≥ 1.

Proposition 14.3.1 GL(2,Fq) is a finite group of order

|GL(2,Fq)| = (q2 − 1)(q2 − q) = q(q+ 1)(q− 1)2.

Proof. The first row of a matrix

(
α β

γ δ

)
∈ GL(2,Fq) may be chosen in q2 − 1

ways: it is an arbitrary ordered pair (α, β ) ∈ (Fq × Fq) \ {(0, 0)}. Then the sec-
ond row (γ , δ) is an arbitrary ordered pair in (Fq × Fq) \ {(λa, λb) : λ ∈ Fq},
and there are q2 − q such pairs.

Another proof is the following. Consider the projective line P(Fq) =(
(Fq × Fq) \ {(0, 0)}

)
/∼, where ∼ is the equivalence relation on (Fq × Fq) \

{(0, 0)} defined by (x, y) ∼ (u, v ) if there exists λ ∈ F∗
q such that (x, y) =

(λu, λv ). The action of GL(2,Fq) on Fq × Fq fixes (0, 0) and preserves∼, and
therefore induces an action of GL(2,Fq) on P(Fq). Moreover, it is easy to check
that this induced action is transitive. The stabilizer of the∼-class of (1, 0) is the
Borel subgroup B. Since |P(Fq)| = q2−1

q−1 = q+ 1 and |B| = q(q− 1)2, we ob-

tain again |GL(2,Fq)| = |P(Fq)| · |B| = (q+ 1)q(q− 1)2; recall (10.44). �

Using the notation (and results) of Section 6.8, we introduce another funda-
mental subgroup of GL(2,Fq). The Cartan (or non-split Cartan) subgroup of
GL(2,Fq) is the subgroup C defined by

C =
{(

α ωβ

β α + β

)
: α, β ∈ Fq, (α, β ) �= (0, 0)

}
if p = 2, where ω ∈ Fq is as in Theorem 6.8.3, and

C =
{(

α ηβ

β α

)
: α, β ∈ Fq, (α, β ) �= (0, 0)

}
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if p > 2, where η ∈ Fq is as in Theorem 6.8.1.
In both cases, we have (cf. the just mentioned theorems) a group isomor-

phism

C ∼= F∗
q2 .

In the following theorem, we use the elements of C \ Z to parameterize the
conjugacy classes of type (b3) in Section 14.2. Note that

C \ Z =
{(

α ωβ

β α + β

)
: α ∈ Fq, β ∈ F∗

q

}
if p = 2, and

C \ Z =
{(

α ηβ

β α

)
: α ∈ Fq, β ∈ F∗

q

}
if p > 2.

Theorem 14.3.2 The following table describes the conjugacy classes of
GL(2,Fq)

Table 14.1. The conjugacy classes of GL(2,Fq).

TYPE RE NC NE NAME C(RE)

(a)

(
λ 0
0 λ

)
, λ �= 0 q− 1 1 central GL(2,Fq)

(b1)

(
λ1 0
0 λ2

)
, λ1 �= λ2 (q− 1)(q− 2)/2 q2 + q hyperbolic D

(b2)

(
λ 1
0 λ

)
, λ �= 0 q− 1 q2 − 1 parabolic ZU

(b3) C \ Z q(q− 1)/2 q2 − q elliptic C

where

� TYPE stands for type of the conjugacy class according to the classification
in Section 14.2;

� RE stands for representative element: for each (conjugacy) class we indicate
a representative element;

� NC stands for number of conjugacy classes: this equals the number of rep-
resentative elements;

� NE stands for the number of elements in each class;
� NAME stands for the denomination of this type of class;
� C(RE ) stands for the centralizer in GL(2,Fq) of the representative element.
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490 Representation theory of GL(2,Fq)

Moreover, the two matrices of type (b1)(
λ1 0
0 λ2

)
and

(
λ2 0
0 λ1

)
(14.4)

represent the same class. Similarly, the two matrices of type (b3)(
α ωβ

β α + β

)
and

(
α + β ωβ

β α

)
∈ C \ Z (14.5)

when p = 2, and (
α ηβ

β α

)
and

(
α −ηβ

−β α

)
∈ C \ Z (14.6)

when p > 2, represent the same class.

Proof. The first row in the above table follows from Section 14.2.(a) and the
trivial fact that any central element is fixed under conjugation.
The second row follows from Section 14.2.(b1), Lemma 14.2.4.(i), and the

fact that the number of elements in each conjugacy class is given by

|GL(2,Fq)|
|D| = q(q+ 1)(q− 1)2

(q− 1)2
= q2 + q.

Moreover, we have already observed (cf. (14.1)) that the matrices in (14.4) are
conjugate. Similarly, the third row follows from Section 14.2.(b2) and Lemma
14.2.4.(ii), noticing also that the number of elements in each conjugacy class
now equals

|GL(2,Fq)|
|ZU | = q(q+ 1)(q− 1)2

(q− 1)q
= q2 − 1,

where the first equality follows from Proposition 14.3.1.
Finally, to get the fourth row, we distinguish two cases according to the parity

of p.

For p = 2 the characteristic polynomial of the representative

(
α ωβ

β α + β

)
is given by

det

(
λ+ α ωβ

β λ+ (α + β )

)
= λ2 + βλ+ (α2 + αβ + β2ω) (14.7)

so that, by Corollary 6.8.4, it is irreducible.

Moreover, since the matrices

(
0 α2 + αβ + β2ω

1 β

)
and

(
α + β ωβ

β α

)
have the same characteristic polynomial as in (14.7), we deduce that the matrix
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(
α ωβ

β α + β

)
belongs to the same conjugacy class of

(
0 α2 + αβ + β2ω

1 β

)
and

(
α + β ωβ

β α

)
. Since, by Corollary 6.8.4, all irreducible quadratic poly-

nomials over Fq are as in (14.7), we deduce that the elements in C \ Z param-
eterize all conjugacy classes of type (b3). Finally, (recall that β �= 0) we have(

x y

z u

)(
α ωβ

β α + β

)
=
(
xα + yβ xωβ + y(α + β )

zα + uβ zωβ + u(α + β )

)

equals (
α ωβ

β α + β

)(
x y

z u

)
=
(

αx+ ωβz αy+ ωβu

βx+ z(α + β ) βy+ u(α + β )

)

if and only if ωz = y and x+ z = u. As a consequence, the centralizer of any
element inC \ Z is the subgroup C. We deduce that the number of elements in
each conjugacy class is given by

|GL(2,Fq)|
|C| = q(q+ 1)(q− 1)2

q2 − 1
= q2 − q. (14.8)

Suppose now that p > 2. The characteristic polynomial of the representative(
α ηβ

β α

)
is given by

det

(
λ− α −ηβ

−β λ− α

)
= λ2 − 2αλ+ α2 − ηβ2 (14.9)

which is again irreducible by virtue of Corollary 6.8.2.

As in the case p = 2, we deduce that the element

(
α ηβ

β α

)
belongs to

the same conjugacy class of

(
0 ηβ2 − α2

1 2α

)
(see Section 14.2.(b3) or (14.3)).

Again, since all irreducible quadratic polynomials are as in (14.9), the elements

inC \ Z parameterize the conjugacy classes of type (b3). Moreover,

(
α ηβ

β α

)
and

(
α −ηβ

−β α

)
have the same characteristic polynomial, so that they are

conjugate (by

(
0 −η

1 0

)
, for instance).
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Finally, (recall, once more, that β �= 0) another simple computation shows
that (

x y
z u

)(
α ηβ

β α

)
=
(
α ηβ

β α

)(
x y
z u

)
if and only if ηz = y and x = u. As a consequence, the centralizer of an element
inC \ Z is againC and the number of elements in each conjugacy class is again
expressed by (14.8). �

Remark 14.3.3 From the discussion in Section 14.2 and from the proof of The-
orem 14.3.2, it follows that the representatives of type (b3) may also be taken

of the form

(
0 −zz
1 z+ z

)
, with z ∈ Fq2 \ Fq.

14.4 Representation theory of the Borel subgroup

As in (12.6), we associate with each ψ ∈ F̂∗
q the function � : Z → C defined

by

�

(
α 0
0 α

)
= ψ (α) (14.10)

for all α ∈ F∗
q. It is immediate to check that � is a character of Z.

The representation theory of B may then easily be deduced from Theorem
12.1.3 and the isomorphism

B ∼= Aff(Fq)× Z ∼= Aff(Fq)× F∗
q

that gives (see Corollary 10.5.17)

B̂ ∼= Âff(Fq)× Ẑ ∼= Âff(Fq)× F̂∗
q.

Theorem 14.4.1 The Borel subgroup B has exactly (q− 1)2 one-dimensional
representations, namely�1 ��2, where�1 ∈ Âff(Fq) is one-dimensional and
�2 ∈ Ẑ, and q− 1 irreducible (q− 1)-dimensional representations, namely
π ��, where π ∈ Âff(Fq) is as in (12.7) and � ∈ Ẑ.
Explicitly, these are given by

(�1 ��2)

(
α β

0 δ

)
= ψ1(αδ

−1)ψ2(δ) for all

(
α β

0 δ

)
∈ B, (14.11)
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where �1 ∈ Âff(Fq) (resp. �2 ∈ Ẑ) is the character associated with ψ1 ∈ F̂∗
q

(resp. ψ2 ∈ F̂∗
q) , and

(π ��)

(
α β

0 δ

)
= π

(
αδ−1 βδ−1

0 1

)
ψ (δ) for all

(
α β

0 δ

)
∈ B,

where � ∈ Ẑ is the character associated with ψ ∈ F̂∗
q.

Proof. Each irreducible representation of B is the tensor product of an irre-
ducible representation of Aff(Fq) and an irreducible representation of Z (see

Corollary 10.5.17). Moreover, for any

(
α β

0 δ

)
∈ Bwe have the unique decom-

position (
α β

0 δ

)
=
(
αδ−1 βδ−1

0 1

)(
δ 0
0 δ

)
∈ Aff(Fq)Z. �

Remark 14.4.2 Given ψ1, ψ2 ∈ F̂∗
q let us set ψ ′

2 := ψ−1
1 ψ2 ∈ F̂∗

q. Then the
irreducible one dimensional representation (14.11) can be expressed by

(�1 ��2)

(
α β

0 δ

)
= ψ1(α)ψ

′
2(δ) for all

(
α β

0 δ

)
∈ B.

As a consequence, we shall rearrange the parameterization of the pairs
(ψ1, ψ2) (equivalently, (ψ1, ψ

′
2)) in F̂∗

q × F̂∗
q and denote by χψ1,ψ2 ∈ B̂ the one-

dimensional representation given by

χψ1,ψ2

(
α β

0 δ

)
= ψ1(α)ψ2(δ) (14.12)

for all

(
α β

0 δ

)
∈ B. We deduce from (14.12) that restricting to D all one-

dimensional representations of B provides us with all irreducible representa-
tions of its (Abelian) subgroup D. Also, for simplicity of notation, we shall
identify ResBDχψ1,ψ2 and χψ1,ψ2 .
In the following, for every character χ ofDwe denote by wχ (cf. (11.41)) the

character of D defined by wχ (d) = χ (wdw) for all d ∈ D, where the element
w is as in Lemma 14.2.4.(iv). We shall then say that χ is w-invariant, provided
wχ = χ .
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We thus have

wχψ1,ψ2

(
α 0
0 δ

)
= χψ1,ψ2

(
w

(
α 0
0 δ

)
w

)
= χψ1,ψ2

(
δ 0
0 α

)
= ψ1(δ)ψ2(α)

= χψ2,ψ1

(
α 0
0 δ

)
(14.13)

for all

(
α 0
0 δ

)
∈ D.

It follows that χψ1,ψ2 is w-invariant if and only if ψ1 = ψ2.

Proposition 14.4.3 Let ψ ∈ F̂∗
q. Then

χψ,ψ (b) = ψ (det(b))

for all b ∈ B.

Proof. This is a simple calculation: indeed we have

χψ,ψ

(
α β

0 δ

)
= ψ (α)ψ (δ) = ψ (αδ) = ψ (det

(
α β

0 δ

)
)

for all α, δ ∈ F∗
q and β ∈ Fq. �

14.5 Parabolic induction

In this section we determine the irreducible representation of GL(2,Fq) that
may be obtained by inducing up the characters of the Borel subgroup B. First,
we give a general principle.

Proposition 14.5.1 Let G be a finite group and N � G a normal subgroup.
Then the map (ρ,U ) �→ (ρ̃,U ) defined by

ρ̃(gN)u = ρ(g)u (14.14)

for all g ∈ G and u ∈ U, yields a bijection between the set of all G-
representations (ρ,U ) such that ResGNρ is trivial and the set of all G/N-
representations. Moreover, this bijection preserves irreducibility and direct-
sums.

Proof. Let (ρ,U ) be a G-representation and suppose that ResGNρ is trivial.
We note that (14.14) is well defined. Indeed, if g1, g2 ∈ G satisfy g1N = g2N,
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14.5 Parabolic induction 495

then g−1
1 g2 ∈ N so that ρ(g−1

1 g2)u = u, equivalently, ρ(g1)u = ρ(g2)u, for all
u ∈ U , showing that ρ̃(g1N) = ρ̃(g2N). Vice versa, given aG/N-representation
(σ,U ), let (σ̌ ,U ) be the G-representation defined by

σ̌ (g)u = σ (gN)u (14.15)

for all u ∈ U . In other words, σ̌ is the composition of σ with the quotient map
G→ G/N. Clearly, ResGN σ̌ is trivial. Moreover, the map σ �→ σ̌ is the inverse
of the map ρ �→ ρ̃ given by (14.14). It is straightforward to check that if ρ is
irreducible (resp. ρ = ρ1 ⊕ ρ2) then ρ̃ is irreducible (resp. ρ̃ = ρ̃1 ⊕ ρ̃2). �

The G-representation (σ̌ ,U ) defined in (14.15) is called the inflation of the
G/N-representation (σ,U ). See also Section 11.6.

Corollary 14.5.2 Let H be a finite group and denote byH ′ its derived subgroup.
Then there exists a bijective correspondence between the set of all (irreducible)
one-dimensional H-representations and the characters of H/H ′.

Proof. We first observe that if (ρ,U ) ∈ Ĥ is one-dimensional, then Ker(ρ) =
{h ∈ H : ρ(h) = idU } necessarily contains H ′: indeed H/Ker(ρ) ∼= ρ(H ) ≤
T = {z ∈ C : |z| = 1} is Abelian. Then the corollary follows from Proposition
14.5.1 after noticing that H ′ is normal in H and that H/H ′ is Abelian so that its
irreducible representations are all one-dimensional, i.e. characters. �

Proposition 14.5.3 Let G be a finite group and H ≤ G a subgroup. Denote by
H ′ the derived group of H. Let (ρ,V ) be an irreducible G-representation. Then
the following conditions are equivalent:

(a) the subspace VH ′
of H ′-invariant vectors is nontrivial;

(b) there exists a one-dimensional representation χ of H such that ρ is con-
tained in IndGHχ .

Proof. First of all, note that the subspace VH ′
is H-invariant. Indeed, H ′ is nor-

mal in H and therefore for h ∈ H and v ∈ VH ′
we have

ρ(h′)ρ(h)v = ρ(h · h−1h′h)v = ρ(h)ρ(h−1h′h)v = ρ(h)v

for all h′ ∈ H ′, thus showing that ρ(h)v ∈ VH ′
(observe that, in fact, the H-

invariance of VH ′
only depends on the normality of H ′ in H).

Consider the H-representation (ResGHρ,V
H ′
) and observe that its restriction

to H ′ is trivial. By virtue of Proposition 14.5.1 we can identify it with a repre-
sentation of the Abelian groupH/H ′ and therefore, again by Proposition 14.5.1,
it decomposes as a direct sum of one-dimensional H-representations.
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496 Representation theory of GL(2,Fq)

Thus, if VH ′
is not trivial, we can find a character χ ∈ Ĥ such that

χ ) (ResGHρ,V
H ′
) ) (ResGHρ,V ). By Frobenius reciprocity we have that ρ )

IndGHχ .
Conversely, if ρ is contained in IndGHχ , for some character χ ∈ Ĥ, then, again

by Frobenius reciprocity, ResGHρ contains χ , which, by Corollary 14.5.2, is triv-
ial on H ′. It follows that V contains H ′-invariant vectors. �

The space J(V ) = VH ′
is called the Jacquet module of the G-representation

(ρ,V ) relative to the subgroup H ≤ G.
We now apply the above results in the casewhereG = GL(2,Fq) andH = B,

so that H ′ = B′ = U (see Lemma 14.2.4).

Notation 14.5.4 From now on, unless otherwise specified, we simply denote
GL(2,Fq) by G. Moreover if χ is a one-dimensional representation of B, we
use the notation (χ̂ ,V ) to denote (IndGBχ, IndGBC). Also, given the correspon-
dence between the one-dimensional representations of B and the characters of
its subgroup D, by abuse of notation (observe that B is not invariant by con-
jugation by w) we also denote by wχ the one-dimensional representation of B
corresponding to the character wχ ∈ D̂ (cf. (11.41)).

Proposition 14.5.5 Let χ be a one-dimensional representation of B. Then

(ResGB χ̂ ,VU ) ∼ (χ ⊕ wχ,C2).

Proof. First of all note that the space VU ≤ IndGBC is made up of all functions
f : G→ C such that

f (gb) = χ (b) f (g) for all b ∈ B and g ∈ G (14.16)

(by the definition of an induced representation) and

f (u−1g) = f (g) for all u ∈ U and g ∈ G

(by U-invariance). Then, by the Bruhat decomposition (see Lemma 14.2.4),
any function f satisfying these conditions is uniquely determined by its values
at 1G and w:

f (b) = χ (b) f (1G) for all b ∈ B
f (uwb) = χ (b) f (w) for all b ∈ B and u ∈ U.

(14.17)

As a consequence, dimVU = 2 and the functions f0 and f1 in VU satisfying

f0(1G) = 1, f0(w) = 0 and f1(1G) = 0, f1(w) = 1

constitute a basis for VU .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.015
https://www.cambridge.org/core


14.5 Parabolic induction 497

Let us determine the corresponding matrix coefficients for the representation
(ResGB χ̂ ,VU ). We have

[χ̂ (b) f0](1G) = f0(b
−1) = χ (b) f0(1G) for all b ∈ B.

Moreover, for every b ∈ B there exist b′ ∈ B and u ∈ U such that b−1w = uwb′

so that

[χ̂ (b) f0](w) = f0(b
−1w) = f0(uwb

′) = χ (b′) f0(w) = 0.

This shows that

χ̂ (b) f0 = χ (b) f0.

We now consider the action of B on f1. Let b ∈ B. Then we can find α0, α1 ∈ C
such that

χ̂ (b) f1 = α0 f0 + α1 f1.

Evaluating this expression at 1G we get

α0 = [χ̂ (b) f1](1G) = f1(b
−1) = χ (b) f1(1G) = 0

so that

χ̂ (b) f1 = α1 f1.

Since f1 is U-invariant, arguing as in the proof of Proposition 14.5.3, the
action of B on f1 is given by the action ofD ∼= B/U ≡ B/B′. As a consequence,
setting d = bU ∈ B/U we have

[χ̂ (d) f1](1G) = f1(d
−1) = 0 for all d ∈ D

and

[χ̂ (d) f1](w) = f1(d
−1w)

= f (w · wd−1w)

= χ (wdw) f1(w)

= wχ (d) f1(w)

that is, χ̂ (d) f1 = wχ (d) f1, for all d ∈ D. This, in turn, implies χ̂ (b) f1 =
wχ (b) f1, for all b ∈ B. �

For the convenience of the reader, we now recall from Section 11.4 two basic
facts on the theory of induced representations in the particular case when the
representations that we are inducing are one-dimensional. See also Remark
11.4.10. Let G be a finite group, K ≤ G a subgroup, and S � 1G a system
of representatives for the double K-cosets, so that we have the decomposition
G =∐s∈S KsK. Let χ, ξ be one-dimensional representations of K. For s ∈ S
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498 Representation theory of GL(2,Fq)

let Ks = sKs−1 ∩ K and define a one-dimensional representation of Ks by set-
ting

ξs(x) = ξ (s−1xs) for all x ∈ Ks.

Then we have Mackey’s formula for invariants (cf. Corollary 11.4.4)

HomG(Ind
G
Kχ, IndGKξ ) ∼=

⊕
s∈S

HomKs (Res
K
Ksχ, ξs)

and

HomKs (Res
K
Ksχ, ξs) ∼=

{
C if ResKKsχ = ξs

{0} otherwise.

In particular, for ξ = χ we get Mackey’s criterion for irreducibility (cf. Corol-
lary 11.4.6): IndGKχ is irreducible if and only if

ResKKsχ �= χs for all s ∈ S \ {1G}.
Let again G = GL(2,Fq) and, for each ψ ∈ F̂∗

q, define a one-dimensional
representation χ̂0

ψ of G by setting

χ̂0
ψ (g) = ψ (det g) for all g ∈ G. (14.18)

Theorem 14.5.6 Keeping in mind (14.12) and Notation 14.5.4, we have:

(i) Let ψ1, ψ2, ξ1, ξ2 ∈ F̂∗
q. If ψ1 �= ψ2 then χ̂ψ1,ψ2 is an irreducible repre-

sentation of G of dimension q+ 1. Moreover, χ̂ψ1,ψ2 ∼ χ̂ξ1,ξ2 if and only
if {ψ1, ψ2} = {ξ1, ξ2}. In particular,{

χ̂ψ1,ψ2 (= χ̂ψ2,ψ1 ) : ψ1 �= ψ2 ∈ F̂∗
q

}
consists of (q−1)(q−2)

2 pairwise nonequivalent irreducible representa-
tions of G.

(ii) For each ψ ∈ F̂∗
q there exists an irreducible G-representation χ̂1

ψ of
dimension q such that

χ̂ψ,ψ = χ̂0
ψ ⊕ χ̂1

ψ.

Moreover, {
χ̂1
ψ : ψ ∈ F̂∗

q

}
is a set of (q− 1) pairwise nonequivalent q-dimensional G-
representations, while {

χ̂0
ψ : ψ ∈ F̂∗

q

}
is the set of all one-dimensional G-representations.
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Proof. First of all, note that the Bruhat decomposition in Lemma 14.2.4 may
be also written in the form

G = B
∐

BwB

yielding a decomposition ofG into double B-cosets. Moreover,wBw ∩ B = D,
so that, if χ, ξ are one-dimensional representations of B, Mackey’s formula for
invariants becomes

HomG(χ̂ , ξ̂ ) ∼= HomB(χ, ξ )⊕ HomD(Res
B
Dχ,wξ )

= HomB(χ, ξ )⊕ HomD(χ,wξ ). (14.19)

In particular, for ξ = χ and ξ �= wχ (more precisely, χ �= wχ) we get the
irreducibility of χ̂ ; for χ �= wχ , ξ �= wξ , and {χ, wχ} �= {ξ, wξ} we get the
nonequivalence of the irreducible representations χ̂ and ξ̂ . Their dimension is
just [G : B] = q+ 1. Note that their nonequivalence also follows from Propo-
sition 14.5.5. Finally, we can invoke Theorem 14.4.1 and (14.13).
Now suppose that χ = wχ . From (14.19) we deduce that dimHomG(χ̂ , χ̂ ) =

2, so that χ̂ decomposes into the sum of two irreducible B-representations.
Moreover, χ̂0

ψ is contained in χ̂ψ,ψ . Indeed, setting f (g) = ψ (det g), we have

f (gb) = ψ (det(gb)) = ψ (det g) · ψ (det b) = χψ,ψ (b) f (g) (14.20)

for all g ∈ G and b ∈ B, so that (14.16) is satisfied, and

[χ̂ψ,ψ (g) f ](g0) = f (g−1g0) = χ̂0
ψ (g) f (g0) (14.21)

for all g, g0 ∈ G. Therefore, there exists a second irreducible representation χ̂1
ψ

in χ̂ with dimχ̂1
ψ = (q+ 1)− 1 = q. Again by (14.19), for different ψs we

get nonequivalent representations (this also follows from Proposition 14.5.5).
Finally, if ξ is a one-dimensional G-representation, then it is contained in
IndGBχ , where χ = ResGBξ . This follows from computations as in (14.20) and
(14.21). Alternatively, ResGUξ ≡ 1, because U is the commutator subgroup
of B so that, by Proposition 14.5.3, ξ is contained in some IndGBχ . In any
case, we have proved that {χ̂0

ψ,ψ ∈ F̂q} is the list of all one-dimensional
G-representations. �

As a byproduct, we deduce the following result of a purely algebraic flavor:

Corollary 14.5.7 The commutator subgroup of GL(2,Fq) is SL(2,Fq).
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Proof. SL(2,Fq) is normal and GL(2,Fq)/SL(2,Fq) is Abelian, because we
have the homomorphism

GL(2,Fq) → F∗
q

g �→ det g

whose kernel is SL(2,Fq). In particular, GL(2,Fq)/SL(2,Fq) ∼= F∗
q, so that

SL(2,Fq) ⊇ GL(2,Fq)′, and |GL(2,Fq)/SL(2,Fq)| = q− 1. But, for any
finite group G, the quantity |G/G′| equals the number of one-dimensional irre-
ducible G-representations (see Corollary 14.5.2) and, by Theorem 14.5.6, this
number is exactly |F∗

q| = q− 1. This forces SL(2,Fq) = GL(2,Fq)′. �

Remark 14.5.8 From Proposition 14.5.3 and Proposition 14.5.5 it follows that
for any one-dimensional representation χ of B, the induced representation χ̂

decomposes as the sum of at most two irreducible G-representations. Indeed,
if χ̂ = σ1 ⊕ σ2 ⊕ · · · ⊕ σm, by Proposition 14.5.3 each σi contains a nontriv-
ialU-invariant vector, while, by Proposition 14.5.5, χ̂ contains exactly a two-
dimensional space of U-invariant vectors. This fact might be used to get an
alternative proof of the fact that χ̂ψ,ψ contains exactly two irreducible repre-
sentations.

Proposition 14.5.9 Let ψ,ψ1, ψ2 ∈ F̂∗
q and denote by �,�1, �2 the corre-

sponding representations of Aff(Fq) (cf. Theorem 12.1.3). Then

ResGAff(Fq )χ̂
1
ψ = � ⊕ π

and, if ψ1 �= ψ2,

ResGAff(Fq )χ̂ψ1,ψ2 = �1 ⊕�2 ⊕ π,

where π is the unique (q− 1)-dimensional irreducible representation of
Aff(Fq) (cf. Theorem 12.1.3).

Proof. Wefirst note that the spaceVU (withV as in Proposition 14.5.5) being B-
invariant, it is also Aff(Fq)-invariant, and, moreover, dimVU = 2. It is also clear
that ResGAff(Fq )χ̂ψ1,ψ2 2 �1 ⊕�2. Indeed, by (14.13) and Proposition 14.5.5, the

B-representation onVU is isomorphic to χψ1,ψ2 ⊕ χψ2,ψ1 and Res
B
Aff(Fq )χ̂ψ1,ψ2 =

�1. Then, there exists an Aff(Fq)-invariant subspaceW such thatV = VU ⊕W .
The spaceW cannot contain a one-dimensional representation of Aff(Fq), oth-
erwise it would contain U-invariant vectors (note that U is the commutator
subgroup also of Aff(Fq)). Therefore,W necessarily coincides with the repre-
sentation space of π .
The case ψ1 = ψ2 = ψ is analogous. �
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Exercise 14.5.10

(1) From Proposition 14.5.9 and Frobenius reciprocity, deduce that, for all
ψ ∈ F̂∗

q,

IndGAff(Fq )� = χ̂0
ψ ⊕ χ̂1

ψ ⊕

⎛⎜⎜⎜⎝⊕
ψ1∈F̂∗

q :
ψ1 �=ψ

χ̂ψ1,ψ

⎞⎟⎟⎟⎠ .

(2) From Exercise 12.1.8.(2) and transitivity of induction, deduce that

IndGUχ0 =

⎛⎜⎝⊕
ψ∈F̂∗

q

χ̂0
ψ

⎞⎟⎠⊕

⎛⎜⎝⊕
ψ∈F̂∗

q

χ̂1
ψ

⎞⎟⎠⊕ 2

⎛⎝ ⊕
{ψ1,ψ2}

χ̂ψ1,ψ2

⎞⎠,

where {ψ1, ψ2} runs over all two-subsets of F̂∗
q (in other words, in the

last summand, the representation χ̂ψ1,ψ2 = χ̂ψ2,ψ1 is counted once, but
it appears with multiplicity 2 in the decomposition).

14.6 Cuspidal representations

This section is devoted to a close analysis of the cuspidal representations of G.
The last part heavily relies on the material from Section 7.3. Let G be a finite
group and K ≤ G a subgroup. Consider a one-dimensional K-representation
(χ,C) that we identify with its character. As usual, we fix a complete set S ⊆ G
of representatives for the double K-cosets in G, so that G =∐s∈S KsK, and set
Ks = K ∩ sKs−1. Also, cf. (11.32), we denote by S0 the set of s ∈ S such that
HomKs (Res

K
Ksχ, χs) is not trivial.

For the convenience of the reader, in the following theorem we collect some
results about the Hecke algebra H(G,K, χ ) from Chapter 13.

Theorem 14.6.1 Let

H(G,K, χ ) = { f ∈ L(G) : f (k1gk2) = χ (k1) f (g)χ (k2), ∀k1, k2 ∈ K, g ∈ G}.

Then the following hold:

(i) EndG(IndGKχ ) ∼= H(G,K, χ );
(ii) S0 = {s ∈ S : χ (s−1xs) = χ (x), for all x ∈ Ks};
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(iii) every function f ∈ H(G,K, χ ) only depends on its values on S0,
namely,

f (g) =
{
χ (k1) f (s)χ (k2) if g= k1sk2 with s ∈ S0

0 otherwise.

Definition 14.6.2 A GL(2,Fq)-representation (ρ,V ) whose subspace VU of
U-invariant vectors is trivial is called a cuspidal representation. We denote by
Cusp = Cusp(GL(2,Fq)) ⊂ ̂GL(2,Fq) a complete set of pairwise nonequiva-
lent irreducible cuspidal representations.

Theorem 14.6.3 Let χ be a non-trivial character of the (Abelian) group U.
Then IndGUχ is multiplicity-free and does not depend on the particular choice
of χ . Moreover

IndGUχ =

⎡⎢⎣⊕
ψ∈F̂∗

q

χ̂1
ψ

⎤⎥⎦⊕
⎡⎢⎣ ⊕

ψ1 �=ψ2∈F̂∗
q

χ̂ψ1,ψ2

⎤⎥⎦⊕
⎡⎣ ⊕

ρ∈Cusp
ρ

⎤⎦ . (14.22)

In other words, (G,U, χ ) is a multiplicity-free triple for every non-trivial
character χ ∈ Û (cf. Chapter 13) and IndGUχ contains all the irreducible
G-representations of dimension greater than one.

Proof. We present two proofs of (14.22): the first one is of a more theoretical
flavor, the second one relies on the computation of the number of conjugacy
classes of G.

First proof. We first observe that U is a normal subgroup of B and that one
has B =∐d∈D dU =∐d∈DUdU . From the Bruhat decomposition (cf. Lemma
14.2.4) we then get

G = B
∐

UwB =
(∐
d∈D

UdU

)∐(∐
d∈D

UwdU

)
.

As a consequence we can take S := D
∐

wD as a complete set of repre-
sentatives for the double U-cosets in G. Moreover, it is easy to check that
dUd−1 ∩U = U and wdUd−1w ∩U = {1G} for all d ∈ D. Thus (cf. Theorem
14.6.1.(ii)), we have that

S0 = Z
∐

wD = S \ (D \ Z). (14.23)

From Theorem 14.6.1.(iii) we deduce that every function f ∈ H(G,K, ψ ) van-
ishes on

∐
d∈D\Z dU .
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Consider now the map τ : G→ G defined by setting

τ

(
α β

γ δ

)
=
(
δ β

γ α

)

for all

(
α β

γ δ

)
∈ G. It is easy to check that τ is an involutive anti-

automorphism of G, that is, τ (g1g2) = τ (g2)τ (g1) and τ 2(g) = g for all
g1, g2, g ∈ G. We claim that

f τ = f for all f ∈ H(G,U, χ ), (14.24)

where f τ ∈ L(G) is defined by setting f τ (g) = f (τ (g)) for all g ∈ G (cf.
(13.18)). In order to show (14.24), we recall that every f ∈ H(G,U, χ ) is sup-
ported in

∐
s∈Z∐wDUsU and observe that τ fixes pointwise the subgroup U .

As a consequence, it suffices to show that τ also fixes all elements in Z
∐

wD.
First of all, it is obvious that τ (z) = z for all z ∈ Z. The remaining part is a
simple calculation:

τ (wd) = τ

((
0 1
1 0

)(
α 0
0 β

))
= τ

((
0 β

α 0

))
=
(
0 β

α 0

)
= wd

for all d =
(
α 0
0 β

)
∈ D. The claim follows.

By Proposition 13.3.4, the algebraH(G,U, χ ) is commutative and therefore
IndGUχ is multiplicity-free. By transitivity of induction and (12.7) we have

IndGUχ = IndGAff(Fq )Ind
Aff(Fq )
U χ = IndGAff(Fq )π (14.25)

so that also IndGAff(Fq )π is multiplicity-free.

The multiplicity of χ̂1
ψ and χ̂ψ1,ψ2 in Ind

G
Uχ is equal to one by (14.25), Propo-

sition 14.5.9, and Frobenius reciprocity. If ρ is cuspidal, then ResGAff(Fq )ρ can-
not contain a one-dimensional representation � of Aff(Fq), because otherwise
it would contain also nontrivialU-invariant vectors (recall the proof of Propo-
sition 14.5.9 and the fact thatU is the commutator subgroup of Aff(Fq)). Then
ResGAff(Fq )ρ must be a multiple of π . Therefore,

1 ≥ multiplicity of a cuspidal representation ρ in IndGAff(Fq )π

= multiplicity of π in ResGAff(Fq )ρ (by Frobenius reciprocity)

≥ 1

implies that all these multiplicities are equal to 1. Finally, from Corollary
11.2.3 and (14.25) it follows that IndGUχ cannot contain one-dimensional
G-representations.
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504 Representation theory of GL(2,Fq)

Second proof. In Theorem 14.5.6 we have determined:

� q− 1 one-dimensional representations of G (the χ̂0
ψs);

� q− 1 irreducible q-dimensional representations of G (the χ̂1
ψs);

�
(q−1)(q−2)

2 irreducible (q+ 1)-dimensional representations ofG (the χ̂ψ1,ψ2 s).

Since G has 2(q− 1)+ (q−1)(q−2)
2 + q(q−1)

2 conjugacy classes (see Theorem
14.3.2), from Theorem 10.3.13.(ii) it follows that there exist exactly q(q−1)

2 irre-
ducible representations missing in the above list: these are the cuspidal repre-
sentations. Moreover (cf. (11.10) and Proposition 14.3.1)

dimIndGUχ = [G : U] = (q+ 1)(q− 1)2. (14.26)

Invoking again Theorem 14.5.6 and using the last part of the first proof, we
deduce that the χ̂1

ψs and χ̂ψ1,ψ2 s sum up in IndGUχ forming a subspace of dimen-
sion ∑

ψ∈F̂∗
q

dimχ̂1
ψ +

∑
ψ1 �=ψ2∈F̂∗

q

dimχ̂ψ1,ψ2 = q(q− 1)+ (q2 − 1)(q− 2)

2

= (q− 1)
q2 + q− 2

2
.

(14.27)

Denoting by rρ ≥ 1 the multiplicity of π in ResGAff(Fq )ρ ∈ Cusp, so that dimρ =
rρdimπ = rρ (q− 1) (cf. the first proof), by subtracting (14.27) from (14.26),
we deduce ∑

ρ∈Cusp
rρ (q− 1) = (q− 1)

q(q− 1)

2
,

that is,
∑

ρ∈Cusp rρ = q(q−1)
2 . Since this is a sum of q(q−1)

2 integers rρ ≥ 1, we
deduce that rρ = 1 for every cuspidal representation ρ. �

Remark 14.6.4 Alternatively, from (14.23) and multiplicity freeness of IndGUχ
one deduces that

dimEndG(Ind
G
Uχ ) = |Z| + |wD| = (q− 1)+ (q− 1)2 = q(q− 1).

Since parabolic induction yields

q− 1+ (q− 1)(q− 2)

2
= q(q− 1)

2

irreducible representations in IndGUχ , there are other q(q−1)
2 irreducible re-

presentations in IndGUχ , and these must be exactly the q(q−1)
2 cuspidal repre-

sentations.
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14.6 Cuspidal representations 505

Corollary 14.6.5 A G-representation (ρ,V ) (not necessarily irreducible) is a
cuspidal representation if and only if ResGAff(Fq )ρ = π . In particular, dimρ =
q− 1 for every cuspidal representation.

Proof. The “only if” part can be immediately deduced from the proof of the pre-
vious theorem where we have shown that, if ρ is cuspidal, then ResGAff(Fq )ρ =
π and, in particular, dimρ = q− 1. The “if” part is trivial: if (ρ,V ) is a
G-representation and ResGAff(Fq )ρ = π then ρ is G-irreducible, since π is
Aff(Fq)-irreducible. Moreover,V cannot contain nontrivialU-invariant vectors
because,

ResGUρ = ResAff(Fq )U ResGAff(Fq )ρ = ResAff(Fq )U π =
⊕
χ∈Û

χ nontrivial

χ,

where the last equality follows from Corollary 12.1.7. �
We now introduce a special element in B:

b0 =
(−1 −1

0 1

)
. (14.28)

The following property is elementary, but useful: for all b ∈ B \ D there exist
d1, d2 ∈ D such that

b = d1b0d2. (14.29)

Indeed, if

(
α β

0 δ

)
∈ B \ D, that is β �= 0, then

(
α β

0 δ

)
=
(
1 0
0 −δβ−1

)(−1 −1
0 1

)(−α 0
0 −β

)
.

Also note that if d =
(
α 0
0 δ

)
∈ D then

d̃ = wdw =
(
δ 0
0 α

)
∈ D. (14.30)

Exercise 14.6.6 From Exercise 14.5.10 and Exercise 12.1.8, deduce that, for
ψ ∈ Â,

IndGAψ = (IndGUχ)⊕
⎡⎢⎢⎢⎣χ̂0

ψ ⊕ χ̂1
ψ ⊕

⎛⎜⎜⎜⎝⊕
ψ1∈F̂∗

q :
ψ1 �=ψ

χ̂ψ1,ψ

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ ,

where χ is any nontrivial character ofU .
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506 Representation theory of GL(2,Fq)

Proposition 14.6.7 Let V be a finite dimensional vector space and ρ : G→
End(V ) a map such that:

(a) ResGBρ is an irreducible B-representation;
(b) ρ(b1wb2) = ρ(b1)ρ(w)ρ(b2) for all b1, b2 ∈ B;
(c) ρ(wdw) = ρ(w)ρ(d)ρ(w) for all d ∈ D;
(d) ρ(wb0w) = ρ(w)ρ(b0)ρ(w).

Then (ρ,V ) is an irreducible G-representation.

Proof. We show that ρ(g1g2) = ρ(g1)ρ(g2) for all g1, g2 ∈ G. Note that, this
gives, in particular, that ρ(g) ∈ GL(V ) for all g ∈ G. When g1, g2 ∈ B, this fol-
lows from the hypothesis (a) (which also implies that ρ(1G) = IV ). By virtue of
the Bruhat decomposition (cf. Lemma 14.2.4) we have the following remaining
cases:

First case: g1 = b ∈ B and g2 = b1wb2 ∈ BwB. Then

ρ(g1g2) = ρ(bb1wb2)

(by hypothesis (b)) = ρ(bb1)ρ(w)ρ(b2)

(by hypothesis (a)) = ρ(b)ρ(b1)ρ(w)ρ(b2)

(by hypothesis (b)) = ρ(b)ρ(b1wb2)

= ρ(g1)ρ(g2).

The case g1 ∈ BwB and g2 ∈ B can be treated in the same way.

Second case: g1 = b1wb2 ∈ BwB and g2 = b3wb4 ∈ BwB. We must further
distinguish two subcases:
First subcase: b2b3 = d ∈ D. Then

ρ(g1g2) = ρ(b1wdwb4)

(by (14.30)) = ρ(b1d̃b4)

(by hypothesis (a)) = ρ(b1)ρ(d̃)ρ(b4)

(by hypothesis (c)) = ρ(b1)ρ(w)ρ(d)ρ(w)ρ(b4)

(by hypothesis (a)) = ρ(b1)ρ(w)ρ(b2)ρ(b3)ρ(w)ρ(b4)

(by hypothesis (b)) = ρ(g1)ρ(g2).

Second subcase: b2b3 ∈ B \ D. By (14.29) there exist d1, d2 ∈ D such that

b2b3 = d1b0d2. (14.31)
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Then

ρ(g1g2) = ρ(b1wd1b0d2dwb4)

(by (14.30)) = ρ(b1d̃1wb0wd̃2b4)

(by the first case for wb0w ∈ BwB) = ρ(b1d̃1)ρ(wb0w)ρ(d̃2b4)

(by hypothesis (d)) = ρ(b1d̃1)ρ(w)ρ(b0)ρ(w)ρ(d̃2b4)

(by the first case) = ρ(b1d̃1w)ρ(b0)ρ(wd̃2b4)

(by (14.30)) = ρ(b1wd1)ρ(b0)ρ(d2wb4)

(by the first case and hypothesis (a)) = ρ(b1w)ρ(d1b0d2)ρ(wb4)

(by (14.31)) = ρ(b1w)ρ(b2b3)ρ(wb4)

(by the first case and hypothesis (a)) = ρ(b1wb2)ρ(b3wb4).

This shows that ρ is a representation. Its G-irreducibility follows from B-
irreducibility (hypothesis (a)). �

We now fix χ ∈ F̂q and consider an indecomposable character ν ∈ F̂∗
q2 (cf.

Definition 7.2.1). Let j = jχ,ν be the associated generalized Kloostermann sum
(cf. (7.16)). Set V = L(F∗

q ). We define a map ρ : G→ End(V ) by setting, for
all f ∈ V and y ∈ F∗

q,

[ρ(g) f ](y) = ν(δ)χ (δ−1βy−1) f (δα−1y) (14.32)

if g=
(
α β

0 δ

)
∈ B and

[ρ(g) f ](y) = −
∑
x∈F∗

q

ν(−γ x)χ (αγ−1y−1 + γ−1δx−1) j(γ−2y−1x−1 det(g)) f (x)

(14.33)

if g=
(
α β

γ δ

)
∈ G \ B ≡ BwB (that is, if γ �= 0).

Remark 14.6.8 As noted by Terras [159, p. 372], the minus sign in the
right hand side of (14.33) is essential for the definition of ρ(g) for g ∈ G \
B. Note that Piatetski-Shapiro [123] defines an induced representation by a
right-translation action, namely, given a K-representation (σ,V ), he defines
(ρ, IndGKV ) by setting

IndGKV = { f : G→ V : f (kg) = σ (k) f (g) for all k ∈ K and g ∈ G} (14.34)
and

[ρ(g1) f ](g2) = f (g2g1)
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508 Representation theory of GL(2,Fq)

for all f ∈ IndGKV , and g1, g2 ∈ G (compare with (11.1) and (11.2)). Moreover,
if k(y, x; g) is as in [123, p. 40], our ρ is defined by

[ρ(g) f ](y) =
∑
x∈F∗

q

k(y−1, x−1; g) f (x)

for all f ∈ IndGKV , g ∈ G, and y ∈ F∗
q.

Theorem 14.6.9 The above defined map ρ is an irreducible unitary G-
representation and ResGAff(Fq )ρ = π (cf. Proposition 14.5.9).

Proof. The proof is an application of Proposition 14.6.7.
First of all, we prove that

ResGBρ ∼
(
Res

F∗
q2

F∗
q
ν

)
� π.

Indeed, using Theorem 14.4.1, we get{[(
Res

F∗
q2

F∗
q
ν � π

)(
α β

0 δ

)]
f

}
(y) = ν(δ)

[
π

(
αδ−1 βδ−1

0 1

)
f

]
(y)

(by Proposition 12.1.4) = ν(δ)χ (βδ−1y−1) f (α−1δy)

(by (14.32)) = [ρ(g) f ](y),

for all

(
α β

0 δ

)
∈ B, f ∈ V , and y ∈ F∗

q. This shows that Res
G
Bρ isB-irreducible,

and condition (a) in Proposition 14.6.7 is satisfied.
We also note that, for all y ∈ F∗

q,

[ρ(w) f ](y) = −
∑
x∈F∗

q

ν(−x) j(−x−1y−1) f (x). (14.35)

Let now b1 =
(
α1 β1

0 δ1

)
, b2 =

(
α2 β2

0 δ2

)
∈ B. Then

b1wb2 =
(
β1α2 β1β2 + α1δ2

δ1α2 δ1β2

)
and det(b1wb2) = −α1α2δ1δ2 so that

[ρ(b1wb2) f ](y) = −
∑
x∈F∗

q

ν(−δ1α2x)χ (β1δ
−1
1 y−1 + α−1

2 β2x
−1)·

j(−α1δ2α
−1
2 δ−1

1 x−1y−1) f (y)
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14.6 Cuspidal representations 509

and

[ρ(b1)ρ(w)ρ(b2) f ](y) = ν(δ1)χ (δ
−1
1 β1y

−1)[ρ(w)ρ(b2) f ](δ1α
−1
1 y)

(by (14.35)) = −ν(δ1)χ (δ
−1
1 β1y

−1)
∑
x∈F∗

q

ν(−x)·

j(−x−1y−1δ−1
1 α1)[ρ(b2) f ](x)

= −
∑
x∈F∗

q

ν(−xδ1δ2)χ (δ−1
1 β1y

−1 + δ−1
2 β2x

−1)·

j(−x−1y−1δ−1
1 α1) f (δ2α

−1
2 x)

(setting z = δ2α
−1
2 x) = −

∑
z∈F∗

q

ν(−zδ1α2)χ (β1δ
−1
1 y−1 + α−1

2 β2z
−1)·

j(−z−1y−1α1δ2α
−1
2 δ−1

1 ) f (z).

This shows that ρ(b1wb2) = ρ(b1)ρ(w)ρ(b2), and we have proved condition
(b) in Proposition 14.6.7.

We now consider d =
(
α 0
0 δ

)
∈ D so that wdw =

(
δ 0
0 α

)
(cf. (14.30)).

Then, by (14.35),

[ρ(w)ρ(d)ρ(w) f ](y) = −
∑
x∈F∗

q

ν(−x) j(−x−1y−1)[ρ(d)ρ(w) f ](x)

= −
∑
x∈F∗

q

ν(−xδ) j(−x−1y−1)[ρ(w) f ](α−1δx)

=
∑
x,z∈F∗

q

ν(xzδ) j(−x−1y−1) j(−αδ−1x−1z−1) f (z)

(set t = −x−1z−1αδ−1) = ν(−α)
∑
z∈F∗

q

⎡⎣∑
t∈F∗

q

ν(t−1) j(t ) j(y−1zα−1δt )

⎤⎦ f (z)

(by Corollary 7.3.6) =
∑
z∈F∗

q

ν(α)δ1,y−1zα−1δ f (z)

= ν(α) f (αδ−1y)

(by (14.32)) = [ρ(wdw) f ](y)

and condition (c) also is proved.
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510 Representation theory of GL(2,Fq)

Finally, if b0 =
(−1 −1

0 1

)
is as in (14.28), then wb0w =

(
1 0
−1 −1

)
so

that

[ρ(wb0w) f ](y) = −
∑
z∈F∗

q

ν(z)χ (z−1 − y−1) j(−z−1y−1) f (z)

while, using again (14.35) and (14.32),

[ρ(w)ρ(b0)ρ(w) f ](y) = −
∑
x∈F∗

q

ν(−x) j(−x−1y−1)[ρ(b0)ρ(w) f ](x)

= −
∑
x∈F∗

q

ν(−x) j(−x−1y−1)χ (−x−1)[ρ(w) f ](−x)

=
∑
x,z∈F∗

q

ν(xz) j(−x−1y−1) j(x−1z−1)χ (−x−1) f (z)

(setting w = −x−1) =
∑
z∈F∗

q

ν(−z)
⎡⎣∑

w∈F∗
q

j(wy−1) j(w(−z−1))ν(w−1)χ (w)

⎤⎦f (z)
= −

∑
z∈F∗

q

ν(z) j(−y−1z−1)χ (z−1 − y−1) f (z),

where the last equality follows from Proposition 7.3.4. Thus condition (d) is
proved as well.

We are only left to show that ρ is unitary. Let f1, f2 ∈ L(F∗
q ). If g=

(
α β

0 δ

)
then we have

〈ρ(g) f1, ρ(g) f2〉 =
∑
x∈F∗

q

ν(δ)χ (δ−1βx−1) f1(δα
−1x)ν(δ)χ (δ−1βx−1) f2(δα−1x)

=(∗)
∑
y∈F∗

q

f1(y) f2(y)

= 〈 f1, f2〉

where =(∗) follows from the substitution y = δα−1x and the fact that |ν(·)| =
|χ (·)| = 1.
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Similarly, if g=
(
α β

γ δ

)
with γ �= 0, then

〈ρ(g) f1, ρ(g) f2〉 =
∑
y∈F∗

q

∑
x,z∈F∗

q

ν(−γ x)χ (αγ−1y−1 + γ−1δx−1)·

j(γ−2y−1x−1 det(g)) f1(x)ν(−γ z)·
χ (αγ−1y−1 + γ−1δz−1) j(γ−2y−1z−1 det(g)) f2(z)

=
∑
x,z∈F∗

q

f1(x) f2(z)ν(xz
−1)χ [γ−1δ(x−1 − z−1)]·

∑
y∈F∗

q

j(γ−2y−1x−1 det(g)) j(γ−2y−1z−1 det(g))

(by Proposition 7.3.5) =
∑
x,z∈F∗

q

f1(x) f2(z)ν(xz
−1)χ [γ−1δ(x−1 − z−1)]δx,z

= 〈 f1, f2〉. �
In the following, we write ρν (resp. jν) to emphasize the dependence of the

representation ρ (resp. the generalized Kloosterman sum) from the indecom-
posable character ν.

Theorem 14.6.10 Let μ and ν be indecomposable characters of F∗
q2 . Then the

following conditions are equivalent.

(a) the representations ρμ and ρν are equivalent;
(b) μ = ν or μ = ν;
(c) jμ = jν and μ|F∗

q
= ν|F∗

q
.

Proof. The implication (b)⇒ (c) follows immediately from the definitions, and
the converse, namely (c)⇒ (b), is Theorem 7.3.7. The fact that (c) implies (a)
is trivial. We are only left to prove (a) ⇒ (c). We thus suppose that ρμ ∼ ρν .
Then there exists an invertible operator T : L(F∗

q ) → L(F∗
q ) such that

Tρμ(g) = ρν (g)T

for all g ∈ G. Since, taking into account Theorem 14.6.9,

ResGAff(Fq )ρμ = ResGAff(Fq )ρν = π

and π is Aff(Fq)-irreducible, we deduce that T = λIL(F∗
q ) for some λ ∈ C \ {0},

so that

ρμ(g) = ρν (g)

for all g ∈ G.
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512 Representation theory of GL(2,Fq)

In particular, for all x, δ ∈ F∗
q and f ∈ L(F∗

q ) we have:

ρμ

(
1 0
0 δ

)
= ρν

(
1 0
0 δ

)
so that

μ(δ) f (δx) = ν(δ) f (δx)

and therefore

μ(δ) = ν(δ). (14.36)

This shows that μ|F∗
q
= ν|F∗

q
. Similarly, from (14.35) and the equality ρμ(w) =

ρν (w) we deduce∑
x∈F∗

q

μ(−x) jμ(−x−1y−1) f (x) =
∑
x∈F∗

q

ν(−x) jν (−x−1y−1) f (x),

for all y ∈ F∗
q, that implies (taking into account (14.36)) that

jμ(x) = jν (x) (14.37)

for all x ∈ F∗
q. �

Corollary 14.6.11 The set {ρν : ν indecomposable character of F∗
q2} coincides

with the set Cusp of all irreducible cuspidal representations of G.

Proof. Let ν be an indecomposable character of F∗
q2 . By Theorem 14.6.9,

ResGAff(Fq )ρν = π (and ρν is irreducible) so that, by virtue of Corollary 14.6.5,
ρν ∈ Cusp (alternatively, keeping in mind dimρν = q− 1, to show that ρν is
cuspidal onemay refer to the discussion in the second proof of Theorem 14.6.3).
By Remark 14.6.4 (cf. also the second proof of Theorem 14.6.3), there are
exactly q(q−1)

2 pairwise nonequivalent irreducible cuspidal representations. On
the other hand, the number of indecomposable characters is q(q− 1): thus, the
ρνs exhaust Cusp (and, in fact, since ρν = ρν , each cuspidal representation is
listed twice). �

14.7 Whittaker models and Bessel functions

In this section, we expose Piatetsky-Schapiro’s theory ofWhittaker models and
Bessel functions. Our approach, however, is based on our theory ofmultiplicity-
free triples (see Chapter 13): this way, we clarify many intricate points and
simplify calculations.
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14.7 Whittaker models and Bessel functions 513

Fix a nontrivial character (χ,C) ∈ Û ≡ F̂q. By Theorem 14.6.3, the induced
representation (IndGUχ, IndGUC) is multiplicity free and contains all the irre-
ducible representations of G of dimension greater than 1. Let (ρ,V ) be an
arbitrary irreducible G-representation with dimV > 1, so that, by the above,
dimHomG(ρ, IndGUχ ) = 1. We fix an operator T ρ ∈ HomG(ρ, IndGUχ ), which
is also an isometry (so that, T ρ is defined up to a complex constant of modulus
1). The subspace T ρV ≤ IndGUC is called the Whittaker model of ρ. Note that
it does not depend on T ρ and, for all v ∈ V , the function T ρv : G→ C satisfies

[T ρv](gu) = χ (u)[T ρv](g) (14.38)

for all g ∈ G, v ∈ V, and u ∈ U (by definition of IndGUχ ), and

[T ρv](h−1g) = [T ρρ(h)v](g) (14.39)

for all g, h ∈ G, v ∈ V (because T ρ is an intertwiner and, again, by definition
of IndGUχ ). Finally, since T

ρ is an isometry we have

‖T ρv‖IndGUC = ‖v‖V .
In particular, T ρv = 0 ⇔ v = 0.

Proposition 14.7.1 Let (ρ,V ) be an irreducible G-representation satisfying
dimV > 1. Then

(i)

ResGAff(Fq )V ∼ J(V )⊕Vπ

where J(V ) is the Jacquet module (see Section 14.5) and (π,Vπ ) is the
unique q− 1 dimensional irreducible representation of Aff(Fq).

(ii) Let v ∈ J(V ) then

ρ

(
1 β

0 1

)
v = v

for all

(
1 β

0 1

)
∈ U.

(iii) dimV > dimJ(V ).

Proof.

(i) It is an immediate consequence of the following facts: (ρ,V ) is con-
tained in IndGUχ ∼ IndGAff(Fq )π so that ResGAff(Fq )V containsVπ with mul-

tiplicity one. If (ρ,V ) is cuspidal, then ResGAff(Fq )ρ ∼ π (cf. Corollary
14.6.5) and J(V ) = 0 (by definition). If (ρ,V ) is parabolic, we may
invoke Proposition 14.5.9.
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514 Representation theory of GL(2,Fq)

(ii) If J(V ) is nontrivial, then by Theorem 12.1.3 and Proposition 14.5.9 we
have

ResGAff(Fq )
[
ρ|J(V )

] = {either �1 ⊕�2

or �

and � is trivial onU .
(iii) This follows immediately from (i). �

The following is an elementary but useful identity.

Lemma 14.7.2 Let (ρ,V ) be an irreducible G-representation with dimV > 1.
Let also v ∈ V, α ∈ F∗

q and β ∈ Fq. Then we have:

[T ρv]

(
α β

0 1

)
= χ (α−1β )[T ρv]

(
α 0
0 1

)
.

Proof.

[T ρv]

(
α β

0 1

)
= [T ρv]

[(
α 0
0 1

)(
1 α−1β

0 1

)]
(by (14.38)) = χ (α−1β )[T ρv]

(
α 0
0 1

)
. �

Proposition 14.7.3 Let (ρ,V ) be an irreducible G-representation with
dimV > 1 and define a linear map R : V → L(F∗

q ) by setting

[Rv](x) = [T ρv]

(
x 0
0 1

)
for all v ∈ V, x ∈ F∗

q. Then R is a surjective A-homomorphism (cf. (12.2)) and
its kernel is exactly J(V ).

Proof. Suppose that v ∈ J(V ). Then, for α ∈ F∗
q, β ∈ Fq we have

[T ρv]

(
α β

0 1

)
= [T ρv]

[(
α −β

0 1

)−1 (
α 0
0 1

)]

(by (14.39)) =
[
T ρρ

(
1 −β

0 1

)
v

](
α 0
0 1

)
(by Proposition 14.7.1.(ii)) = [T ρv]

(
α 0
0 1

)
.

Then, using Lemma 14.7.2, we deduce that

[T ρv]

(
α 0
0 1

)
= [T ρv]

(
α β

0 1

)
= χ (α−1β )[T ρv]

(
α 0
0 1

)
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14.7 Whittaker models and Bessel functions 515

for all β ∈ Fq, and this implies that [T ρv]

(
α 0
0 1

)
≡ [Rv](α) = 0 for all α ∈

F∗
q (since χ is nontrivial). That is, v ∈ KerR, showing that J(V ) ⊂ Ker(R).
Let us prove that KerR is Aff(Fq)-invariant. If α, γ ∈ F∗

q, β ∈ Fq and v ∈
KerR then, taking into account (14.39), we have[

T ρρ

(
γ β

0 1

)
v

](
α 0
0 1

)
= [T ρv]

(
γ−1α −γ−1β

0 1

)
(by Lemma 14.7.2) = χ (−α−1β )[T ρv]

(
γ−1α 0
0 1

)
(v ∈ KerR) = 0.

Then, by Proposition 14.7.1.(i), the kernel of R must equal either J(V ) or
J(V )⊕Vπ = V . Let us show that the second possibility cannot occur. Indeed,
Ker(R) = V implies [T ρv](1G) = 0 for all v ∈ V . From (14.39) we then deduce
that [T ρv](g) = [T ρρ(g−1)v](1G) = 0 for all v ∈ V and g ∈ G, contradict-
ing the fact that T ρ is an isometry. The fact that R commutes with the A-
representations on V and L(F∗

q ) is obvious. �

Now consider again an irreducible G-representation (ρ,V ) with dimV > 1.
Since it is contained in IndGUχ with multiplicity one, by Frobenius reciprocity
ResGUρ contains χ with multiplicity one. That is, there exists v0 ∈ V , ‖v0‖ = 1
such that

ρ(u)v0 = χ (u)v0 (14.40)

for all u ∈ U . Moreover, if v ∈ V satisfies ρ(u)v = χ (u)v for all u ∈ U , then
v must be a multiple of v0. Clearly, v0 is defined up to a complex multiple of
modulus one; Piatetski-Shapiro called it the Bessel vector associated with the
representation (ρ,V ) (and the character χ ∈ Û).

We can now apply our theory of multiplicity-free triples developed in Chap-
ter 13. By (13.31), T ρ may be expressed by means of

[T ρv](g) =
√

dρ
|G/U | 〈v, ρ(g)v0〉. (14.41)

The Bessel (or spherical) function associated with ρ (and χ ) is defined by set-
ting

ϕρ (g) = 〈v0, ρ(g)v0〉 ≡
√
|G/U |
dρ

[T ρv0](g) (14.42)

for all g ∈ G, see (13.32). Clearly ϕρ (1G) = 1.
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Proposition 14.7.4 The Bessel function ϕρ satisfies

ϕρ

(
α 0
0 1

)
= 0

for all α ∈ F∗
q \ {1}.

Proof. On the one hand, for all α ∈ F∗
q, β ∈ Fq, we have

ϕρ

(
α β

0 1

)
=
〈
v0, ρ

[(
1 −β

0 1

)−1 (
α 0
0 1

)]
v0

〉

=
〈
ρ

(
1 −β

0 1

)
v0, ρ

(
α 0
0 1

)
v0

〉
(by (14.40)) = χ (β )ϕρ

(
α 0
0 1

)
.

On the other hand

ϕρ

(
α β

0 1

)
=
√
|G/U |
dρ

[T ρv0]

(
α β

0 1

)

(by Lemma 14.7.2) = χ (α−1β )

√
|G/U |
dρ

[T ρv0]

(
α 0
0 1

)

= χ (α−1β )ϕρ

(
α 0
0 1

)
.

If α �= 1, letting β vary in Fq, we deduce that ϕρ

(
α 0
0 1

)
= 0. �

First of all, we determine the Bessel vectors and Bessel functions associated
with parabolic representations. These representations (see Section 14.5) are
obtained as induced representations: if μ = χψ1,ψ2 (with ψ1 �= ψ2 or ψ1 = ψ2)
then the representation space of IndGBμ is

V = { f : G→ C : f (gb) = μ(b) f (g), for all g ∈ G, b ∈ B}. (14.43)

Now, if ψ1 �= ψ2, then it is irreducible, while if ψ1 = ψ2 = ψ , we have (see
Theorem 14.5.6.(ii)) IndGBμ = χ̂ψ,ψ = χ̂0

ψ ⊕ χ̂1
ψ , where χ̂

0
ψ is one-dimensional

and χ̂1
ψ is (irreducible and) q-dimensional. Since IndGUχ does not con-

tain one-dimensional G-representations (by Theorem 14.6.3), for every T ∈
HomG(χ̂ψ,ψ , IndGUχ ) we have Vχ̂0

ψ
⊆ KerT .
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14.7 Whittaker models and Bessel functions 517

Proposition 14.7.5 With the notation above and keeping in mind the Bruhat
decomposition (cf. Lemma 14.2.4), the Bessel vector f0 ∈ V is given by{

f0(b) = 0 for all b ∈ B

f0(uwb) = 1√
qμ(b)χ (u) for all b ∈ B, u ∈ U.

(14.44)

Proof. Let f0 be a function satisfying (14.44). It is a straightforward computa-
tion to check that f0 belongs to V (cf. (14.43)). Moreover, for all u, u′ ∈ U and
b ∈ B, we have

f0(u
−1b) = 0 = χ (u) f0(b)

and

f0(u
−1u′wb) = 1√

q
χ (u)μ(b)χ (u′) = χ (u) f0(u

′wb)

that is, f0 belongs to the χ -component of ResGU Ind
G
Bμ.

In the case ψ1 = ψ2 = ψ , the one-dimensional representation χ̂0
ψ cannot

contain a χ -component, since χ ∈ Û is non-trivial, while ResGU χ̂
0
ψ is trivial

by (14.18) since det(u) = 1 for all u ∈ U . This can be alternatively deduced
by using Frobenius reciprocity and recalling that χ̂0

ψ is not contained in IndGUχ
(cf. Theorem 14.6.3).
Finally, by (11.4) and using the Bruhat decomposition, we have

〈 f0, f0〉 = 1

|B|
∑
g∈G

| f0(g)|2

(by (14.44)) = 1

|B|
∑
g∈UwB

| f0(g)|2

= 1

|B|
∑
u∈U

∑
b∈B

| f0(uwb)|2

(by (14.44) and |U | = q) = 1

|B| · |U |
∑
u∈U

∑
b∈B

|μ(b)| · |χ (u)|

= 1

|B|
∑
b∈B

|μ(b)| · 1

|U |
∑
u∈U

|χ (u)|

= 1. �

Corollary 14.7.6 Let ρ = χ̂ψ1,ψ2 be a parabolic representation. Then, with the
same notation as in Proposition 14.7.5, we have

[T ρ f ](g) =
√
dρ
|G|
∑
u∈U

f (guw)χ (u)

for all f ∈ V (cf. (14.43)) and g ∈ G.
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Proof. Let f ∈ V and g ∈ G. By (14.41) we have

[T ρ f ](g) =
√

dρ
|G/U | 〈 f , ρ(g) f0〉IndGBμ

=
√

dρ
|G/U |

1

|B|
∑
h∈G

f (h) f0(g−1h)

(setting h = gt ) =
√

dρ
|G/U |

1

|B|
∑
t∈G

f (gt ) f0(t )

(by Proposition 14.7.5) =
√
dρ
|G|

1

|B|
∑
u∈U

∑
b∈B

f (guwb)μ(b)χ (u)

(by (14.43)) =
√
dρ
|G|
∑
u∈U

f (guw)χ (u).
�

Corollary 14.7.7 With the same notation as in Corollary 14.7.6, the spherical
function associated with ρ is given by

ϕρ (g) = 1√
q

∑
u∈U

f0(guw)χ (u)

for all g ∈ G.

Proof. Set f = f0 in Corollary 14.7.6 and use (14.42). �

It is interesting to analyze a special value of ϕρ .

Proposition 14.7.8 With the same notation as in Corollary 14.7.7, we have

ϕρ

(
0 α

1 0

)
= 1

q

∑
x,y∈F∗

q :
xy=−α

ψ1(x)ψ2(y)χ (x+ y)

for all α ∈ F∗
q.

Proof. First of all, note that, for x �= 0, the Bruhat decomposition yields(
α 0
x 1

)
=
(
1 αx−1

0 1

)(
0 1
1 0

)(
x 1
0 −αx−1

)
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14.7 Whittaker models and Bessel functions 519

so that by Proposition 14.7.5

f0

(
α 0
x 1

)
= 1√

q
μ

(
x 1
0 −αx−1

)
χ

(
1 αx−1

0 1

)
= 1√

q
ψ1(x)ψ2(−αx−1)χ (αx−1).

(14.45)

From Corollary 14.7.7, the identity

(
0 α

1 0

)(
1 x
0 1

)(
0 1
1 0

)
=
(
α 0
x 1

)
,

and f0

(
α 0
0 1

)
= 0, we then deduce that

ϕρ

(
0 α

1 0

)
= 1√

q

∑
x∈F∗

q

f0

(
α 0
x 1

)
χ (x)

(by (14.45)) = 1

q

∑
x∈F∗

q

ψ1(x)ψ2(−αx−1)χ (x− αx−1)

(y = −αx−1) = 1

q

∑
x,y∈F∗

q :
xy=−α

ψ1(x)ψ2(y)χ (x+ y).
�

We now examine the Bessel vector and the Bessel function for a cuspidal rep-
resentation (ρ,V ) (cf. Definition 14.6.2). Let { fx : x ∈ F∗

q} be the orthonormal
basis of V = L(F∗

q ), where

fx(y) = δx,y =
{
1 if y = x

0 if y �= x
(14.46)

for all x, y ∈ F∗
q.

Proposition 14.7.9

(i) f1 is the Bessel vector for ρ.
(ii) The associated intertwining operator is given by:

[T ρ f ](g) = 1√
q2 − 1

ν(δ)χ (βα−1) f (αδ−1)

if g=
(
α β

0 δ

)
∈ B and by

[T ρ f ](g) = − 1√
q2 − 1

∑
x∈F∗

q

ν[γ x det(g)−1]χ (δγ−1 + γ−1αx−1)

· j(γ−2x−1 det(g)) f (x)
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520 Representation theory of GL(2,Fq)

if g=
(
α β

γ δ

)
∈ G \ B, for all f ∈ V.

(iii) The spherical function of ρ is given by:

ϕρ (g) = ν(δ)χ (βα−1)δα,δ

if g=
(
α β

0 δ

)
∈ B and

ϕρ (g) = −ν[γ det(g)−1]χ (δγ−1 + γ−1α) j(γ−2 det(g))

if g=
(
α β

γ δ

)
∈ G \ B.

Proof. Let f ∈ V .
(i) From (14.32) we have

[ρ

(
1 β

0 1

)
f ](x) = χ (βx−1) f (x)

for all x ∈ F∗
q, so that f is a Bessel vector if and only if

χ (βx−1) f (x) = χ (β ) f (x)

for all x ∈ F∗
q and β ∈ Fq. Since χ is nontrivial, this forces f = λ f1 for

some λ ∈ C. In particular, f1 is a Bessel vector. Note that we have actu-
ally reproved that ResGUρ contains χ with multiplicity one and therefore
that ρ is contained in IndGUχ with multiplicity one.

(ii) Note that, by (14.41),

[T ρ f ](g) =
√
q− 1

|G/U | 〈 f , ρ(g) f1〉V

(by Proposition 14.3.1) = 1√
q2 − 1

〈ρ(g−1) f , f1〉V

= 1√
q2 − 1

[ρ(g−1) f ](1),

and that (
α β

γ δ

)−1

=
(

δ det(g)−1 −β det(g)−1

−γ det(g)−1 α det(g)−1

)
in particular, (

α β

0 δ

)−1

=
(
α−1 −βα−1δ−1

0 δ−1

)
.
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14.7 Whittaker models and Bessel functions 521

Then it suffices to apply (14.32) and (14.33), respectively (and
det(g−1) = (det g)−1).

(iii) It is an immediate consequence of (14.41), (ii), and the definition of f1:
indeed, ϕρ (g) = [ρ(g−1) f1](1) for all g ∈ G. �

Corollary 14.7.10 Let (ρ,V ) be a cuspidal representation, f ∈ V and x ∈ F∗
q.

Then

[T ρ f ]

(
x 0
0 1

)
= 1√

q2 − 1
f (x) (14.47)

and

ϕρ

(
x 0
0 1

)
= f1(x). (14.48)

Moreover, for all β, γ ∈ F∗
q,

ϕρ

(
0 β

γ 0

)
= −ν(−β ) j(−βγ−1). (14.49)

Proof. (14.47) is immediate after Proposition 14.7.9.(ii). (14.48) follows from
Proposition 14.7.9.(iii) (or Proposition 14.7.4) and the definition of f1. Finally,
(14.49) is just a particular case of Proposition 14.7.9.(iii). �

Remark 14.7.11 With β = −1 and γ−1 in place of γ , (14.49) yields

j(γ ) = −ϕρ

(
0 −1

γ−1 0

)
= −ϕρ

(
0 γ

−1 0

)
,

where the last equality follows from

(
0 −1

γ−1 0

)−1

=
(

0 γ

−1 0

)
and

ϕρ (g−1) = ϕρ (g). Analogously, setting γ = −1 we get

j(β ) = −ν(−β )ϕρ

(
0 β

−1 0

)
.

Remark 14.7.12 With Piatetski-Shapiro’s definition of an induced representa-
tion (cf. (14.34)), the intertwining operator T ρ in (14.41) and the associated
spherical function in (14.42) become

[T ρv](g) =
√

dρ
|G/U | 〈ρ(g)v, v0〉

and

ϕρ (g) = 〈ρ(g)v0, v0〉,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.015
https://www.cambridge.org/core


522 Representation theory of GL(2,Fq)

for all v ∈ V and g ∈ G, respectively. Therefore, our spherical functions are the
conjugate of the Bessel functions Jρ in [123]: indeed, one has

Jρ

(
0 x
−1 0

)
= − j(x)

for all x ∈ F∗
q.

For the last result of this section, we identify the subgroup

A =
{(

a 0
0 1

)
: a ∈ F∗

q

}
⊂ Aff(Fq)

with F∗
q via the isomorphism

(
a 0
0 1

)
�→ a.

Proposition 14.7.13 Let (ρ,V ) be a cuspidal representation of G. Then

[T ρ f ](g) =
∑
a∈A

[T ρ f ](a)ϕρ (a−1g) (14.50)

and

[ρ(g) f ](a) =
∑
a1∈A

f (a1)ϕ
ρ (a−1

1 g−1a) (14.51)

for all f ∈ V, g ∈ G, and a ∈ A.

Proof. (14.50) is an immediate consequence of (14.47) and the explicit expres-
sions in Proposition 14.7.9.(ii) and (iii).
We now prove (14.51). Let g ∈ G and a ∈ A. Then, by (14.47),

[ρ(g) f ](a) =
√
q2 − 1[T ρρ(g) f ](a)

(by (14.39)) =
√
q2 − 1[T ρ f ](g−1a)

(by (14.50)) =
√
q2 − 1

∑
a1∈A

[T ρ f ](a1)ϕ
ρ (a−1

1 g−1a)

(by (14.47)) =
∑
a1∈A

f (a1)ϕ
ρ (a−1

1 g−1a).
�

For another approach, we refer to [86].

14.8 Gamma coefficients

Following Piatetski-Schapiro [123], we introduce another set of functions, con-
nected with the representation theory of GL(2,Fq) that may be expressed in
terms of Gauss sums (cf. Section 7.4).We recall (see Section 10.5) that if (ρ,V )
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is a representation of a finite group G, then, denoting by V ′ the dual space of
V , the associated adjoint representation is the G-representation (ρ ′,V ′) defined
by setting

[ρ ′(g)ϕ](v ) = ϕ[ρ(g−1)v]

for all g ∈ G, v ∈ V and ϕ ∈ V ′. Moreover, the associated character is given by
χρ ′

(g) = χρ (g−1) = χρ (g), for all g ∈ G.
Suppose now that (ρ,V ) is an irreducible representation of G = GL(2,Fq)

with dimV > 1. We say that ω ∈ F̂∗
q is an exceptional character for ρ if ρ is

parabolic and

ρ = χ̂ψ1,ψ2 with ψ1 = ω = ω−1 or ψ2 = ω = ω−1

or

ρ = χ̂1
ψ with ψ = ω = ω−1.

By Proposition 14.5.9, ω is exceptional for (ρ,V ) if and only if ω is contained
in ResGAρ|J(V ), that is, ω is contained in

(
ResGAρ

)′ |J(V ′ ).

Proposition 14.8.1 Let ω ∈ F̂∗
q and suppose that it is not exceptional for ρ.

Then ω is contained in
(
ResGAρ

)′
with multiplicity one.

Proof. If ω ∈ F̂∗
q is not exceptional, then ω it is not contained in ResGAρ|J(V )

and, by Corollary 12.1.5, it is contained in ResGAρ|Vπ
with multiplicity one. By

Proposition 14.7.1.(i) it is contained in ResGAρ with multiplicity one. From the
discussion above we deduce that ω is contained in

(
ResGAρ

)′
with multiplicity

one. �

Lemma 14.8.2 (Definition and existence of �ρ (ω)) Let ω ∈ F̂∗
q and suppose

that it is nonexceptional for (ρ,V ). Then there exists �ρ (ω) = �ρ,χ (ω) ∈ C
such that

�ρ (ω)
∑
x∈F∗

q

[T ρv]

(
x 0
0 1

)
ω(x) =

∑
x∈F∗

q

[T ρv]

(
0 x
1 0

)
ω(x)

for all v ∈ V.

Proof. Define ϕ and ψ in V ′ by setting

ϕ(v ) =
∑
x∈F∗

q

[T ρv]

(
x 0
0 1

)
ω(x)
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and

ψ (v ) =
∑
x∈F∗

q

[T ρv]

(
0 x
1 0

)
ω(x)

for all v ∈ V . Then

ϕ

[
ρ

(
α 0
0 1

)
v

]
=
∑
x∈F∗

q

[
T ρρ

(
α 0
0 1

)
v

](
x 0
0 1

)
ω(x)

(by (14.39)) =
∑
x∈F∗

q

[T ρv]

(
xα−1 0
0 1

)
ω(x)

(setting x = yα) = ω(α)
∑
y∈F∗

q

[T ρv]

(
y 0
0 1

)
ω(y)

= ω(α)ϕ(v ),

so that, for α ∈ A,

[ρ ′(α)ϕ](v ) = ϕ[ρ(α−1)v] = ω(α)ϕ(v )

for all v ∈ V , that is, ρ ′(α)ϕ = ω(α)ϕ.
Similarly,

ψ

[
ρ

(
α 0
0 1

)
v

]
= ω(α)ψ (v ),

so that we also have ρ ′(α)ψ = ω(α)ψ , for α ∈ A, and, by Proposition 14.8.1,
there exists �ρ (ω) ∈ C such that ψ = �ρ (ω)ϕ. �

Corollary 14.8.3 �ρ (ω) may be expressed in terms of the Bessel function ϕρ

(see (14.42)):

�ρ (ω) =
∑
x∈F∗

q

ϕρ

(
0 x
1 0

)
ω(x). (14.52)

Proof. If v0 is a Bessel vector, then Lemma 14.8.2 with v = v0 implies

(recall that ϕρ

(
x 0
0 1

)
=
√

|G/U |
dρ

[T ρv0]

(
x 0
0 1

)
= 0 for x �= 1, see Proposi-

tion 14.7.4, and ϕρ (1G) = 1)

�ρ (ω)[T
ρv0]

(
1 0
0 1

)
=
∑
x∈F∗

q

[T ρv0]

(
0 x
1 0

)
ω(x)

which in turn yields the desired identity. �
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We can use (14.52) to define �ρ (ω) also for exceptional characters and cus-
pidal representations.

Definition 14.8.4 Let ρ be an irreducible G-representation with dimρ > 1.
Then the complex-valued function �ρ (·), defined by means of (14.52), is called
the Gamma coefficient associated with ρ (and the fixed character χ ∈ Û).

We recall (see Definition 7.4.1) that for χ ∈ F̂q and ψ ∈ F̂∗
q, the associated

Gauss sum is defined as

g(ψ, χ ) =
∑
x∈Fq

χ (x)ψ (x)

where we have set ψ (0) =
{
0 if ψ �= 1

1 if ψ = 1.

Proposition 14.8.5 Suppose that ρ is parabolic. Then, with the same notation
as in Theorem 14.5.6, and the beginning of this section, we have

�ρ (ω) = ω(−1)

q
g(ψ1ω, χ )g(ψ2ω, χ ).

In particular, |�ρ (ω)| = 1.

Proof. By Proposition 14.7.8 and Corollary 14.8.3 we have:

�ρ (ω) = 1

q

∑
x∈F∗

q

∑
r,s∈F∗

q :
rs=−x

ψ1(r)ψ2(s)χ (r + s)ω(−rs)

= ω(−1)

q

∑
x∈F∗

q

∑
r,s∈F∗

q :
rs=−x

(ψ1(r)ω(r)χ (r))(ψ2(s)ω(s)χ (s))

= ω(−1)

q

∑
r∈F∗

q

ψ1(r)ω(r)χ (r)
∑
s∈F∗

q

ψ2(s)ω(s)χ (s)

= ω(−1)

q
g(ψ1ω, χ )g(ψ2ω, χ ).

Just note thatψ1ω,ψ2ω �= 1, because ω is not exceptional for ρ so that the sum∑
r∈F∗

q
is in fact the sum

∑
r∈Fq (and, similarly, for the sums in s).

Since |g(ψ, χ )| = √
q (cf. Theorem 7.4.3.(vii)), we get |�ρ (ω)| = 1. �

Remark 14.8.6 If we use a different character in place of χ , say χ̃ , we get a
different value of �ρ (ω). Since there exists α ∈ F∗

q such that χ̃ (x) = χ (αx) for
all x ∈ Fq (cf. Proposition 7.1.1), we deduce that, for ρ parabolic, the Gamma
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526 Representation theory of GL(2,Fq)

coefficient with respect to χ̃ is

�ρ,χ̃ (ω) = ω(α)2ψ1(α)ψ2(α)�ρ,χ (ω).

Proposition 14.8.7 Suppose that ρ is the cuspidal representation associated
with the indecomposable character ν ∈ F̂∗

q2 . Then, denoting simply by Tr and
N the trace and the norm of the extension Fq2/Fq (see Section 6.7), we have

�ρ (ω) = −ω(−1)

q

∑
t∈F∗

q2

ν(t )ω(tt )χ (t + t )

= −ω(−1)

q
g(ν−1(ω ◦ Tr)−1, χ ◦ N)

for every ω ∈ F̂∗
q. In particular, |�ρ (ω)| = 1.

Proof. By Definition 14.8.4 we have

�ρ (ω) =
∑
x∈F∗

q

ϕρ

(
0 x
1 0

)
ω(x)

(by (14.49)) = −
∑
x∈F∗

q

ν(−x) j(−x)ω(x)

(by (7.16)) = −1

q

∑
x∈F∗

q

ν(−x)ω(x)
∑
t∈F∗

q2
:

tt=−x

χ (t + t )ν(t )

= −1

q

∑
x∈F∗

q

ν(x)ω(−x)
∑
t∈F∗

q2
:

tt=x

χ (t + t )ν(t )

(Hilbert Satz 90) = −1

q

∑
t∈F∗

q2

ν(tt )ω(−tt )χ (t + t )ν(t )

= −ω(−1)

q

∑
t∈F∗

q2

ν(t )ω(tt )χ (t + t )

= −ω(−1)

q

∑
t∈F∗

q2

ν(t )ω(tt )χ (t + t )

= −ω(−1)

q
g(ν−1(ω ◦ Tr)−1, χ ◦ N).

Since |g(·, ·)| = √|Fq2 | = q (cf. Theorem 7.4.3.(vii)), we also have
|�ρ (ω)| = 1. �
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Remark 14.8.8 As in Remark 14.8.6, if χ̃ is another character of Fq and
χ̃ (x) = χ (αx), then, for a cuspidal representation ρ we have

�ρ,χ̃ (ω) = ν(α)ω(α)2�ρ,χ (ω).

14.9 Character theory of GL(2,Fq)

In this section we compute the characters of all irreducible representations of
G as well as the Gelfand-Graev character ξ of IndGUχ , where χ is, as usual, a
fixed nontrivial character ofU .

Proposition 14.9.1 Let ξ denote the character of IndGUχ . Then

ξ (g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(q− 1)2(q+ 1) if g= 1G

1− q if g is conjugate to

(
1 1

0 1

)
0 otherwise,

for all g ∈ G.

Proof. First of all, note that D
∐
DUw is a set of representatives for the left

cosets ofU in G:

G =
(∐
d∈D

dU

)∐⎛⎜⎝∐
d∈D,
u∈U

duwU

⎞⎟⎠ . (14.53)

Indeed, one just needs to recall the Bruhat decomposition and to note that, for

g=
(
α β

γ δ

)
∈ G \ B (i.e. with γ �= 0) we have

(
x 0
0 y

)(
1 z
0 1

)(
0 1
1 0

)(
1 v

0 1

)
=
(
xz x+ xzv
y yv

)
=
(
α β

γ δ

)
if and only if y = γ , v = δγ−1, x = β − αδγ−1 ≡ −γ−1 det(g) and z =
−αγ det(g)−1. In other words, any g ∈ G \ B may be written in a unique way
in the form g= duwu1, with d ∈ D and u, u1 ∈ U .

First of all we clearly have

ξ (1G) = dimIndGUχ = |G|
|U | = (q2 − 1)(q− 1).

From Frobenius character formula (cf. (11.18)) it follows that

ξ (g) =
∑
d∈D:

d−1gd∈U

χ (d−1gd)+
∑

d∈D,u∈U :
(duw)−1gduw∈U

χ (wu−1d−1gduw). (14.54)
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528 Representation theory of GL(2,Fq)

In particular, if g is not conjugated to an element of U , we have ξ (g) = 0.
Recalling Theorem 14.3.2, we have thatU \ {1G} is contained in the conjugacy
class of

(
1 1
0 1

)
. We deduce that ξ (g) = 0 if g is not conjugated to

(
1 1
0 1

)
.

We are only left to the case when g is conjugated to

(
1 1
0 1

)
. If h =(

α β

γ δ

)
∈ G, and setting � = det(h), we have

(
α β

γ δ

)−1 (
1 1
0 1

)(
α β

γ δ

)
=
(
α β

γ δ

)−1 [(
1 0
0 1

)
+
(
0 1
0 0

)](
α β

γ δ

)
=
(
1 0
0 1

)
+
(

δ�−1 −β�−1

−γ�−1 α�−1

)(
0 1
0 0

)(
α β

γ δ

)
=
(
1+ γ δ�−1 δ2�−1

−γ 2�−1 1− γ δ�−1

)
(14.55)

so that h−1

(
1 1
0 1

)
h is not in U if γ �= 0. Therefore, for the expression of

ξ

(
1 1
0 1

)
in (14.54), only the first sum may be different from 0 (the second

one vanishes since (duw)−1

(
1 1
0 1

)
duw does not even belong to B).

Thus,

ξ

(
1 1
0 1

)
=
∑
x,y∈F∗

q

χ

[(
x 0
0 y

)−1 (
1 1
0 1

)(
x 0
0 y

)]

=
∑
x,y∈F∗

q

χ

(
1 x−1y
0 1

)
=
∑
x,y∈F∗

q

χ (x−1y)

= (q− 1)
∑
x∈F∗

q

χ (x)

= 1− q,

where the last equality follows from the orthogonality relation

0 = 〈χ, 1〉 =
∑
x∈Fq

χ (x) = 1+
∑
x∈F∗

q

χ (x). (14.56)

�
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14.9 Character theory of GL(2,Fq) 529

In Table 14.2 (where in the first column there are the irreducible representa-
tions and in the first line the representatives of the conjugacy classes), we give
the values of the characters of the higher dimensional representations of G on
each conjugacy class, as well as the cardinality of the corresponding irreducible
representations (here, x, y ∈ F∗

q and z ∈ Fq2\Fq).

Table 14.2. The character table of GL(2,Fq).

(
x 0
0 x

) (
x 0
0 y

)
y�=x

(
x 1
0 x

) (
0 −zz
1 z+ z

)
|irr|

χ̂0
ψ ψ (x2) ψ (xy) ψ (x2) ψ (zz) q− 1

χ̂1
ψ qψ (x2) ψ (xy) 0 −ψ (zz) q− 1

χ̂ψ1,ψ2

(q+1)
ψ1(x)ψ2(x)

ψ1(x)ψ2(y)
+ψ1(y)ψ2(x)

ψ1(x)ψ2(x) 0 (q−1)(q−2)
2

ρν (q− 1)ν(x) 0 −ν(x) −ν(z)− ν(z) q(q−1)
2

In order to compute the characters of χ̂1
ψ and χ̂ψ1,ψ2 we need the following

remarks:

(a) h−1

(
x 1
0 x

)
h ∈ B if and only if h ∈ B. The proof follows the same lines

as in (14.55).
(b) An element (uw)−1duw, with u ∈ U and d ∈ D \ Z, belongs to B if and

only if u = 1G. Indeed, an element inUw is of the form

uw =
(
1 β

0 1

)(
0 1
1 0

)
=
(
β 1
1 0

)
and its inverse is (

0 1
1 0

)(
1 −β

0 1

)
=
(
0 1
1 −β

)

so that if d =
(
x 0
0 y

)
∈ D \ Z (x, y ∈ F∗

q, x �= y) then

(uw)−1duw =
(
0 1
1 −β

)(
x 0
0 y

)(
β 1
1 0

)
=
(

y 0
β(x− y) x

)
.

(c) An element in C \ Z is not conjugate to any element in B (see table
in Theorem 14.3.2) because its eigenvalues (as a 2× 2 matrix) are not
in Fq.
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530 Representation theory of GL(2,Fq)

(d) G = B
∐
(
∐

u∈U uwB) is the decomposition into left B-cosets (cf.
(14.53) and the Bruhat decomposition).

Proof of the character table. The first row follows from (14.18).
From (d) and Frobenius character formula, it follows that the character of

χ̂ψ1,ψ2 evaluated at g ∈ G equals∑
u∈U :

wu−1guw∈B

χψ1,ψ2 (wu
−1guw)+ χψ1,ψ2 (g)1B(g). (14.57)

By (c), this is equal to 0 if g ∈ C \ Z. If g=
(
x 0
0 x

)
∈ Z, then it is equal to

(q+ 1)χψ1,ψ2

(
x 0
0 x

)
= (q+ 1)ψ1(x)ψ2(x).

From (b), it follows that if g=
(
x 0
0 y

)
∈ D \ Z, then all terms but the one

corresponding to u = 1G in the summation in (14.57) are equal to zero, so that
(14.57) is equal to

χψ1,ψ2

(
x 0
0 y

)
+ χψ1,ψ2

(
y 0
0 x

)
= ψ1(x)ψ2(y)+ ψ1(y)ψ2(x).

From (a), it follows that if g=
(
x 1
0 x

)
, then all terms in the summation (14.57)

are equal to zero, so that χψ1,ψ2

(
x 1
0 x

)
= ψ1(x)ψ2(x).

The values of the character of χ̂1
ψ may be found in the same way, setting

ψ1 = ψ2 in the previous formulas and using the identities

χ̂ψ,ψ = χ̂0
ψ + χ̂1

ψ and χ̂0
ψ = ψ (det(g)).

In order to compute the character of a cuspidal representation, we use (14.51),
which yields the matrix coefficients of ρν in terms of the spherical functions.
Indeed, if { fx : x ∈ F∗

q} is as (14.46), then the character of ρν has the following
expression: ∑

x∈F∗
q

〈ρν (g) fx, fx〉 =
∑
x∈F∗

q

[ρν (g) fx](x)

(by (14.51) and A ∼= F∗
q ) =

∑
a∈A

ϕρν (a−1g−1a).
(14.58)
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For g=
(
x 0
0 x

)
, (14.58) is equal to

(q− 1)ϕρν (g−1) = (q− 1)ν(x−1) = (q− 1)ν(x)

where the first equality follows from Proposition 14.7.9.(iii). For g=
(
x 1
0 x

)
we have g−1 =

(
x−1 −x−2

0 x−1

)
and

(
α−1 0
0 1

)(
x−1 −x−2

0 x−1

)(
α 0
0 1

)
=
(
x−1 −α−1x−2

0 x−1

)
so that, in this case, (14.58) is equal to

∑
α∈F∗

q

ϕρν

(
x−1 −α−1x−2

0 x−1

)
=
∑
α∈F∗

q

ν(x−1)χ (−x · α−1x−2)

= ν(x)
∑
α∈F∗

q

χ (α−1x−1)

= −ν(x),

where the first equality follows from Proposition 14.7.9.(iii) and the last one
from (14.56).

For g=
(
x 0
0 y

)
, with x �= y, we have

(
α−1 0
0 1

)(
x−1 0
0 y−1

)(
α 0
0 1

)
=
(
x−1 0
0 y−1

)

so that, in this case, (14.58) is equal to (q− 1)ϕρν

(
x−1 0
0 y−1

)
and this van-

ishes, by Proposition 14.7.9.(iii).

Finally, if g=
(
0 −zz
1 z+ z

)
, z ∈ Fq2 \ Fq, setting β = −zz, δ = z+ zwe have

g−1 =
(−β−1δ 1

β−1 0

)
and

(
α−1 0
0 1

)(−β−1δ 1
β−1 0

)(
α 0
0 1

)
=
(−β−1δ α−1

αβ−1 0

)
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so that (14.58) is equal to (by Proposition 14.7.9.(iii))

−
∑
α∈F∗

q

ν(−β · αβ−1)χ (−β−1δ · α−1β ) j[α−2β2(−β−1)]

= −
∑
α∈F∗

q

ν(−α)χ (α−1δ) j(−α−2β )

(by (7.16)) = −1

q

∑
α∈F∗

q

χ (α−1δ)
∑
xx∈F∗

q2
:

xx=−α−2β

χ (x+ x)ν(−αx)

(y = −αx) = −1

q

∑
α∈F∗

q

χ (α−1δ)
∑
y∈F∗

q2
:

yy=−β

χ [−α−1(y+ y)]ν(y)

(α−1 �→ α) = −1

q

∑
y∈F∗

q2
:

yy=−β

ν(y)
∑
α∈F∗

q

χ (α[δ − (y+ y)])

= −1

q

∑
y∈F∗

q2
:

y�=z,z
yy=−β

ν(y)
∑
α∈F∗

q

χ (α[δ − (y+ y)])

− 1

q
ν(z)

∑
α∈F∗

q

χ (α[δ − (z+ z)])

− 1

q
ν(z)

∑
α∈F∗

q

χ (α[δ − (z+ z)])

(δ = z+ z) =∗ −1

q

∑
y∈F∗

q2
:

y�=z,z
yy=−β

ν(y)
∑
γ∈F∗

q

χ (γ )− q− 1

q
[ν(z)+ ν(z)]

(by (14.56)) = −1

q
[(q− 1)[ν(z)+ ν(z)]−

∑
y∈F∗

q2
:

y�=z,z
yy=−β

ν(y)]

= −1

q
[q[ν(z)+ ν(z)]−

∑
y∈F∗

q2
:

yy=−β

ν(y)]

(by Proposition 7.2.3) = −ν(z)− ν(z),
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where =∗ follows from the fact that, assuming yy = −β, we have δ = y+ y if
and only if y = z or y = z (see Section 6.8) and, if δ �= y+ y, then we may set
γ = α[δ − (y+ y)] ∈ F∗

q. �

Proposition 14.9.2 Let ρμ and ρν be cuspidal representations associated with
the indecomposable characters μ and ν, respectively. Suppose that

� ρμ and ρν have the same central character;
� �ρμ

= �ρν
.

Then ρμ ∼ ρν .

Proof. From the character table of GL(2,Fq) (cf. Table 14.2) we deduce that

μ|F∗
q
= ν|F∗

q
. (14.59)

Moreover, Corollary 14.8.3 implies that∑
x∈F∗

q

ϕρμ

(
0 x
1 0

)
ω(x) =

∑
x∈F∗

q

ϕρν

(
0 x
1 0

)
ω(x)

for all ω ∈ F̂∗
q2 , so that

ϕρμ

(
0 x
1 0

)
= ϕρν

(
0 x
1 0

)
.

By using (14.49) and taking into account (14.59), we deduce that jρμ
= jρν

.
From Theorem 14.6.10, we finally deduce that ρμ ∼ ρν . �

14.10 Induced representations from GL(2,Fq) to GL(2,Fqm )

In this section we give a series of formulas for the decomposition of the

induced representation Ind
GL(2,Fqm )

GL(2,Fq )
ρ for every irreducible representation ρ of

GL(2,Fq). These formulas may be easily obtained from the character table of
GL(2,Fq) (see Table 14.2). The proofs are tedious calculations, but the results
are very interesting. We limit ourselves to:

� give all the preliminary results and introduce a suitable notation in order to
simplify the exposition;

� give all the formulas;
� prove one formula to indicate the method and leaving the remaining formulas
as exercises;

� indicate an alternative proof for one formula that avoids the use of the char-
acter table, suggesting to the reader how to develop similar techniques.
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534 Representation theory of GL(2,Fq)

We fix a prime power q = pn and an integer m ≥ 2. We set G = GL(2,Fq)
and Gm = GL(2,Fqm ).

� We indicate by ψ,ψ1, and ψ2 characters of F∗
q and by χ̂0

ψ, χ̂
1
ψ , and χ̂ψ1,ψ2 the

associated parabolic representations of G.
� Similarly, ξ denotes a character of F∗

qm .
� Also, ν (respectivelyμ) denotes an indecomposable character of F∗

q2 (respec-
tively F∗

q2m ) and ρν (respectively ρμ) the associated cuspidal representation of
G (respectively Gm).

� By ξ �, ν�, and μ� we denote the restriction of these characters to F∗
q, that is,

ξ� = Res
F∗
qm

F∗
q
ξ , and so on.

� By μ$ we denote the restriction of μ to F∗
q2 , that is, μ

$ = Res
F∗
q2m

F∗
q2

μ. If m is

even, so that Fq2 ⊆ Fqm , then ξ $ is the restriction of ξ to F∗
q2 , that is, ξ

$ =
Res

F∗
qm

F∗
q2
ξ .

� By ν, μ (and ξ , if m is even) we denote the conjugate character, as in Sec-
tion 7.2, that is ν(z) = ν(z), for all z ∈ F∗

q2 . Warning: recall that ν(z) is the
complex conjugate of ν(z).

� As in Section 7.5, we set � = ψ ◦ N, where N : F∗
q2 → Fq is the norm, that

is�(z) = ψ (zz), for all z ∈ F∗
q. Similarly, we set� = ξ� ◦ N, that is,�(z) =

ξ (zz), for all z ∈ Fq2 .

Clearly,

F̂∗
qm → F̂∗

q

ξ �→ ξ � (14.60)

is a surjective homomorphism of Abelian (indeed cyclic) groups and each ψ is
the image of qm−1

q−1 characters of F∗
qm .

Exercise 14.10.1 Consider the map (14.60) for m = 2, so that qm−1
q−1 = q+ 1.

Prove that

(1) if ψ is not a square, then it is the image of q+ 1 indecomposable char-
acters;

(2) if ψ is a square and q is odd, then ψ is the image of q− 1 indecompos-
able characters and 2 decomposable characters;

(3) if q is even, then each ψ is a square and the image of q indecomposable
characters and 1 decomposable character.

Hint: Recall Proposition 6.4.4.
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When restricting an irreducible representation from Gm to G we need the
following remarks:

� if m is even, then the conjugacy class of G of type (b3) represented by(
0 −zz
1 z+ z

)
is contained in a conjugacy class of type (b2) in Gm (because

Gm contains G2), and it is represented by

(
z 0
0 z

)
;

� if m is odd, then

(
0 −zz
1 z+ z

)
is of type (b3) also in Gm.

Table 14.3. The “character table” of the restrictions from Gm to G.

(
x 0
0 x

) (
x 0
0 y

)
y�=x

(
x 1
0 x

) (
0 −zz
1 z+ z

)
ResGm

G χ̂0
ξ ξ (x2) ξ (xy) ξ (x2) ξ (zz)

ResGm
G χ̂1

ξ qmξ (x2) ξ (xy) 0
ξ (zz)
−ξ (zz)

m even
m odd

ResGm
G χ̂ξ1,ξ2

(qm+1)
ξ1(x)ξ2(x)

ξ1(x)ξ2(y)
+ξ1(y)ξ2(x)

ξ1(x)ξ2(x)
ξ1(z)ξ2(z)
+ξ1(z)ξ2(z)

0

m even
m odd

ResGm
G ρμ (qm − 1)μ(x) 0 −μ(x)

0
−μ(z)− μ(z)

m even
m odd

We shall use a series of abbreviated notation:

�

⊕
ξ�=ψ indicates the direct sum over all ξ ∈ F̂∗

qm such that ξ � = ψ ;
�

⊕
(ξ� )2=ν� indicates the direct sum over all ξ ∈ F̂∗

qm such that (ξ
�)2 = ν�, that

is, ξ (x2) = ν(x) for all x ∈ F∗
q;

�

⊕
(ξ1ξ2 )�=ν� indicates the direct sum over all pairs {ξ1, ξ2} where ξ1, ξ2 ∈ F̂∗

qm ,
ξ1 �= ξ2 such that (ξ1ξ2)� = ν�: each unordered pair is counted once;

� .(ξ1ξ2 )$=ν indicates that we subtract (from the previous sum) the sum over all

pairs {ξ1, ξ2} such that (ξ1ξ2)$ = ν, that is, ξ1(z)ξ2(z) = ν(z) for all z ∈ F∗
q2 ;

note that (ξ1ξ2)$ = ν implies (ξ1ξ2)� = ν�, so that we subtract terms that are
effectively present (in the previous sum).

Other notations will be clear from the context. Finally, we observe that
ResGm

G χ̂0
ξ cannot contain χ̂1

ψ, χ̂ψ1,ψ2 , nor ρν , because it is one-dimensional.
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536 Representation theory of GL(2,Fq)

Therefore, by Frobenius reciprocity, IndGm
G χ̂1

ψ, IndGm
G χ̂ψ1,ψ2 , and IndGm

G ρν do
not contain one-dimensional representation of Gm (cf. Corollary 11.2.3).

We are now in position to give the desired decomposition formulas for the
induced representations. For three cases we have to distinguish between the
case where m is odd or even.
Suppose that m is odd. Then,

IndGm
G χ̂0

ψ = qm−1 − 1

q2 − 1

⎡⎣⎛⎝ ⊕
(ξ� )2=ψ2

χ̂1
ξ

⎞⎠⊕⎛⎝ ⊕
(ξ1ξ2 )�=ψ2

χ̂ξ1,ξ2

⎞⎠
⊕⎛⎝⊕

μ�=ψ2

ρμ

⎞⎠⎤⎦⊕⎛⎝⊕
ξ�=ψ

χ̂0
ξ

⎞⎠
⊕⎛⎝ ⊕

ξ
�

1=ξ
�

2=ψ

χ̂ξ1,ξ2

⎞⎠.
⎛⎝⊕

μ$=�

ρμ

⎞⎠ ,

(14.61)

IndGm
G χ̂1

ψ = q(qm−1 − 1)

q2 − 1

⎡⎣⎛⎝ ⊕
(ξ� )2=ψ2

χ̂1
ξ

⎞⎠⊕⎛⎝ ⊕
(ξ1ξ2 )�=ψ2

χ̂ξ1,ξ2

⎞⎠
⊕⎛⎝⊕

μ�=ψ2

ρμ

⎞⎠⎤⎦⊕⎛⎝⊕
ξ�=ψ

χ̂1
ξ

⎞⎠
⊕⎛⎝ ⊕

ξ
�

1=ξ
�

2=ψ

χ̂ξ1,ξ2

⎞⎠⊕⎛⎝⊕
μ$=�

ρμ

⎞⎠ ,

(14.62)

and

IndGm
G ρν = qm−1 − 1

q+ 1

⎡⎣⎛⎝ ⊕
(ξ� )2=ν�

χ̂1
ξ

⎞⎠⊕⎛⎝ ⊕
(ξ1ξ2 )�=ν�

χ̂ξ1,ξ2

⎞⎠
⊕⎛⎝⊕

μ�=ν�

ρμ

⎞⎠⎤⎦⊕⎛⎝⊕
μ$=ν

ρμ

⎞⎠ .

(14.63)
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Suppose now that m is even. Then,

IndGm
G χ̂0

ψ = q(qm−2 − 1)

q2 − 1

⎡⎣⎛⎝ ⊕
(ξ� )2=ψ2

χ̂1
ξ

⎞⎠⊕⎛⎝ ⊕
(ξ1ξ2 )�=ψ2

χ̂ξ1,ξ2

⎞⎠
⊕⎛⎝⊕

μ�=ψ2

ρμ

⎞⎠⎤⎦⊕⎛⎝⊕
ξ�=ψ

χ̂0
ξ

⎞⎠
⊕⎛⎝⊕

ξ�=ψ

χ̂1
ξ

⎞⎠⊕⎛⎝ ⊕
ξ
�

1=ξ
�

2=ψ

χ̂ξ1,ξ2

⎞⎠
⊕⎛⎝ ⊕

(ξ1ξ2 )$=�

χ̂ξ1,ξ2

⎞⎠ ,

IndGm
G χ̂1

ψ = qm − 1

q2 − 1

⎡⎣⎛⎝ ⊕
(ξ� )2=ψ2

χ̂1
ξ

⎞⎠⊕⎛⎝ ⊕
(ξ1ξ2 )�=ψ2

χ̂ξ1,ξ2

⎞⎠
⊕⎛⎝⊕

μ�=ψ2

ρμ

⎞⎠⎤⎦⊕⎛⎝ ⊕
ξ
�

1=ξ
�

2=ψ

χ̂ξ1,ξ2

⎞⎠

.
⎛⎝ ⊕

(ξ1ξ2 )$=�

χ̂ξ1,ξ2

⎞⎠ ,

and

IndGm
G ρν = qm−1 + 1

q+ 1

⎡⎣⎛⎝ ⊕
(ξ� )2=ν�

χ̂1
ξ

⎞⎠⊕⎛⎝ ⊕
(ξ1ξ2 )�=ν�

χ̂ξ1,ξ2

⎞⎠
⊕⎛⎝⊕

μ�=ν�

ρμ

⎞⎠⎤⎦.
⎛⎝ ⊕

(ξ1ξ2 )$=ν

χ̂ξ1,ξ2

⎞⎠ .
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Finally, the next formula does not depend on the parity of m:

IndGm
G χ̂ψ1,ψ2 =

qm−1 − 1

q− 1

⎡⎣⎛⎝ ⊕
(ξ� )2=ψ1ψ2

χ̂1
ξ

⎞⎠⊕⎛⎝ ⊕
(ξ1ξ2 )�=ψ1ψ2

χ̂ξ1,ξ2

⎞⎠
⊕⎛⎝ ⊕

μ�=ψ1ψ2

ρμ

⎞⎠⎤⎦⊕
⎛⎜⎜⎜⎜⎝
⊕
ξ
�

1=ψ1

ξ
�

2=ψ2

χ̂ξ1,ξ2

⎞⎟⎟⎟⎟⎠ .

(14.64)

Exercise 14.10.2 Prove the seven last decomposition formulas; see Example
14.10.4.

Exercise 14.10.3 Prove that IndG2
G ρν decomposes without multiplicity, write

down the decomposition (it is just (14.63) form = 2), and check that the dimen-
sion of the left hand side equals the sum of the dimensions of the irreducible
representations in the right hand side.

Example 14.10.4 We show how to derive the seven decomposition formulas
above. We just compute the multiplicity of χ̂0

ψ in ResGm
G ρμ for m odd. Let χμ

denote the character of ResGm
G ρμ. From Table 14.1, Table 14.2, and Table 14.3

we get

〈χ̂0
ψ, ξ

μ〉 = (qm − 1)
∑
x∈F∗

q

ψ (x2)μ(x)− (q2 − 1)
∑
x∈F∗

q

ψ (x2)μ(x)

− q2 − q

2

∑
z∈Fq2\Fq

ψ (zz)[μ(z)+ μ(z)]

=(∗) (qm − q2)
∑
x∈F∗

q

ψ (x2)μ(x)− (q2 − q)
∑
z∈F∗

q2

ψ (zz)μ(z)

+ (q2 − q)
∑
x∈F∗

q

ψ (x2)μ(x)

= (qm − q)
∑
x∈F∗

q

ψ2(x)μ(x)+ (q2 − q)
∑
z∈F∗

q2

�(z)μ(z)

=(∗∗) q(q2 − 1)(q− 1)

[
qm−1 − 1

q2 − 1
δψ2,μ� − δ�,μ$

]
where =(∗) follows from Fq2 \ Fq = F∗

q2 \ F∗
q and =(∗∗) follows from Proposi-

tion 2.3.5 and Theorem 6.7.2. That is, since |G| = q(q2 − 1)(q− 1), by Propo-
sition 10.2.18, the multiplicity of χ̂0

ψ in ResGm
G ρμ is equal to qm−1−1

q2−1 if ψ2 = μ�
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and � �= μ$, while it is equal to qm−1−1
q2−1 − 1 if ψ2 = μ� and � = μ$ (note that

� = μ$ ⇒ ψ2 = μ�). By Frobenius reciprocity, these are also the multiplici-
ties of ρμ in IndGm

G χ̂0
ψ . This leads to the terms⎛⎝qm−1 − 1

q2 − 1

⊕
μ�=ψ2

ρμ

⎞⎠.
⎛⎝⊕

μ$=�

ρμ

⎞⎠
in (14.61).

Exercise 14.10.5

(1) Recalling the notation in Section 14.4 (so that, in particular, � is not
ψ ◦ N), prove that
� ResGB χ̂

1
ψ = [π ��2]⊕ χψ,ψ ;

� ResGB χ̂
1
ψ1,ψ2

= [π ��1�2]⊕ 2χψ1,ψ2 ;
� ResGBρν = π � ν�.
Hint. Use the decomposition B = Aff(Fq)× Z and compute ResGZ by
means of the character table of G.

(2) Deduce that

IndGB [π ��] =
⎛⎝⊕

ψ2
1=ψ

χ̂1
ψ1

⎞⎠⊕
⎛⎝ ⊕

ψ1ψ2=ψ

χ̂ψ1,ψ2

⎞⎠⊕
⎛⎝⊕

ν�=ψ

ρν

⎞⎠
(clearly, the first term is absent if ψ is not a square).

Exercise 14.10.6 Denote by Bm the Borel subgroup of Gm and, for ξ1, ξ2 ∈
F̂∗
qm , denote by�1 ��2 the corresponding representation of Bm. From Exercise

12.1.9, Exercise 11.1.10, and the decomposition B = Aff(Fq)× Z, deduce that

IndBmB [�1 ��2] = qm−1 − 1

q− 1

⎡⎣⊕
ξ
�

2=ψ2

(πqm ��2)

⎤⎦⊕

⎡⎢⎢⎢⎢⎣
⊕
ξ
�

1=ψ1

ξ
�

2=ψ2

(�1 ��2)

⎤⎥⎥⎥⎥⎦ .

Exercise 14.10.7

(1) Use Exercise 14.10.6, the definition of χ̂ψ1,ψ2 , and transitivity of induc-
tion, to give another proof of (14.64).
Hint. Recall that χψ1,ψ2 = �1 � (�1�2).

(2) For the remaining six decomposition formulas for IndGm
G , try to find

alternative proofs that avoid the character tables but make use of the
theory of induced representations.
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14.11 Decomposition of tensor products

In this section we give a complete series of formulas for the decomposition of
the tensor products of irreducible representations of GL(2,Fq). In general, this
is a very difficult problem: for instance, for the symmetric group (cf. Section 2.9
of the monograph by James and Kerber [82]) no complete solution is known;
nowadays it constitutes an active area of research (see [162] for a recent con-
tribution and a reference to the current literature). See also our recent papers
[35, 36] for a suitable harmonic analysis of tensor products of irreducible rep-
resentations. The style is the same as in the previous section and we keep the
same notation therein. In addition, we also write

�

⊕
ν�=(ψ1ψ2 )2 to denote the direct sum over all indecomposable characters ν ∈

F∗
q2 such that ν� = (ψ1ψ2)2;

�

⊕
ψ3ψ4=ψ2

1 ν
�

1
for the direct sum over all unordered pairs {ψ3, ψ4} ⊂ F̂∗

q, with

ψ3 �= ψ4 and such that ψ3ψ4 = ψ2
1ν

�

1, and so on.

The formulas below are given without proof; they may be proved by means
of the character table of GL(2,Fq) (see Table 14.2) and the table of conjugacy
classes (see Table 14.1). At the end, we give an example of such computations.
We have the following trivial identities:

χ̂0
ψ ⊗ χ̂0

ψ0
= χ̂0

ψψ0
χ̂0
ψ0

⊗ χ̂1
ψ = χ̂1

ψψ0

χ̂0
ψ0

⊗ χ̂ψ1,ψ2 = χ̂ψ0ψ1,ψ0ψ2 χ̂0
ψ ⊗ ρν = ρ�ν.

Moreover,

χ̂1
ψ1

⊗ χ̂1
ψ2

= χ̂0
ψ1ψ2

⊕ χ̂1
ψ1ψ2

⊕ χ̂1
−ψ1ψ2

⊕
⎛⎝ ⊕

ψ3ψ4=(ψ1ψ2 )2

χ̂ψ3,ψ4

⎞⎠⊕
⎛⎝ ⊕

ν�=(ψ1ψ2 )2

ρν

⎞⎠ ,

where the third term appears only if q is odd.

χ̂1
ψ1

⊗ χ̂ψ2,ψ3 =
⎛⎝ ⊕

ψ2=ψ2
1ψ2ψ3

χ̂1
ψ

⎞⎠⊕
⎛⎝ ⊕

ψ4ψ5=ψ2
1ψ2ψ3

χ̂ψ4,ψ5

⎞⎠
⊕ χ̂ψ1ψ2,ψ1ψ3 ⊕

⎛⎝ ⊕
ν�=ψ2

1ψ2ψ3

ρν

⎞⎠ .
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χ̂1
ψ1

⊗ ρν =
⎛⎝ ⊕

ψ2=ψ2
1 ν

�

χ̂1
ψ

⎞⎠⊕
⎛⎝ ⊕

ψ2ψ3=ψ2
1 ν

�

χ̂ψ2,ψ3

⎞⎠

⊕

⎛⎜⎜⎜⎝ ⊕
ν
�

1=ψ2
1 ν

�

ν1 �=�1ν,�1ν

ρν1

⎞⎟⎟⎟⎠ .

χ̂ψ1,ψ2 ⊗ χ̂ψ3,ψ4 =
(
δψ1ψ3,ψ2ψ4 χ̂

0
ψ1ψ3

)⊕ (δψ1ψ4,ψ2ψ3 χ̂
0
ψ1ψ4

)
⊕
⎛⎝ ⊕

ψ2=ψ1ψ2ψ3ψ4

χ̂1
ψ

⎞⎠⊕ (δψ1ψ3,ψ2ψ4 χ̂
1
ψ1ψ3

)

⊕ (δψ1ψ4,ψ2ψ3 χ̂
1
ψ1ψ4

)⊕
⎛⎝ ⊕

ψ5ψ6=ψ1ψ2ψ3ψ4

χ̂ψ5,ψ6

⎞⎠
⊕
⎛⎝ ⊕

ν�=ψ1ψ2ψ3ψ4

ρν

⎞⎠⊕ χ̂ψ1ψ3,ψ2ψ4 ⊕ χ̂ψ1ψ4,ψ2ψ3 ,

where the last but one (respectively, last) term appears only if ψ1ψ3 �= ψ2ψ4

(respectively, ψ1ψ4 �= ψ2ψ3).

χ̂ψ1,ψ2 ⊗ ρν1 =
⎛⎝ ⊕

ψ3ψ4=ψ1ψ2ν
�

1

χ̂ψ3,ψ4

⎞⎠
⊕
⎛⎝ ⊕

ν�=ψ1ψ2ν
�

1

ρν

⎞⎠⊕
⎛⎝ ⊕

ψ2=ψ1ψ2ν
�

1

χ̂1
ψ

⎞⎠ ,

where the last term appears only if ψ1ψ2ν
�

1 is a square.
Finally,

ρν1 ⊗ ρν2 =
(
δν1,ν2 + δν1,ν2

)
χ̂0
ν
�

1
⊕

⎛⎜⎜⎝ ⊕
ψ2=(ν1ν2 )�
� �=ν1ν2,ν1ν2

χ̂1
ψ

⎞⎟⎟⎠

⊕
⎛⎝ ⊕

ψ1ψ2=(ν1ν2 )�

χ̂ψ1,ψ2

⎞⎠⊕

⎛⎜⎜⎝ ⊕
ν�=(ν1ν2 )�

ν �=ν1ν2,ν1ν2,ν1ν2,ν1ν2

ρν

⎞⎟⎟⎠ ,

(14.65)
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where the second term appears only if (ν1ν2)� is a square and ν1 �= ν2, ν2.

Exercise 14.11.1 Prove the above decomposition formulas (cf. Example
below).

Example 14.11.2 We show how to compute the multiplicity of ρν in ρν1 ⊗ ρν2 .
Denoting by χν , χν1 , and χν2 the characters of ρν , ρν1 , and ρν2 , respectively,
and recalling that, by (10.63), the character of ρν1 ⊗ ρν2 is χ

ν1χν2 , we have

〈χν1χν2 , χν〉 = (q− 1)3
∑
x∈F∗

q

ν1(x)ν2(x)ν(x)− (q2 − 1)
∑
x∈F∗

q

ν1(x)ν2(x)ν(x)

− q2 − q

2

∑
z∈Fq2\Fq

[ν1(z)+ ν1(z)]·[ν2(z)+ ν2(z)]·
[
ν(z)+ ν(z)

]
= [(q− 1)3(q− 1)− (q2 − 1)(q− 1)

]
δ(ν1ν2 )�,ν�

+ 4(q2 − q)(q− 1)
∑
x∈F∗

q

ν1(x)ν2(x)ν(x)

− (q2 − q)
∑
z∈F∗

q2

[
ν1(z)ν2(z)ν(z)+ ν1(z)ν2(z)ν(z)

+ν1(z)ν2(z)ν(z)+ ν1(z)ν2(z)ν(z)
]

= |G| [δ(ν1ν2 )�,ν� − (δν1ν2,ν + δν1ν2,ν + δν1ν2,ν + δν1ν2,ν )
]
,

and this explains the last term in (14.65).
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Appendix

Chebyshëv polynomials

In this appendix we define and study in detail the notions of a Chebyshëv set,
Chebyshëv polynomials of the first and second kind, and some modified ver-
sions of the latter. These play a crucial role in the spectral analysis of the DFT
in Section 4.2 as well as in the proof of the Alon-Boppana-Serre theorem (The-
orem 9.2.6). Our main sources are [104] and the monographs by Briggs and
Henson [22] and by Davidoff, Sarnak, and Valette [49].

Definition A.1 Let I ⊆ R be an interval. We say that the real valued functions
φ1, φ2, . . . , φn defined on I form a Chebyshëv set on I if, for all choices of
a1, a2, . . . , an ∈ R, the function

∑n
j=1 a jφ j has at most n− 1 distinct zeroes

in I.

Proposition A.2 Let {φ1, φ2, . . . , φn} be a Chebyshëv set on the interval I.
Then

(i) if t1, t2, . . . , tn ∈ I are distinct, then the vectors

zk = (φk(t1), φk(t2), . . . , φk(tn)),

k = 1, 2, . . . , n are R-linearly independent in Rn;
(ii) if t1, t2, . . . , tn+1 ∈ I are distinct and s1, s2, . . . , sn+1 are real numbers

that alternate in sign (i.e. s js j+1 < 0 for j = 1, 2, . . . , n), then the
vectorswk = (φk(t1), φk(t2), . . . , φk(tn+1)) k = 1, 2, . . . , n andwn+1 =
(s1, s2, . . . , sn+1) are R-linearly independent in Rn+1.

Proof.

(i) The linear relation
∑n

j=1 a jz j = 0 yields
∑n

j=1 a jφ j(tk ) = 0, for k =
1, 2, . . . , n, which forces, by definition of a Chebyshëv set, aj = 0 for
all j = 1, 2, . . . , n.

543
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(ii) Suppose that there exist a1, a2, . . . , an+1 ∈ R such that
∑n+1

j=1 a jw j = 0.
This is equivalent to saying

a1φ1(tk )+ a2φ2(tk )+ · · · + anφn(tk ) = −an+1sk

for all k = 1, 2, . . . , n+ 1. If an+1 = 0 we can argue as in (i). Oth-
erwise we deduce that

∑n
j=1 a jφ j alternates the sign at the points

t1, t2, . . . , tn+1. We may suppose that t1 < t2 < · · · < tn+1 and con-
clude, by virtue of the intermediate value theorem, that there exist
t̃k ∈ (tk, tk+1) such that

∑n
j=1 a jφ j(t̃k ) = 0 for k = 1, 2, . . . , n. By defi-

nition of a Chebyshëv set, we get the a j = 0 for all j = 1, 2, . . . , n and
thus also an+1 = 0. �

Proposition A.3

(i) The functions 1, cos θ, cos 2θ, . . . , cos nθ constitute a Chebyshëv set in
[0, π ].

(ii) The functions sin θ, sin 2θ, . . . , sin nθ constitute a Chebyshëv set in
(0, π ).

Proof.

(i) First of all, note that cos kθ may be written as a polynomial of degree k
in cos θ . Indeed, De Moivre’s formula yields

cos kθ + i sin kθ = (cos θ + i sin θ )k =
k∑

h=0

(
k

h

)
(cos θ )k−hih(sin θ )h

(A.1)
so that (since ih is real if and only if h is even)

cos kθ =
[k/2]∑
h=0

(
k

2h

)
(−1)h(cos θ )k−2h(sin θ )2h

and, using the identity sin2 θ = 1− cos2 θ , we get the desired expres-
sion. Therefore, a function of the form φ(θ ) = a0 + a1 cos θ + · · · +
an cos nθ can be written in the form φ(θ ) = P(cos θ ) where P is a real
polynomial of degree ≤ n. Since P has at most n roots in [−1, 1] and
the map θ �→ cos θ is a bijection between [0, π ] and [−1, 1], we deduce
that φ(θ ) has at most n roots in [0, π ].

(ii) From (A.1) we also deduce that

sin kθ =
[(k−1)/2]∑
h=0

(
k

2h+ 1

)
(−1)h(cos θ )k−2h−1(sin θ )2h+1
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that yields an expression of sin kθ
sin θ as a polynomial of degree k − 1 in

cos θ . Then, for 0 < θ < π , we have thatψ (θ ) = b1 sin θ + b2 sin 2θ +
· · · + bn sin nθ can be written in the form

ψ (θ ) = sin θ

(
b1 + b2

sin 2θ

sin θ
+ · · · + bn

sin nθ

sin θ

)
= sin θP(cos θ )

where P is a polynomial of degree ≤ n− 1. Then we may conclude as
in (i). �

In the proof of Proposition A.3 we have shown the existence of polynomials
Tn ∈ R[x] andUn ∈ R[x] of degree n such that

cos nθ = Tn(cos θ ) and
sin(n+ 1)θ

sin θ
= Un(cos θ ).

The Tn’s are called the Chebyshëv polynomials of the first kind. As we shall
see (cf. Lemma A.3) the Un’s are the so-called Chebyshëv polynomials of the
second kind.

Exercise A.4 Show that the Chebyshëv polynomials of the first kind are
expressed as

Tn(x) =
[n/2]∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k

and satisfy:

(1) the recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x) for n ≥ 1 with T0(x) = 1, T1(x) = x;

(2) the differential equation

(1− x2)y′′ − xy′ + n2y = 0;

(3) the orthogonality relations

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

=

⎧⎪⎪⎨⎪⎪⎩
0 if n �= m

π if n = m = 0

π/2 if n = m �= 0;
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(4) the multiplicative property: TmTn = 1
2 (Tn+m + T|m−n|);

(5) the semigroup property: Tm(Tn(x)) = Tmn(x);
(6) the discrete orthogonality relations

1

2
T0
(
cos

jπ

n

)
T0
(
cos

kπ

n

)
+

n−1∑
r=1

Tr
(
cos

jπ

n

)
Tr
(
cos

kπ

n

)

+ 1

2
Tn
(
cos

jπ

n

)
Tn
(
cos

kπ

n

)
=

⎧⎪⎪⎨⎪⎪⎩
0 if j �= k

n/2 if j = k �= 0, n

n if j = k = 0, n;

(7) the dual discrete orthogonality relations:

1

2
Tj(1)Tk(1)+

n−1∑
r=1

Tj
(
cos

πr

n

)
Tk
(
cos

πr

n

)

+ 1

2
Tj(−1)Tk(−1) =

⎧⎪⎪⎨⎪⎪⎩
0 if j �= k

n/2 if j = k �= 0, n

n if j = k = 0, n;

(8) the associated generating function is:

∞∑
n=0

Tn(x)t
n = 1− tx

1− 2tx+ t2
.

Exercise A.5 Let Xn = {0, 1, . . . , n} and X̃n = {cos jπ
n : j = 0, 1, . . . , n}. The

map F : L(X̃n) → L(Xn), defined by setting

[F f ](k) = 1

n
f (1)Tk(1)+ 2

n

n−1∑
j=1

f
(
cos

jπ

n

)
Tk
(
cos

jπ

n

)
+ 1

n
f (−1)Tk(−1)

for all f ∈ L(X̃n) and k ∈ Xn, is called the Discrete Chebyshëv Transform (see
the monograph [22] by Briggs and Henson for more on this). Show that the
following inversion formula holds:

f
(
cos

jπ

n

)
= 1

2
[F f ](0)T0

(
cos

jπ

n

)
+

n−1∑
k=1

[F f ](k)Tk
(
cos

jπ

n

)
+1

2
[F f ](n)Tn

(
cos

jπ

n

)
,
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for all f ∈ L(X̃n) and j = 0, 1, . . . , n. Moreover, for n even, analyze the rela-
tions between the Discrete Chebyshëv Transform and the Discrete Fourier
Transform of an even function (see Exercise 4.1.7 and Exercise 4.1.8).

Definition A.6 The Chebyshëv polynomials of the second kind are the polyno-
mials Um(x), m ∈ N, defined by means of the initial positions U0(x) = 1 and
U1(x) = 2x and the recurrence relation

Um+1(x) = 2xUm(x)−Um−1(x) (A.2)

for all m ≥ 1.

Note that degUm(x) = m and the leading coefficient of Um(x) is 2m, for all
m ∈ N.

Exercise A.7 Show that the Chebyshëv polynomials of the second kind are
expressed as

Un(x) =
[n/2]∑
k=0

(
n+ 1

2k + 1

)
(x2 − 1)kxn−2k

and satisfy:

(1) the differential equation

(1− x2)y′′ − 3xy′ + n(n+ 2)y = 0;

(2) the orthogonality relations∫ 1

−1
Un(x)Um(x)

√
1− x2dx = π

2
δn,m;

(3) the associated generating function is:

∞∑
n=0

Un(x)t
n = 1

1− 2tx+ t2
;

(4) finally prove that T ′
n+1(x) = (n+ 1)Un(x).

Lemma A.8

Um(cos θ ) = sin(m+ 1)θ

sin θ
(A.3)

for all m ∈ N and θ ∈ R \ πZ.
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Note that wemay interpret
sin(m+ 1)kπ

sin kπ
, k ∈ Z, as the limit of

sin(m+ 1)θ

sin θ
for θ → kπ that may be evaluated by means of L’Hôpital’s rule, so that (A.3)
becomes

Um(cos kπ ) ≡ Um((−1)k ) = (−1)km(m+ 1).

Proof. We prove it by induction on m. Clearly,

U0(cos θ ) = 1 = sin(0+ 1)θ

sin θ

and

U1(cos θ ) = 2 cos θ = sin 2θ

sin θ
= sin(1+ 1)θ

sin θ
,

showing the base of induction. Moreover,

sin(m+ 2)θ = sinmθ cos 2θ + sin 2θ cosmθ

(cos 2θ = 2 cos2 θ − 1) = 2 cos2 θ sinmθ − sinmθ + 2 sin θ cos θ cosmθ

= 2 cos θ (cos θ sinmθ + sin θ cosmθ )− sinmθ

= 2 cos θ sin(m+ 1)θ − sinmθ

and therefore, assuming that (A.3) holds both for m and m− 1, we have:

sin(m+ 2)θ

sin θ
= 2 cos θ

sin(m+ 1)θ

sin θ
− sinmθ

sin θ

(by inductive hypothesis) = 2 cos θUm(cos θ )−Um−1(cos θ )

(by (A.2)) = Um+1(cos θ ). �

We now define a first set of modified Chebyshëv polynomials of the second
kind. Let us fix, once and for all, a positive integer k, and define Pm ∈ R[x],
m ∈ N, by setting

Pm(x) = (k − 1)
m
2Um

(
x

2
√
k − 1

)
. (A.4)

Lemma A.9 We have P0(x) = 1, P1(x) = x and, for all m ≥ 1,

Pm+1(x) = xPm(x)− (k − 1)Pm−1(x).
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Proof.

xPm(x)− (k − 1)Pm−1(x) = x(k − 1)
m
2Um

(
x

2
√
k − 1

)
− (k − 1)

m+1
2 Um−1

(
x

2
√
k − 1

)
= (k − 1)

m+1
2

[
2

x

2
√
k − 1

Um

(
x

2
√
k − 1

)
−Um−1

(
x

2
√
k − 1

)]
(by (A.2)) = (k − 1)

m+1
2 Um+1

(
x

2
√
k − 1

)
= Pm+1(x). �

Another modified version of the Um’s is provided by the polynomials Xm ∈
R[x], m ∈ N, defined by setting

Xm(x) = Um

( x
2

)
. (A.5)

Lemma A.10 The following properties hold for the polynomials Xm, m ∈ N:

(i) Xm(2 cos θ ) = sin(m+ 1)θ

sin θ
.

(ii) Xm+1(x) = xXm(x)− Xm−1(x).
(iii) The roots of Xm are Ah = 2 cos hπ

m+1 for h = 1, 2, . . . ,m.

Proof.

(i) follows immediately from Lemma (A.8), and (ii) is obvious. Since
degXm = m, the polynomial Xm has at most m roots. But by (i) we have

Xm(2 cos θ ) = 0 ⇔ sin(m+ 1)θ = 0 and sin θ �= 0

⇔ (m+ 1)θ = hπ with h ∈ Z and (m+ 1)� | h,
so that the Ah’s as in the statement are precisely the m distinct roots of
Xm. �

Comparing (A.4) and (A.5), we deduce that

Pm(x) = (k − 1)m/2Xm(
x√
k − 1

) (A.6)

for all m ∈ N.
Now we give deeper and more difficult properties of the polynomials Xm’s.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.016
https://www.cambridge.org/core


550 Appendix

Lemma A.11

(i) For 0 ≤ � ≤ h we have:

X�Xh =
�∑

m=0

X�+h−2m.

(ii) For m ∈ N

Xm(x)

x− αm
=

m−1∑
j=0

Xm−1− j(αm)Xj(x),

where αm = 2 cos π
m+1 .

Proof.

(i) The proof is by induction of �. For � = 0 it is trivial (X0 = 1), while for
� = 1 we have X1(x) = x and, by virtue of Lemma A.10.(ii),

X1Xh = xXh = Xh+1 + Xh−1.

The inductive step is the following: for 2 ≤ � ≤ h we have, taking into
account Lemma A.10.(ii),

X�Xh = xX�−1Xh − X�−2Xh

(by inductive hypothesis) = x
�−1∑
m=0

X�−1+h−2m −
�−2∑
m=0

X�−2+h−2m

=
�−2∑
m=0

(xX�+h−2m−1 −X�+h−2m−2)+ xXh−�+1

(by Lemma A.10.(ii)) =
�−2∑
m=0

X�+h−2m + Xh−� + Xh−�+2

=
�∑

m=0

X�+h−2m.

(ii) First of all, note that Lemma A.10.(ii) may be rewritten as

xXj = Xj−1 + Xj+1. (A.7)

Moreover,

X0(αm) = 1 (A.8)

X1(αm)− αmX0(αm) = αm − αm = 0 (A.9)
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and, for m ≥ 2:

Xm−2(αm)− αmXm−1(αm) = −Xm(αm) = 0 (A.10)

where the first (resp. second) equality follows from Lemma A.10.(ii)
(resp. (iii)). Therefore,

(x− αm)
m−1∑
j=0

Xm−1− j(αm)Xj(x) = xXm−1(αm)

+
m−1∑
j=1

Xm−1− j(αm)xXj(x)

−
m−1∑
j=0

Xm− j−1(αm)αmXj(x)

(by (A.7) and X1(x) = x) = X1(x)Xm−1(αm)

+
m−1∑
j=1

Xm− j−1(αm)
[
Xj+1(x)+ Xj−1(x)

]
−

m−1∑
j=0

Xm− j−1(αm)αmXj(x)

(by rearranging) = X0(x) [Xm−2(αm)− Xm−1(αm)αm]

+
m−2∑
j=1

Xj(x)
[
Xm− j(αm)

+Xm− j−2(αm)− αmXm− j−1(αm)
]

+ [αm − αmX0(αm)]Xm−1(x)

+ X0(αm)Xm(x)

= Xm(x)

where the last equality follows from (A.8), (A.9), (A.10) and Lemma
A.10.(ii) applied to the main sum. �

We now define a further family of polynomials:

Ym(x) = X2
m(x)

x− αm
. (A.11)

Since Xm(x) is divisible by x− αm, we deduce that Ym is indeed a polynomial
of degree 2m− 1.
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Lemma A.12

Ym(x) =
2m−1∑
i=1

yiXi(x)

where the coefficients yi ∈ R are given by the rule

yi =
∑
�

X�(αm), (A.12)

the sum running over all � satisfying the following conditions:

(1) 0 ≤ � ≤ min{i− 1, 2m− 1− i};
(2) 2m− 1− i− � is even.

Proof. We have

Ym(x) = X2
m(x)

x− αm

(by Lemma A.11.(ii)) = Xm(x)
m−1∑
j=0

Xm− j−1(αm)Xj(x)

(by Lemma A.11.(i)) =
m−1∑
j=0

Xm− j−1(αm)
j∑

h=0

Xm+ j−2h(x).

(A.13)

In the above sums the summation indices j and h satisfy 0 ≤ j ≤ m− 1 and
−2 j ≤ −2h ≤ 0. Thus, if we set i = m+ j − 2h we have

1 ≤ m− j ≤ i = m+ j − 2h ≤ m+ j ≤ 2m− 1

so that

Ym(x) =
2m−1∑
i=1

yiXi(x), (A.14)

where yi =
∑

� X�(αm) with � = m− j − 1. It remains to determine the range
of � in terms of the new summation index i. Since 1 ≤ i ≤ 2m− 1 and 0 ≤
� ≤ m− 1, then the product X�(αm)Xi(x) appears in (A.13) (and therefore in
(A.14)) if and only if, recalling that j = m− 1− �, there exists 0 ≤ h ≤ j such
that i = m+ j − 2h. Since i+ � = 2m− 1− 2h then 2m− 1− i− � must be
even (= 2h), thus showing (2), and the condition 0 ≤ h ≤ j is equivalent to

0 ≤ 2m− 1− i− �

2
(≡ m+ j − i

2
≡ h) ≤ m− 1− �(≡ j)
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that is,

0 ≤ 2m− 1− i− � ≤ 2m− 2− 2�.

This is equivalent to (1). �

Proposition A.13 The coefficients yi’s in Lemma A.12 are all positive, that is,
Ym is a positive linear combination of the Xi’s, 1 ≤ i ≤ 2m− 1.

Proof. By taking the arithmetical mean of the terms appearing in the upper
bound for the index � in (A.12), we have

min{i− 1, 2m− i− 1} ≤ (i− 1)+ (2m− i− 1)

2
= m− 1

so that � ≤ m− 1. Since 2 cos π
�+1 < αm = 2 cos π

m+1 , limx→+∞ X�(x) = +∞,
and 2 cos π

�+1 is the largest root of X� (by Lemma A.10.(iii)), we conclude that
X�(αm) > 0 for � = 0, 1, . . . ,m− 1. As a consequence, (A.12) ensures that
yi > 0 for i = 1, 2, . . . , 2m− 1. �

Corollary A.14 For every ε ∈ (0, 1) there exists a polynomial Zε ∈ R[x] such
that

(i) Zε(x) =
∑

j≥0 zε, jXj(x) with zε, j ≥ 0;
(ii) Zε(x) ≤ −1 for x ≤ 2− ε;
(iii) Zε > 0 for x > 2.

Proof. We look for Zε of the form

Zε = zYm + z′Ym′ (A.15)

for suitable m,m′ ∈ N and z, z′ > 0. With this choice of the form of Zε, condi-
tion (i) follows from Proposition A.13. Similarly, (iii) follows from the defini-
tion ofYm (see (A.11)) and the fact thatYm(x) > 0 for x > αm and, by definition,
one always has αm < 2.

Now, if we choose m,m′ in such a way that αm, αm′ > 2− ε, then, arguing
as above, from (A.11) we deduce that the corresponding Zε in (A.15) satisfies
Zε(x) ≤ 0 for x ≤ 2− ε. If, in addition, m and m′ are chosen in such a way that
the numbers (cf. Lemma A.10.(iii)) 2 cos jπ

m+1 , j = 1, 2, . . . ,m (the roots ofYm)
and 2 cos hπ

m′+1 , h = 1, 2, . . . ,m′ (the roots of Y ′
m) are all distinct (for instance,

it suffices to take m′ = m+ 1: see Exercise A.15) then we have

Zε(x) < 0 for x ≤ 2− ε. (A.16)
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Since limx→−∞ Zε(x) = −∞ we deduce that M = max(−∞,2−ε] Zε(x) is neg-
ative. Thus from (A.16) we get (ii) by replacing z and z′ by z

−M and z′
−M ,

respectively. �
Exercise A.15 Show that, for 1 ≤ j ≤ m and 1 ≤ h ≤ m+ 1, we have
j

m+1 �= h
m+2 .

Hint:Write the equation j
m+1 = h

m+2 in the form j
h = 1− 1

m+2 .
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Cooley-Tukey —, 162
decimation in time form of the

Cooley-Tukey —, 162
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representation theory of the — of
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groups, 21
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Cayley-Hamilton Theorem, 484
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— of GL(2,F), 486
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— of a representation, 355
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— function, 47
— of a field, 171
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— subgroup, 431

Chebotarëv theorem, 68
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Chevalley theorem, 227
Chinese remainder
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— theorem, 9, 13
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Clebsch graph, 243
closed path, 237
coefficient

(matrix) — of a representation, 351
Gamma —, 525

coloring
— of a graph, 243
— of an edge, 243

combinatorial Laplacian, 286
commutant

— of one representation, 349, 390
— of two representations, 349

commutative algebra, 55, 362
companion matrix of a monic polynomial,

191
complement of a graph, 242
complete graph, 247, 271, 292

lamplighter on the —, 270
composite bijection permutation, 136
composition of paths, 237
congruence permutation

elementary —, 135
product —, 135

conjugate
— character, 202
— of an element in Fq2 , 196
— representation, 380

conjugation homomorphism, 280
connected

— components of a graph, 237
— graph, 237

convolution, 363
— formula for the spherical Fourier
transform, 478

— operator, 365
— on L(A), 56
— on the group algebra of an Abelian
group, 54

Cooley-Tukey algorithm, 129, 161, 162
decimation in frequency of the —, 162
decimation in time form of the —, 162
parallel form of the —, 162
vector form of the —, 162

core matrix, 159, 228
Courant-Fischer min-max formula, 304
Curtis and Fossum basis, 464
cuspidal representation, 502
cycle

— in a graph, 237
discrete — graph, 250

cyclic group, 48
endomorphism of a finite —, 30

decomposable character, 201
decomposition

— of a representation, 344

invariant factors — of a finite Abelian
group, 18

primary — of a finite Abelian group, 21, 22
degree
— of a field extension, 171
— of a polynomial, 168
— of a representation, 344
— of a regular graph, 236
— of a vertex, 236

derived subgroup, 431, 486
Diaconis and Rockmore, 397, 398
diagonal
— action, 377
— matrix of twiddle factors, 153
— operator, 361
block — power of a matrix, 148

diameter of a finite graph, 237
differential operator, 68
dihedral group, 359
dimension of a representation, 344
Dirac function, 46
direct sum of representations, 344
directed graph, 236
Dirichlet
— L-function, 89
— character, 84
— double summation method, 87
— form, 286
— formula, 89
— series, 77
— theorem L(1, χ ) �= 0, 95
— theorem on primes in arithmetic

progressions, 99
principal — character, 85
real — character, 87

discrete
— circle, 250
— cycle graph, 250
— Fourier transform (DFT), 53, 59
— Fourier transform (DFT) revisited, 443,

445
Gauss-Schur theorem on the trace of the —

Fourier transform (DFT), 116
distance
geodesic — in a graph, 237
Hamming —, 248, 264

Dodziuk theorem, 288
domain
integral —, 167
principal ideal —, 168
unique factorization — (UFD), 169

doubly transitive action, 379
dual
— group of Fq, 197
— group of F∗

q , 199
— group of an Abelian group, 50
— of a finite dimensional vector space, 380
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566 Index

dual (cont.)
— of a finite group, 347
— orthogonality relations for characters of

Zn, 50
— orthogonality relations for characters of a

group, 370
— orthogonality relations for characters of

an Abelian group, 52

edge
— coloring, 243
— of a graph, 235
multiple —, 235
oriented — of a graph, 236

eigenidentities, 152
tensor form of the —, 153

Eisenstein criterion, 63
element
algebraic —, 171
primitive — of a Galois field, 176

elementary congruence permutation, 135
endomorphism
— of a finite Abelian group, 26
— of a finite cyclic group, 30

equivalent representations, 344
Erdős’ proof of Euler theorem∑

p prime
1
p = +∞, 98

Euclid’s proof of the infinitude of primes, 6
Euclidean algorithm, 5
Euler
— identity, 31
— product formula, 82
— theorem

∑
p prime

1
p = +∞, 97

— theorem
∑

p prime
1
p = +∞ (Erdős’

proof), 98
— totient function, 7

Euler-Mascheroni constant, 82
exceptional character, 523
expander, 309, 310
— via zig-zag products, 338
Margulis —, 319

exponential set, 257
extension, 171
algebraic — , 173
degree of a field —, 171
finite —, 171
Galois group of an —, 174
infinite —, 171
norm of a field —, 187
quadratic —, 173
trace of a field —, 187

faithful representation, 344
fast Fourier transform (FFT), 129
— over a noncommutative group, 397
— revisited, 447, 455

algorithmic aspects of the —, 161
matrix form of the —, 151

Fermat
— identity, 31
— little theorem, 9

field, 168
— extension, 171
Galois —, 178, 181
primitive element of a Galois —, 176
splitting — of a polynomial, 174
sub—, 171

finite
— extension, 171
— graph, 236

fixed point character formula, 375
formula
Abel — of summation by parts, 77
Courant-Fischer min-max —, 304
Dirichlet —, 89
Euler product —, 82
Frobenius character —, 405
Gauss —, 116
Mackey — for invariants, 414, 417
Parseval — for Z2

n, 312
Parseval — for an Abelian group, 54
Plancherel — for Z2

n, 312
Plancherel — for a finite group, 371
Plancherel — for an Abelian group, 54
Plancherel — for the spherical Fourier

transform, 478
Poisson summation —s, 60

Fourier
— transform, 367
— coefficient, 53
— inversion formula, 368
— inversion formula for an Abelian group,

53
— transform of a character, 382
— transform on an Abelian group, 53
— matrix of Fq, 227
convolution formula for the spherical —

transform, 478
discrete — transform (DFT), 53, 59
discrete — transform (DFT) revisited, 443,

445
fast — transform (FFT), 129
fast — transform (FFT) revisited, 447,

455
Gauss-Schur theorem on the trace of the

discrete — transform (DFT), 116
inverse — transform, 370
inversion formula for the spherical —

transform, 477
normalized — transform, 53
Plancherel formula for the spherical —

transform, 478
spherical — transform, 477

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383
https://www.cambridge.org/core


Index 567

Frobenius
— automorphism, 177
— character formula, 405
— reciprocity law, 409
— reciprocity law (other side), 411
— reciprocity law for one-dimensional
representations, 412

function
Bessel — for GL(2,Fq ), 515
central —, 364
characteristic —, 47
class —, 364
Dirac —, 46
Dirichlet L—, 89
Euler totient —, 7
inflation of a —, 59
Riemann zeta —, 82
spherical —, 469
spherical — for GL(2,Fq ), 515

fundamental theorem of arithmetic, 5

Galois
— field, 178, 181
— group of an extension, 174

Gamma coefficient, 525
Gauss

— formula, 116
— law of quadratic reciprocity, 127
— law of quadratic reciprocity (second
proof), 183

— sum, 126, 210
— theorem on cyclicity of U (Z/nZ), 35
— totient function theorem, 8
— lemma, 64

Gauss-Schur theorem on the trace of the DFT,
116

Gelfand pair, 466
symmetric —, 468
weakly symmetric —, 468

Gelfand-Graev character, 527
general radix identity, 154
generalized quaternion group, 360
generalized Winograd’s method, 157
geodesic distance in a graph, 237
Good’s method, 158
graph
d-edge-colorable —, 275
— edge, 235, 236
— isomorphism, 237
— multiple edge, 235
— vertex, 235, 236
primitive —, 242
bicolorable —, 246
bipartite —, 245
boundary of a set of vertices in a —, 284
Cartesian product of —s, 258
Cayley —, 280

Cheeger constant of a —, 284
Clebsch —, 243
complement of a —, 242
complete —, 247, 292
complete bipartite —, 247
connected —, 237
connected component of a —, 237
degree of a regular —, 236
diameter of a finite —, 237
directed —, 236
directed — isomorphism, 237
discrete cycle —, 250
expander —, 309, 310
finite —, 236
geodesic distance in a —, 237
Hamming —, 264
isoperimetric constant of a —, 284
lamplighter —, 268
lexicographic product of —s, 260
Margulis —, 319
non-oriented square of a —, 338
Paley —, 308
partite sets of a bipartite —, 245
Petersen —, 243
Ramanujan —, 307
regular —, 236
replacement product of —s, 275
simple —, 235
spectral gap of a —, 292
spectrum of a —, 238
strongly regular —, 241
subgraph of a —, 236
tensor product of —s, 259
triangular —, 242
undirected —, 235
wreath product of —s, 267
zig-zag product of —s, 277

greatest common divisor, 5
Green-Tao theorem, 100
group
p- —, 22
p-primary —, 22
— GL(2,Fq ), 488
— GL(h,Fp), 40
— algebra, 363
— of units of a unital ring, 28
affine — over Fq, 374, 426
affine — over Z/nZ, 432
affine — over a field, 487
ambivalent —, 468
anti-automorphism of a —, 466
bidual of a —, 52
center of a —, 431
characteristic subgroup of a —, 431
cyclic —, 48
derived subgroup of a —, 431
dihedral —, 359
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group (cont.)
dual — of an Abelian group, 50
Galois — of an extension, 174
generalized quaternion —, 360
Heisenberg — over Fq, 457
Heisenberg — over Z/nZ, 437
inertia —, 421
involutive anti-automorphism of a —, 467
solvable —, 486
symmetric —, 349

Hamming
— distance, 248, 264
— graph, 264

Hankel matrix, 159
Hasse-Davenport identity, 216
Hecke
— algebra, 462
— operator, 295
— relations, 296
commutative — algebra, 466
Curtis and Fossum basis of a — algebra, 464
multiplicative linear functional on a —

algebra, 472
structure constants of a — algebra, 465

Heisenberg
— group over Fq, 457
— group over Z/nZ, 437

Hilbert Satz 90, 187, 188
Hilbert-Schmidt inner product, 395
homogenous space, 372
homomorphism
conjugation —, 280

Hua-Vandiver-Weil theorem
— (homogeneous case), 224
— (non-homogeneous case), 225

hypercube, 248
weight of a vertex of the —, 249

ideal
— of a commutative ring, 167
maximal —, 170
principal —, 168
principal — domain, 168

idempotent, 390
identity
Bézout —, 4
eigen—, 152
Euler —, 31
Fermat —, 31
general radix —, 154
generalized Bézout —, 5
Hasse-Davenport —, 216
permutational reverse radix —, 138
reverse radix —, 149
similarity —, 158
twiddle free —, 157

twiddle —, 155
indecomposable character, 201
induced representation, 399
— and direct sums, 408
— and tensor products, 406
— from GL(2,Fq ) to GL(2,Fqm ), 533
— of a one-dimensional representation,

403
character of an —, 404, 405
matrix coefficients of an —, 404
transitivity of —, 401

inertia group, 421
infinite
— extension, 171
— product, 76
converging — product, 76
diverging — product, 76

inflation
— of a function, 59
— of a representation, 421, 495

initial vertex of an oriented edge, 236
inner product, 345
integral domain, 167
intertwiner, 349
invariant
— factors decomposition of a finite Abelian

group, 18
— operator, 56
— subspace, 344
— vector, 344
subspace of — vectors, 344

inverse path, 237
inversion formula
— for the spherical Fourier transform,

477
Fourier — for an Abelian group, 53

invertible element in a commutative ring, 168
involutive
— algebra, 362
— anti-automorphism of a group, 467
— anti-automorphism of an algebra, 467

irreducible
— element in an integral domain, 169
— polynomial, 169
— representation, 344

isomorphism
— of directed graphs, 237
— of graphs, 237

isoperimetric
— constant, 284
Alon-Milman — inequality, 287
Alon-Schwartz-Shapira — inequality, 320
Dodziuk — inequality, 288
Reingold-Vadhan-Wigderson — inequality,

333
isotypic component, 357
— of L(G), 384
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Jacobi sum, 217, 219
Jacquet module of a representation, 496
Jordan canonical form, 485

kernel
— of a convolution operator, 365
— of a convolution operator on an Abelian
group, 56

— of a representation, 344
Kloosterman sum, 210

generalized —, 203
orthogonality relations for generalized —s,
206

Kronecker
— product, 142
— sum of linear operators, 253
factorizations of — products, 151
similarity of — products by stride
permutations, 144

lamplighter
— graph, 268
— on the complete graph, 270, 271

Laplacian
combinatorial —, 286

left regular representation, 348
Legendre symbol, 120

— on Fq, 307
lemma

Burnside —, 376
converse to Schur —, 351
Gauss —, 64
Mackey —, 419
Schur —, 350
Wielandt —, 378

length of a path, 237
lexicographic product of graphs, 260
little group method, 423
loop in a graph, 235

Mackey
— formula for invariants, 414, 417
— intertwining number theorem, 417
— irreducibility criterion, 417
— lemma, 419
— tensor product theorem, 421
— theory, 413

Mackey-Wigner little group method, 421, 423
Margulis graph, 319
matrix

— form of the FFT, 151
— factorization of composite bijection
permutations, 149

adjacency —, 238
adjugate —, 36
block diagonal power of a —, 148
canonical form of a —, 482

circulant —, 58
companion — of a monic polynomial, 191
core —, 159, 228
diagonal — of twiddle factors, 153
elementary circulant permutation —, 147
Fourier — of Fq, 227
Hankel —, 159
permutation —, 140
skew circulant —, 228
unipotent —, 486
unitary —, 345

maximal ideal, 170
minimal
— central projection, 395
— polynomial, 65, 172, 484

modified replacement product, 282
monic polynomial, 168
multiple edge, 235
multiplicative character
— of Fq, 199
— of Z/mZ, 84
order of a — of Fq, 200
principal — of Fq, 201

multiplicative linear functional, 472
multiplicity
— of a representation, 357

multiplicity-free
— representation, 394
— triple, 466
Bump-Ginzburg criterion for a — triple, 468
spherical function associated with a —

triple, 469
multiplier operator, 444

neighborhood of a vertex, 236
non-backtraking path, 295
non-oriented square, 338
norm of a field extension, 187

operator
(monomial) differential —, 68
adjacency —, 238
adjoint —, 345
convolution —, 365
convolution — on L(A), 56
convolution kernel — on an Abelian group,

56
diagonal —, 361
invariant —, 56
multiplier —, 444
polar decomposition of an —, 346
translation —, 55, 444
unitary —, 345

orbit of a point, 372
order
— of a multiplicative character of Fq, 200
— of a differential operator, 68
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order (cont.)
— of a finite cyclic group, 7, 48
— of a finite field, 176

orientation of a graph, 236
orthogonality relations
— for characters, 356
— for characters of Zn, 49
— for characters of an Abelian group, 51
— for generalized Kloosterman sums, 206
— for matrix coefficients, 354
— for spherical functions, 476, 480
— on F̂∗

q , 201

— on F̂q, 198

Paley graph, 308
parabolic induction, 494
Parseval formula
— for Z2

n, 312
— for an Abelian group, 54

partial stride permutation, 134
partite set, 245
path
— composition, 237
— in a graph, 237
closed —, 237
initial vertex of a —, 237
inverse —, 237
length of a —, 237
non-backtraking —, 295
terminal vertex of a —, 237
trivial —, 237

permutation
— character, 375
— matrix, 140
— representation, 373
— representation of Sn, 374
composite bijection —, 136
elementary circulant — matrix, 147
elementary congruence —, 135
matrix factorization of composite bijection

—, 149
partial stride —, 134
product congruence —, 135
shuffle —, 132
stride —, 132

permutational reverse radix identity, 138
Peter-Weyl theorem, 357
Petersen graph, 243
Plancherel formula, 371
— for Z2

n, 312
— for a finite group, 371
— for an Abelian group, 54
— for the spherical Fourier transform,

478
Poisson summation formulas, 60
polar decomposition of a linear operator,

346

polynomial
characteristic — of F , 116
characteristic — of F2, 103
characteristic — of a matrix, 484
companion matrix of a monic —, 191
degree of a —, 168
irreducible —, 169
minimal —, 65, 172, 484
monic —, 168
primitive —, 64
root of a —, 65
splitting field of a —, 174

Pontrjagin duality, 53
primary
— component of an Abelian group, 22
— decomposition of a finite Abelian group,

21, 22
primitive
— element of a Galois field, 176
— graph, 242
— polynomial, 64
— root, 35

principal
— Dirichlet character, 85
— additive character of Fq, 198
— ideal, 168
— ideal domain, 168
— multiplicative character of Fq, 201

product
— congruence permutation, 135
Cartesian — of graphs, 258
converging infinite —, 76
diverging infinite —, 76
infinite —, 76
inner —, 345
internal tensor — of representations, 387
Kronecker —, 142
lexicographic — of graphs, 260
outer tensor — of representations, 386
replacement — of graphs, 275
tensor — of functions, 253
tensor — of linear operators, 253
tensor — of subspaces, 253
tensor — of two spaces, 384
wreath — of graphs, 267
zig-zag — of graphs, 277

projection, 390
minimal central —, 395
orthogonal —, 390

quadratic
— extension, 173
— nonresidue, 117
— residue, 117
Gauss law of — reciprocity, 127
Gauss law of — reciprocity (second proof),

183
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Rader
— Winograd algorithm, 158
— algorithm, 159

radix identity
general —, 154
permutational reverse —, 138
reverse —, 149

Ramanujan graph, 307
rational canonical form, 485
regular

2 — segment, 252
— graph, 236
strongly — graph, 241

Reingold-Vadhan-Wigderson theorem, 333
replacement product of graphs, 275

modified —, 282
representation, 343

(matrix) coefficient of a —, 351
adjoint —, 380
character of a —, 355
commutant of a —, 349
conjugate —, 380
cuspidal —, 502
decomposition of a —, 344
decomposition of tensor products of —s of
GL(2,Fq ), 540

degree of a —, 344
dimension of a —, 344
direct sum of —s, 344
equivalence of —s, 344
faithful —, 344
induced —, 399
induced — from GL(2,Fq ) to GL(2,Fqm ),
533

inflation of a —, 421, 495
irreducible —, 344
isotypic component of a —, 357
Jacquet module of a —, 496
kernel of a —, 344
left regular —, 348
multiplicity of a —, 357
multiplicity-free —, 394
permutation —, 373
permutation — of Sn, 374
restriction of a — to a subgroup, 344
restriction of a — to an invariant subspace,
344

right regular —, 348
sign —, 349
spherical —, 474
sub- —, 344
unitary —, 345

restriction
— of a representation to a subgroup, 344
— of a representation to an invariant
subspace, 344

reverse radix identity, 149

Riemann zeta function, 82
elementary asymptotics for the —, 82
Euler product formula for the —, 82

right regular representation, 348
root
— of a polynomial, 65
primitive —, 35

rotation map, 273
Ruritanian map, 138

Schur
— lemma, 350
— theorem on the DFT, 115
converse to — lemma, 351

self-adjoint
— element in a ∗-algebra, 362
— projection, 390

semidirect product
— with an Abelian group, 424
external —, 281
internal —, 280

sequence
strictly multiplicative —, 79

shuffle permutation, 132
sign representation, 349
similarity identity, 158
simple
— tensor, 384
— graph, 235

solvable group, 486
spectral gap of a graph, 292
spectrum of a graph, 238
spherical
— Fourier transform, 477
— function associated with a — triple, 469
— function for GL(2,Fq ), 515
— representation, 474
convolution formula for the — Fourier

transform, 478
inversion formula for the — Fourier

transform, 477
orthogonality relations for — functions,

476, 480
Plancherel formula for the — Fourier

transform, 478
splitting field, 174
existence and uniqueness, 174

stabilizer of a point, 372
strictly multiplicative sequence, 79
stride permutation, 132
partial —, 134

strongly regular graph, 241
structure constants of an Hecke algebra, 465
sub-representation, 344
subalgebra, 361
subfield, 171
subgraph, 236
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symmetric Gelfand pair, 468
symmetric group, 349

Tao’s uncertainty principle for cyclic groups,
62

tensor
— form of the eigenidentities, 153
— product of functions, 253
— product of graphs, 259
— product of linear operators, 253
— product of subspaces, 253
— product of two spaces, 384
— product and induced representations, 406
decomposition of — products of

representations of GL(2,Fq ), 540
internal — product of representations, 387
outer — product of representations, 386
simple —, 384

terminal vertex of an oriented edge, 236
theorem
Alon-Boppana —, 299
Alon-Boppana-Serre —, 298
Alon-Boppana-Serre — (Nilli’s proof), 305
Alon-Milman —, 287
Alon-Schwartz-Shapira —, 320
Auslander-Feigh-Winograd —, 230
Cauchy — for (not necessarily Abelian)

groups, 21
Cauchy — for Abelian groups, 20
Cayley-Hamilton —, 484
Chebotarëv —, 68
Chevalley —, 227
Chinese remainder —, 9, 13
Dirichlet — L(1, χ ) �= 0, 95
Dirichlet — on primes in arithmetic

progressions, 99
Dodziuk —, 288
Euler —

∑
p prime

1
p = +∞, 97

Euler —
∑

p prime
1
p = +∞ (Erdős’ proof),

98
Fermat little —, 9
fundamental — of arithmetic, 5
Gauss — on cyclicity of U (Z/nZ), 35
Gauss totient function —, 8
Gauss-Schur — on the trace of the DFT, 116
Green-Tao —, 100
Hasse-Davenport —, 216
Hilbert Satz 90, 187, 188
Hua-Vandiver-Weil — (homogeneous case),

224
Hua-Vandiver-Weil — (non-homogeneous

case), 225
Mackey intertwining number —, 417
Mackey tensor product —, 421
Mackey-Wigner little group method —,

423

Peter-Weyl —, 357
Reingold-Vadhan-Wigderson —, 333
Schur — on the DFT, 115
Tao’s uncertainty principle – for cyclic

groups, 159
Warning —, 227

trace
— of a field extension, 187
— of a linear operator, 353
Gauss-Schur theorem on the — of the DFT,

116
Hasse-Davenport identity, 216

transitive
— action, 372
doubly — action, 379

translation operator, 55, 444
triangular graph, 242
trivial path, 237
twiddle
— free identity, 157
— identity, 155
diagonal matrix of — factors, 153

uncertainty principle
— for Abelian groups, 61
Tao’s — for cyclic groups, 62

undirected graph, 235
unipotent matrices subgroup, 486
unipotent matrix, 486
unique factorization domain (UFD), 169
unit, 55
— in a commutative ring, 168
— in an algebra, 362

unital algebra, 55
unitary
— matrix, 345
— operator, 345
— representation, 345

vector
Bessel —, 515
invariant —, 344

vertex
— of a graph, 235, 236
—neighbor, 236
adjacent —, 236
degree of a —, 236
initial — of a path, 237
initial — of an oriented edge, 236
terminal — of a path, 237
terminal — of an oriented edge, 236

Warning theorem, 227
weight of a vertex of the hypercube, 249
Weil-Berezin map, 447
Whittaker model, 513
Wielandt lemma, 378
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Winograd
— method, 157
— similarity, 158
generalized — method, 157

Rader — algorithm, 158
wreath product of graphs, 267

zig-zag product of graphs, 277
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