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Preface

The aim of the present monograph is to introduce the reader to some central
topics in discrete harmonic analysis, namely character theory of finite Abelian
groups, (additive and multiplicative) character theory of finite fields, graphs and
expanders, and representation theory of finite (possibly not Abelian) groups,
including spherical functions, associated Fourier transforms, and spectral anal-
ysis of invariant operators. An important transversal topic, which is present in
several sections of the book, is constituted by tensor products, which are devel-
oped for matrices, graphs, and representations.

We have written the book to be as self-contained as possible: it only requires
some elementary notions in linear algebra (including the spectral theorem and
its applications), abstract algebra (first rudiments in the theory of finite groups
and rings), and elementary number theory.

First of all, we study in detail the structure of finite Abelian groups and their
automorphisms. We then introduce the corresponding character theory leading
to a complete analysis of the Fourier transform, focusing on the connections
with number theory. For instance, we deduce Gauss law of quadratic reciprocity
from the spectral analysis of the Discrete Fourier Transform. Actually, charac-
ters of finite Abelian groups will appear also, as a fundamental tool in the proof
of several deep results, in subsequent chapters, constituting this way the central
topic and common thread of the whole book.

We also present Dirichlet’s theorem on primes in arithmetic progressions,
which is based on the character theory of finite Abelian groups as well as Tao’s
uncertainty principle for (finite) cyclic groups [157].

Our treatment also includes an exposition of the Fast Fourier Transform,
focusing on the theoretical aspects related to its expressions in terms of fac-
torizations and tensor products. This part of the monograph is inspired, at least
partially, by the important work of Auslander and Tolimieri [15] and the papers

Xi
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xii Preface

by Davio [50] and Rose [130]. The book by Stein and Shakarchi [150] has been
a fundamental source for our treatment of Dirichlet’s theorem as well as for the
first section of the chapter on the Fast Fourier Transform.

The second part of the book constitutes a self-contained introduction to the
basic algebraic theory of finite fields and their characters. This includes, on the
one hand, a complete study of the automorphisms, norms, traces, and quadratic
extensions of finite fields and, on the other hand, additive characters and multi-
plicative characters and several associated sums (trigonometric and Gaussian)
and the Fast Fourier Transform over finite fields. One of the main goals is to
present the generalized Kloosterman sums from Piatetski-Shapiro’s monograph
[123], which will play a fundamental role in Chapter 14 on the representation
theory of GL(2, F,;). We also introduce the reader to the study, initiated by
André Weil [165], of the number of solutions of equations over finite fields and
present the Hasse-Davenport identity [48], which relates the Gauss sums over
a finite field and those over a finite extension.

The third part is devoted to harmonic analysis on finite graphs and several
constructions such as the replacement product and the zig-zag product. The
central themes are expanders and Ramanujan graphs. We present the basic
theorems of Alon-Milman and Dodziuk, and of Alon-Boppana-Serre, on the
isoperimetric constant and the spectral gap of a (finite, undirected, connected)
regular graph, and their connections. We discuss a few examples with explicit
computations showing optimality of the bounds given by the above theorems.
We then give the basic definitions of expanders and describe three fundamental
constructions due to Margulis, to Alon, Schwartz, and Shapira (based on the
replacement product), and to Reingold, Vadhan, and Wigderson (based on the
zig-zag product). In these constructions, the harmonic analysis on finite Abelian
groups and finite fields we developed in the previous parts plays a crucial role.
The presentation is inspired by the monographs by Terras [159], Lubotzky
[99], and by Davidoff-Sarnak-Valette [49], as well as by the papers by Hoory-
Linial-Wigderson [74], Alon-Schwartz-Shapira [10], and Alon-Lubotzky-
Wigderson [8].

The final part of the present monograph is devoted to the representation the-
ory of finite groups with emphasis on induced representations and Mackey the-
ory. This includes a complete description of the irreducible representations of
the affine groups and Heisenberg groups with coefficients in both the finite field
F, and the ring Z/nZ. Moreover, both the Discrete Fourier Transform and the
Fast Fourier Transform are revisited, following Auslander-Tolimieri [15] and
Schulte [142], in terms of two different realizations of a particular representa-
tion of the Heisenberg group. In Chapter 13 we develop, with a complete and
original treatment, the basic theory of multiplicity-free triples, their associated
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Preface Xiii

spherical functions, and (commutative) Hecke algebras. This is a subject that
has not yet received the attention it deserves. As far as we know, this notion is
just mentioned in some exercises in Macdonald’s book [105]. The classical the-
ory of finite Gelfand pairs, which constitutes a particular yet fundamental case,
was essentially covered in our first monograph [29]. The exposition culminates
with a complete treatment of the representation theory of GL(2, IF,), along the
lines developed by Piatetski-Shapiro [123]: our approach, via multiplicity-free
triples, constitutes our original contribution to the theory.

All this said, one can use this monograph as a textbook for at least four dif-
ferent courses on:

(i) Finite Abelian groups, the DFT, and the FFT (the structure of finite
Abelian groups, their character theory, and the Fourier transforms): Sec-
tions 1.1, 1.2, and 1.3, and Chapters 2, 4, and 5. The remaining sections
in Chapter 1 as well as Chapter 3 are optional.

(i) Finite commutative harmonic analysis (the structure of finite Abelian
groups, their character theory, and the Fourier transforms; Dirichlet’s
theorem,; finite fields and their characters): Sections 1.1, 1.2, and 1.3,
and Chapters 2, 3, 4, 6, and 7.

(iii) Graph theory (a brief introduction to finite graphs, various notions of
graph products, spectral theory, and expanders): Sections 1.1, 1.2, 1.3,
2.1,2.2,2.3, and 2.4, and Chapters 8 and 9 (omitting, if necessary, the
parts involving character theory of finite fields).

(iv) Finite harmonic analysis (representation theory of finite groups: from
the basics to GL(2, IF,)): Sections 1.1, 1.2, and 1.3, Chapters 2, 4, and
6, Sections 7.1,7.2,7.3, and 7.4, and the whole of Part IV (Section 12.5,
Chapter 13, and Sections 14.7 and 14.8 may be omitted).

We thank Alfredo Donno for interesting discussions as well as for helping us
with some figures. We also express our deep gratitude to Sam Harrison, Kaitlin
Leach, Clare Dennison, Adam Kratoska, and Mark Fox from Cambridge
University Press as well as the project manager Vijay Kumar Bhatia and the
copyeditor Sara Barnes, for their constant encouragement and most precious
help at all stages of the editing process.

Roma, 31 July 2017 TCS, FS, and FT
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Finite Abelian groups and the DFT


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383
https://www.cambridge.org/core



https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383
https://www.cambridge.org/core

1
Finite Abelian groups

This chapter contains an elementary, self-contained, but quite complete exposi-
tion of the structure theory of finite Abelian groups, including a detailed account
on their endomorphisms and automorphisms. We also provide all the necessary
background in number theory (only basic prerequisites are assumed).

1.1 Preliminaries in number theory

In this section we review some basic facts on elementary number theory.
Most of the proofs are elementary and often left as exercises. More details
can be found in the monographs by Apostol [13], Davenport [47], Herstein
[71], Ireland and Rosen [79], Mac Lane and Birkhoff [113], Nagell [117], and
Nathanson [118].

We denote by N = {0, 1, 2, ...} the set of natural numbers, and we recall
that, by Peano’s axioms (see [113]), every non-empty subset A € N admits a
(unique) minimal element.

Also, a basic tool in elementary number theory is the division (Euclidean)
algorithm (long division): let a, b € Z such that b > 1, then there exist unique
q,r € Z with 0 < r < b such that

a=bg+r. (1.1)
If » = 0, one says that b divides a and we write b|a.

Theorem 1.1.1 (Definition of the greatest common divisor) Letr a,b e Z
with (a, b) # (0, 0). Then there exists a unique positive integer d satisfying the
following conditions:

(i) dla and d|b;
(i) ifd'|a and d'|b, then d'|d.
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4 Finite Abelian groups

Moreover, there exist (not necessarily unique) mg, ny € Z such that (Bézout
identity)

d = mga + ngb. (1.2)

Definition 1.1.2 The positive integer d as in the above statement is called the
greatest common divisor of a and b and it is denoted by gcd(a, b).

Proof of Theorem 1.1.1 Suppose that d; and d, are two positive integers satis-
fying conditions (i) and (ii). Then, by (ii) we have d|d, and d,|d,. This forces
d; = *xd,, and therefore d| = d, by positivity. This proves uniqueness. In order
to show existence, consider the set

I={ma+nb:m,neZ} CZ.

Note that if z,7 € Z then z+7 € Z and —z € Z. As a consequence, Z, =
I N (N\ {0}) is a non-empty subset of N. Let d = mpa + nob denote the mini-
mal element of 7, : we claim that Z = {hd : h € Z}. Indeed, the inclusion 2 is
obvious, while if k € Z, by the division algorithm we can find g, r € Z such that
k =qgd +rwith0 < r < d.Now, since r = k — gd € Z, U {0}, by minimality
of d we necessarily have r = 0, that is, k € {hd : h € Z}. This shows the other
inclusion and proves our claim. Sincea=a-1+b-0,b=a-0+b-1€Z,
there exist /i1, hy € Z such that a = hyd and b = hyd, so that d|a and d|b. On
the other hand, if d’|a and d'|b, say a = h\d’ and b = h\d’, with h, I}, € Z,
then d = moa + nob = moh'|d’' + nohyd’ = (moh; + noh,)d’ so that d'|d. This
shows that d = gcd(a, b). O

Remark 1.1.3 The set 7 is an ideal in the ring Z, and Z is a principal ideal
domain (see Section 6.1).

From the proof of Theorem 1.1.1 we immediately deduce the following:
Corollary 1.1.4 Given a, b, c € Z with (a, b) # (0, 0), the linear equation
na+mb=c
has a solution (n, m) € Z? if and only if gcd(a, b) divides c.
(See also Proposition 1.2.13 below.)
Exercise 1.1.5 Letay, az, ..., a, € Z with (a1, az, ..., a,) # (0,0, ...,0).

(1) Show that there exists a unique positive integer d satisfying the follow-
ing conditions:
(i) dla;foralli=1,2,...,n;
(i) ifd'|g;foralli=1,2,...,n,thend’|d.
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In particular, setting d, = gcd(ay, ay) and d; = ged(d;—1, a;) fori > 3,
show that d = d,,;

(2) show that there exist m; € Z, i = 1,2, ..., n, such that (generalized
Bézout identity) d = mya; + mpaax + . .. + mya,.

Definition 1.1.6 Let ay, ay, ..., a, € Z with (aj, az, ...,a,) # (0,0,...,0).
The number d in Exercise 1.1.5 (1) is called the greatest common divisor of the
a;s and it is denoted by ged(ay, az, . .., a,). One says that aj, az, ...,a, € Z
are relatively prime provided gcd(a;, a3, ..., a,) = 1.

An integer p > 1 is said to be prime if its positive divisors are exactly 1
and p.

Exercise 1.1.7 (Euclidean algorithm) Let a, b € N and suppose that b > 1
and b { a. Set ro = a, r; = b, and recursively define, by the division algorithm,

Tk = Fit1Gk+1 + Thg2

where 0 < ryyo < 141, for all k > 0. Show that ged(a, b) = r, where n € N is
the largest index for which r,, > 0 (so that r,,;; = 0).

Exercise 1.1.8 Let a, b, c € Z and p a prime number.

(1) Prove that if gcd(a, b) = 1 and a|bc then a|c;
(2) deduce that if p|bc then p|b or p|c.

Exercise 1.1.9 (Fundamental theorem of arithmetic) Let n > 2 be an inte-
ger. Show that there exists a unique prime factorization

my ., np

n=pi p2

-pr™
where p; < p» < --- < p; are prime numbers, mj, my, ..., my > 1 are the
multiplicities, and h > 1.

Hint. For uniqueness, use induction combined with Exercise 1.1.8.

Exercise 1.1.10 Let a;, as, . . ., a, > 2 be integers. Suppose that

aj — plmljp2m2j e phmhf
with distinct primes p; and multiplicities m;; > 0, for all i = 1,2, ..., h and
j=1,2,..., n. Show that

m my

ged(ay, az, ..., a,) = py p2’”2 <D

where m; = min{m;; : j=1,2,...,n}foralli=1,2,..., A
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6 Finite Abelian groups

Exercise 1.1.11 (Euclid’s proof of the infinitude of primes)

(1) Let py, p2, ..., pu, n > 1, be distinct primes. Show that the number
pip2- -+ pn+ 1isnot divisible by p; foralli =1,2,...,n;
(2) deduce that the set of prime numbers is infinite.

There are many other proofs of the infinitude of primes. Six of them (includ-
ing Euclid’s proof) are in the book by Aigner and Ziegler [5]. A deep general-
ization of this fact will be presented in Chapter 3.

Definition 1.1.12 Let n > 1 and a, b € Z. One says that a is congruent to b
modulo n, and one writes a = b mod n, provided n|(a — b).

Exercise 1.1.13 Letn > 1.

(1) Show that the congruence relation = mod 7 is an equivalence relation;

(2) suppose that a = nqg + r, with 0 < r < n. Show that a = r mod n;

(3) deduce that there are exactly n equivalence classes and that a complete
list of representatives is provided by 0, 1, ..., n — 1.

Forn > 1 and a € Z we denote by
a={a+hn:helZ} (1.3)

the equivalence class containing a.
We denote by Z/nZ ={a:acZ}= {0,1,...,n—1} the corresponding
quotient set.

Exercise 1.1.14 Letn > 1 and a, b € Z. Set

d+b=a+b and a-b=ab. (1.4)

(1) Show that the operations + and - in (1.4) are well defined;

(2) show that (Z/nZ, +) is a cyclic group;

(3) show that (Z/nZ, +, -) is a unital commutative ring;

(4) show that a is invertible in (Z/nZ, +, -) if and only if gcd(a, n) = 1;
(5) deduce that if p is a prime, then (Z/pZ, +, ) is a field.

For (5), see also Corollary 6.1.13.
Notation 1.1.15 Let n > 1. For k, m € Z we write
km =m+m+ - - - + m (k summands)

if k > 0, and km = —(|k|m) if k < 0, where m is as in (1.3).
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1.1 Preliminaries in number theory 7

The notation above is consistent with the fact that (Z/nZ, +), as any Abelian
group, is a Z-module; see the monographs by Herstein [71], Lang [93], and
Knapp [87].

Lemma 1.1.16 Let r and s be positive integers with gcd(r, s) = 1. Then for
every() < k < rs — 1 there existunique ) <u <r—1and0 <v <s—1such
that

k=us+or mod rs. (1.5)

Proof. Asuand o vary, withO <u <r—1land0 <o < s — 1, the expression
us + or yields (at most) rs integers; therefore it suffices to show that these are
all distinct mod rs. Indeed, forO < u, ' <r—1and0 <ov,v’ <s— 1 wehave
(keeping in mind that gcd(r, s) = 1):

us+or=us+0or modrs= (u—u)s+@®—0)r=0 mod rs

=u modr

(by Exercise 1.1.8.(1)) = 1"
v=0v" mods

—u=uandv =0" O]

Notation 1.1.17 For n > 1 we denote by

o 7, the additive group (Z/nZ, +) of integers mod n;
o C, the multiplicative cyclic group of order n;
o Z/nZ the ring (Z/nZ, +, -) of integers mod n.

When n = pis aprime, we shall denote by IF, the finite field Z/pZ (cf. Exercise
1.1.14.(5)).

Note that if C, is generated by the element a € C,, then the map k > a*, for
all k € Z, is well defined and establishes a natural group isomorphism of Z,
onto C,.

We shall examine the structure of all finite fields in Section 6.3.

Definition 1.1.18 The Euler totient function is the map ¢ defined by
pon)=|{meN:1<m<n,ged(m,n) =1}

for all n > 1, where | - | denotes cardinality. In words, the value ¢(n) equals
the number of positive integers less than or equal to n that are relatively prime
to n.
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8 Finite Abelian groups

Proposition 1.1.19 Letn be a positive integer. Then in the cyclic group 7., there
are exactly ¢(n) distinct generators.

Proof. Let1 < m < n — 1 and suppose that gcd(m, n) = 1. By Bézout identity,
we can find a, b € Z such that am +bn = 1. Let 1 < h < n — 1 be such that
h=a. Then, in Z, we have m+m + --- +m = hm = am = 1. AsTclearly
generates Z,, this shows that m generates Z, as well. On the other hand, if
gcd(m, n) = g > 1, then we can find &, k € N such that m = hq and n = kq.
Note that 1 < k < n. Then we have ki = km = % = hn =0 so that the
(cyclic) subgroup generated by m in Z, has order < k and therefore cannot
equal the whole Z,,. This shows that m is not a generator of Z,,.

The statement then follows from the definition of ¢(n). ]

Proposition 1.1.20 (Gauss) Let n be a positive integer. Then we have

Z o(r) =n.

1<r<n
rln

Proof. For every positive divisor r of n let us set
A(r):={keN:1 <k <n,ged(k,n) =n/r}. (1.6)

For 1 < k < n we clearly have k € A(r) with r = n/ gcd(k, n), and such an r is
unique, so that

L2,....ny= ][ Aw. 1.7)
1<r<n

rin

Now, for every k € A(r) there exists a unique positive integer j such that k =
Jj%. It follows that 1 < j < rand

n non n .
— = ged(k, n) = ged (]—, r—) = —gcd(j, r)
r ror r

so that ged(j, r) = 1. Conversely, if r|n and ged(j, ) = 1, then ged(j%, n) =
ged(j7, re) = =. As a consequence, A(r) = {j* : ged(j, ) = 1} so that

lA(r)] = ¢(r) (1.8)

and therefore, from (1.7) we deduce

n= Y A=) o).

1<r<n 1<r<n

rln rin O
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1.1 Preliminaries in number theory 9

Theorem 1.1.21 Let p be a prime number. The (multiplicative) group ¥, of
invertible elements in the field ¥, is cyclic (of order p — 1).

Proof. We first observe that || = H1,2,...,p-1}|=p—1.
For every positive divisor r of p — 1 let us set

B(r) :={a € IF;‘; : o is of order r}.

Thus, if « € B(r), we have o” = 1 and « generates a cyclic group («) of order
r consisting exactly of all the solutions in IF,, of the equation x” = 1. That is,
B(r) C () (recall also that over any field, an equation of degree m has at most m
solutions). By virtue of Proposition 1.1.19, (&) has ¢(r) generators, namely the
powers a" with 1 < h < rand gcd(h, r) = 1. As a consequence, if B(r) # @
we have |B(r)| = ¢(r). Therefore

p—1=IF= Y IBOI< Y ¢rn=p-—1,
ri(p=1) rl(p—1)
where the last equality follows from Proposition 1.1.20. Since the above is
indeed an equality, we deduce that B(r) # & for every r which divides p — 1.
In particular, every element o € B(p — 1) is of order p — 1 and therefore
(a) =T, O

Exercise 1.1.22 (Fermat’s little theorem) Show that if p is a prime, then for
all n € Z we have n” =n mod p so that, if in addition p{n, then n’~! =
1 mod p.

We end this section with the following well-known results (see also Remark
5.2.15), which we deduce from Theorem 1.1.1.

Corollary 1.1.23 (Chinese remainder theorem I) Let r, s be two positive
integers such that gcd(r,s) = 1. Then for all (a,b) € Z there exists x =
x(a, b) € Z solution to the system
x=a modr
(1.9
x=b mods.
Proof. By Bézout identity, we can find u, v € Z such that 1 = ur + 0vs. We
leave it to the reader to check that the quantities a + (b — a)ur and b + (a —
b)vs are equal and constitute a solution to (1.9). U

Exercise 1.1.24 With the notation from Corollary 1.1.23, set §; = x(1, 0) and
8> = x(0, 1). Show that x(a, b) = ad; + bs,.

Exercise 1.1.25 (Chinese remainder theorem II) Let ry, ry, ..., r, be posi-
tive integers such that gcd(r;, r;) = 1forall 1 <i < j <n.
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10 Finite Abelian groups
(a) Show that for all (aj,as,...,a,) € Z" there exists a solution x =
x(ay, ay, ..., a,) € Z of the system

x=a; modr

x=a, modrnr

(1.10)

x=a, modr,;

(b) set R =ryry---r,. Show that y € Z is another solution to (1.10) if and
only if x = y mod R.

Hint. Foreveryi = 1,2, ..., ndenote by §; € Z a solution to (1.9) witha =
1,b=0,r = r;,and s = R/r;. Show that §; is a solution to (1.9) witha = 1,b =
0,7 =r;, and s = rj, for all j # i. Then show that x(ai, as, ..., a,) = a1é; +
@y + -+ + aydy.

Proposition 1.1.26 Let n > 1, m € Z, and set d = gcd(m, n). Then, in the
cyclic group Z, the element m has order 7.

Proof. For k € Z we have
km=0 modn < n|km
n. .m
k=
ALY

n
& — |k,
7|

. m . .
since 7 and % are relatively prime. O

Exercise 1.1.27 Deduce Proposition 1.1.19 from Proposition 1.1.26.

1.2 Structure theory of finite Abelian groups: preliminary results

In this section we review some basic facts on finite Abelian groups and their
structure. Our exposition is based on the following monographs: by Machi
[102], Zappa [170], Kurzweil and Stellmacher [90], Kurosh [89], Rotman
[132], Herstein [71], Nathanson [118], and on the papers [18, 72, 120].

We use additive notation. In particular, fora € Z,, andr € Nwe setra = a +
a+ - - -+ a(r summands). Moreover, for an element a (respectively a subset B)
of an Abelian group A, we denote by (a) = {ra : r € N} (respectively (B)) the
subgroup of A generated by a (respectively B) and by o(a) = |{(a)| € N U {oo}
the order of a.

Let A be a finite Abelian group and let Ay, A, ..., Ar <A, k> 1 be sub-
groups of A.
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1.2 Structure theory of finite Abelian groups: preliminary results 11

Definition 1.2.1 The sum of the subgroups A;, A», ..., A is the subgroup
B=A+A +- + 4 (1.11)

formed by all elements a € A which can be expressed as
a=ay+a+---+a; (1.12)

withaj € Aj, j=1,2,...,k
One says that the subgroup B in (1.11) is an (internal) direct sum, and we
write

B=A10A® - A, (1.13)
provided that the expression (1.12) is unique for every a € B.

Proposition 1.2.2 The following conditions are equivalent for B = A| + A,
+ o+ A

(1) B is adirect sum;
(i) ifar+ax+---+ax =0witha; €Aj, j=1,2,...,k thenay = a, =

...:akz();

(111) (A1+A2++A]_1+A,+1++Ak)ﬂA]:{O} for all ]21,
2, ..,k

@Av) |B] = [A] - 1Az] - ... - Akl

Moreover, if one of the above conditions holds and
Aj=Bj1®Bj2®---® B,
where the Bj ;s are subgroups and hj > 1, forall j = 1,2, ...,k then

hij

B=P P B,

j=1 i=1
Proof. We leave it as an easy exercise. U
Let now By, B, ..., B; be Abelian groups.

Definition 1.2.3 The (external) direct sum of the groups Bi, B, ..., By,
denoted

Bi®B, & @B, (1.14)
is the Cartesian product B; x B, x - -- x By endowed with the group operation
(b1, by, ... b))+ V), by, ... b)) = (by + ), by + b, ..., by + b))

forall b;, b, e B;,i=1,2,... k.
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12 Finite Abelian groups

Note that
|BI @B, @ -+ @ Bi| = [Bi] - |Ba| - ... - |Bgl. (1.15)
The notions of internal and external direct sum are strictly correlated:
Proposition 1.2.4

(i) Let B=B; ® B, @ - - - @ By be an external direct sum. For every j =
1,2, ...,k denote by A; the subgroup, isomorphic to Bj, consisting of
all elements of B of the form (0,0, ...,0,a;,0,...,0)witha; € Bj in
the jth coordinate. Then,

B=A A D - - DA

as an internal direct sum;
(ii) the internal direct sum (1.11) is isomorphic to the external direct sum
of the groups Ay, As, . .., Ay

Proof. We leave it as an easy exercise. O

As a consequence, in the sequel, if B= B ® B, @ - - - @ By, by abuse of
language we shall regard the groups Bj, j =1, 2, ..., k, as subgroups of the
Abelian group B.

‘We now focus on some basic results on cyclic groups and their structure.

Proposition 1.2.5 Let r, s be two positive integers satisfying ged(r, s) = 1.
Then if n = rs we have

Zn =7, & Z,.

Proof. Let a be a generator of Z,, and set b = ra and ¢ = sa. Since sb = sra =
na = 0 and kb = kra # 0 for 0 < k < s, we have that o(b) = s and, similarly,
o(c) = r. Moreover,

(b) N {c) =0.
Indeed, if kb = hc with O < k < sand 0 < i < r then
kra = hsa

with 0 < kr, hs < n, which implies that kr = hs. Since gcd(r, s) = 1 we nec-
essarily have s|k and r|h (see Exercise 1.1.8.(1)) and this forces h = k = 0.
Finally, by Bézout identity (cf. Theorem 1.1.1), there exist u, » € Z such that
ru + sv = 1 so that

a = la=ura+ vsa =ub+ vc.
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This implies that Z,, = (b) ® (c) = Z, & Z;. U

Definition 1.2.6 An Abelian group is termed indecomposable if it cannot be
written as a direct sum of two or more nontrivial subgroups.

A p-primary cyclic group is a cyclic group of order a nontrivial power of a
prime p.

From Proposition 1.2.5 we deduce:

Corollary 1.2.7 (Chinese remainder theorem III) Let n = p’f‘ pl; e pf’ be
the prime factorization of an integer n > 2. Then

L=y ®Ly @ ® Ly (1.16)

That is, every cyclic group may be written as a direct sum of p-primary cyclic
groups corresponding to distinct primes p.

Exercise 1.2.8 Show that the Chinese remainder theorem III (Corollary 1.2.7)
is equivalent to the Chinese remainder theorem II (Exercise 1.1.25).

Corollary 1.2.9 Let m and n be two positive integers and suppose that m
divides n. Then Z, contains an element of order m.

Proof. Letn = plf‘ p’; e pf’ be the prime factorization of n. Then we can write
m= pﬁ"pgz .. ~pi1’ withO < h; < k;,i = 1,2, ...,t. Inthenotation of Corollary
1.2.7, let ay, ay, . . ., a;, be the generators of the primary cyclic subgroups in
(1.16). We claim that the element

—m

k ko —h —h
z=p) Nar+py Cat+pt A

has order m. Indeed,

m m m
mz = —hlplilal + —th?az + -+ Tpf/a, =0
Py 1) )4

. W, M, r .
and if m'|m and m’ < m, say m’ = p|'p,’ - - ~pr’ (with 0 < b} < h;, for all i =
1,2,...,t, and there exists 1 < j <t such that h’j < h;) then

/ /
M k—h+h, ko—hy+h, M j—h+h,
mz=—p' lar+ —rp, ’ fay et —py "hay #0
p1] )2 Pr
since

m' kj—h+H,
p a0
pj

This proves the claim and the corollary. U
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14 Finite Abelian groups

Proposition 1.2.10 Let p be a prime number and let a be a generator of the p-
primary cyclic group Z . Then every nontrivial subgroup of Z contains the
element p*~'a. In particular, Z,y is indecomposable.

Proof. Let x € Zy be any nontrivial element. Then we can find 0 < s < Pk
such that x = sa. We may decompose s in the form s = p/'r, with0 < h < kand
r € Nsuchthatged(p, r) = 1. Thenwecanfindu, v € Zsuchthatru + po =1
so that

k—h—1 k—h—1

(p ux =p usa
= pkflura
=p' (1= po)a
—
that is, p*~'a € (x). This shows that every nontrivial subgroup of Z contains
P la.
The last statement then follows from Proposition 1.2.2.(iii). 0

Corollary 1.2.11 For every n > 2, the cyclic group Z, has a unique decompo-
sition as a direct sum of p-primary cyclic groups and it is given by (1.16).

Proposition 1.2.12 Let n > 1, and let a be a generator of the cyclic group 7.,
Then every subgroup A of Z, is cyclic and A = (;-a) where m = o(A). Con-
versely, for every divisor m of n there exists a unique subgroup A,, < Z, of

order m.
Proof. Let A be a non trivial subgroup of Z,. Set
h =min{k € N: ka € A}

and let us show that A = (ha). Indeed, if sa € A, then, by the division algorithm,
there exist g € N and O < r < h such that s = gh + r so that

ra=sa—qha €A

forcing r = 0 and sa = gha € (ha).

On the other hand, if m divides n, then o(;-a) = m. Indeed, m;-a = na = 0,
while if 0 < r < m then ri> < n so that (r7-)a = r(;-a) # 0. This shows that
Ay, = (:-a) (uniqueness follows from the first part). 0

Proposition 1.2.13 Letn > 1, a, b € Z, and set d = gcd(a, n). Then the linear
congruence

ma=>b modn 1.17)
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has a solution m > 1 if and only if
b=0 modd.
If this is the case, (1.17) has d distinct pairwise non-congruent solutions.

Proof. Wehave ma = b mod n if and only if there exists k € Z such that ma =
b + kn, that is, b = ma — kn. By Corollary 1.1.4, this last equation admits a
solution (m, k) € Z? if and only if d divides b. By Proposition 1.1.26 the linear
congruence

ha=0 modn

has exactly d non-congruent solutions, namely & = 3, 25, o, (d— 1)3, n. If
b =0 mod d and my is a fixed solution of (1.17), then a complete list of pair-
wise non-congruent solutions of (1.17) is given by

n n n
m=m0,mo+3,m0+23,---,m0+(d—1)3- O

Remark 1.2.14 We write Proposition 1.2.13 in a more abstract form by using
multiplicative notation. Let n > 1, recall that C, denotes the multiplicative
cyclic group, and let x € C,, be a generator. Let a € Z and set d = ged(a, n).
Given z € C, consider the equation (in the variable y in C,)

Y=z (1.18)

o If z = u® for some u € C,, then (1.18) has d solutions;
o otherwise, (1.18) has no solutions.

(Just set z = x” and y = x, and consider the exponents.)

We now examine arbitrary Abelian groups (not necessarily cyclic). We begin
with a kind of converse to Proposition 1.2.5.

Proposition 1.2.15 Let A be a finite Abelian group. Let a, b € A and suppose
that gcd(o(a), o(b)) = 1. Then o(a + b) = o(a)o(b).

Proof. Set o(a) =r, o(b) =s and observe that rs(a+ b) = rsa+ rsb =
s(ra) + r(sb) = 0. Suppose now that m € N satisfies m(a + b) = 0. As aconse-
quence, ma = —mb so that sma = —msb = 0 and therefore r divides sm. Since
r and s are coprime, we deduce that » divides m. Analogously, s divides m. Since
gcd(r, s) = 1 this implies that m is a multiple of rs. Therefore rs is the order of
a+b. O
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16 Finite Abelian groups

Remark 1.2.16 In general, we do not have o(a+b) = % =

lem(o(a), o(b)), where lcm denotes the least common multiple. For instance,
just consider the case a = —b.

Proposition 1.2.17 Let p be a prime number and (i1 > o > - -+ > [, positive
integers. Then the Abelian group

A = Z[,M @ Zpltz @ e 69 Zp“h
is not cyclic.

Proof. The elements in A of maximal order are of the forma; + a, + - - - + ay,
where a; is a generator of Z. and a; € Z,; fori =2, 3, ..., h; their order is
le . O

Exercise 1.2.18 Let A be a finite Abelian group and a, b € A. Show that A con-
tains an element of order Icm(o(a), o(b)).

The following is, probably, the most difficult exercise in Herstein’s book [71]
(it is Exercise 26 in Section 2.5). Its difficulty relies on the fact that the author
asked for a proof based only on tools developed up to Section 2.5 of his book.
A proof in this style was published by Robert Beals [18].

Exercise 1.2.19 Let A be a finite Abelian group and B, C < A subgroups of A
with |B| = m and |C| = n. Show that A contains a subgroup of order lem(m, n).

Exercises 1.2.18 and 1.2.19 are quite easy once the whole structure theory
of finite Abelian groups will be fully developed (in the remaining part of this
chapter).

Proposition 1.2.20 Let A be a finite Abelian group and a € A an element of
maximal order. Then for all b € A one has that o(b) divides o(a).

Proof. Fix b € A and let p* be a prime power in the factorization of o(b). Sup-
pose that o(a) = phm, where & > 0 and gcd(p, m) = 1. By Corollary 1.2.9,
there exist ¢ € (a) with o(c) = mand d € (b) with o(d) = p*. Then, by Propo-
sition 1.2.15, o(c + d) = p"m so that, by maximality of o(a), we necessarily
have k < h. This shows that every prime power in the factorization of o(b)
divides o(a). It follows that o(b) divides o(a). ]

Lemma 1.2.21 Let A be a finite Abelian group, a € A an element of maximal
order, b € A an arbitrary element, and denote by m the order of b+ (a) in
the quotient group A/(a). Then there exists c in the coset b+ (a) such that
o(c) =m.
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Proof. First of all we observe that mb + (a) = m(b + (a)) = (a) so that mb €
(a) and we can find n € N such that

mb = na. (1.19)
Setting
h =o(a) and t = gcd(n, h),

by Proposition 1.1.26 we have o(na) = ];’
We claim that

o(b) = mTh (1.20)

Indeed, setting r =o(b), by (1.19) we have b = “mb = “na = 0 and this
implies
mh

= (1.21)

Conversely, since r(b+ (a)) = (rb+ (a)) = (a) and, by hypothesis, o(b +
(a)) = m, we have that m divides r. Thus we can find g € N such that r = gm.
As a consequence, by (1.19) we have

0 =rb=qmb = gna.

Since o(na) = %, we deduce that % divides g, that is, there exists s € N such

that g = s?. It follows that

h mh
r=qm=sm-— =s§5—
t 1
so that 2 divides r and, by (1.21),
mh
oby=r= —

Thus, the claim (1.20) follows.

From Proposition 1.2.20 it follows that » = ”;—h divides A (the order of q,
which is maximal) and therefore, m|t. Thus we can find k € N such thatt = km.
Setting v = % (this is an integer since ¢t = gcd(n, h)) and recalling (1.19), we
have

mb = na = vta = moka. (1.22)
Setting

c=b—vka
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18 Finite Abelian groups

we have b 4 (a) = ¢ 4 (a) and by (1.22)
mc = mb — mvka = 0.

This shows that o(c)|m. Since m = o(b + (a)) = o(c + {(a)) < o(c) < m, we
deduce that o(c) = m. ]

1.3 Structure theory of finite Abelian groups: the theorems

In this section we present the three structure theorems for finite Abelian groups.

Theorem 1.3.1 (Invariant factors decomposition) Let A be a finite Abelian
group. Then there exists a unique finite sequence ry, 13, ..., I, k > 1, of posi-
tive integers such that

(1) rjdividesrj_y forall j =2,3,...,k;
(i) Al =rira-- -1
(iii)) A= Zy, ®Zy, D B Ly,

Proof. First of all we show, by induction onn = |A|, that such a sequence exists.
The case n =1 is trivial (take k = 1 = r). Let now n > 2 and suppose the
statement holds for all finite Abelian groups of order 1 < h < n — 1. Let then
a; € A such that r; = o(a;) is maximal and consider the quotient group A" =
A/{a). We have |A’| = |A]/o(a;) < n so that, by the inductive hypothesis, we
can find a finite sequence r;, r3, .. ., 7 of positive integers such that r; divides
ri—iforall j=3,4,...,k,

A | = rars -1y (1.23)

and
AZZ,0Z,® DLy, (1.24)
By virtue of Lemma 1.2.21, we can find elements ay, as, ..., a; € A such

that the summand Z,, is generated by a; + {(a;) and

o(a;) =r; (1.25)

forall j = 3,4, ..., k. Clearly,
A= {a)+(ar) + -+ (). (1.26)
Indeed, if b € A then by virtue of (1.24) we can find integers my, ms, ..., m;

such that
b+ (a1) = my(ay + (a1)) +mz(az + {(ar)) + - - - + m(ar + (a1))
= (may + (a1)) + (m3az + {a1)) + - - - + (may + (a1))

= (may +mzaz + - - - + myay) + {(ap)
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so that b — (myar + mzasz + - - - +may) € {a1), and therefore we can find
m; € N such that b = mya; + mpay + mzaz + - - - + myay. This shows (1.26).

From (1.23) and o(a;) =r; we deduce that |[A|=r|A|=rr---r
(namely, condition (ii)) so that, by virtue of Proposition 1.2.2, the sum (1.26) is
indeed a direct sum, and (iii) follows as well. Moreover, by Proposition 1.2.20
we deduce that r, divides r; so that, by induction, also (i) is satisfied.

We now turn to uniqueness of the sequence ry, r;..., ;. Suppose that
S1,82,...,8, h €N, is also a sequence of integers satisfying (i), (ii), and
(iii). For every j = 1,2, ..., h, we denote by b; € A a generator of the sum-
mand ZS/ so that, for every ¢ € A, we can find ny, ny ..., n, € Nsuch that c =
mb; + nyby + - - - + nyby,. From (i) we deduce that s;¢c = 0 so that s; = o(b;)
is the maximal order of the elements of A so that (cf. the first part of the proof)

S| =ry.
Suppose then that we have, for some 2 < j < min{#, k},
S1=711, $5="12, ..., Sji—1 =rj—1 and s; #1j. (1.27)
To fix ideas, suppose that s; < r; and denote by
B ={sjc:ceA}

the set of s;-multiples of the elements of A. Clearly, B is a subgroup of A.
Moreover (cf. (1.26)), if ¢ € A we can find my, m, ..., m; € N such that ¢ =
miay + moa; + - - - + myay. Thus

sic =my(sjar) +ma(sjar) + - - - + m(sjar),
which implies that
B=B & (s;a;) B, (1.28)

where By = (s;a1) @ (sja2) ® --- @ (s;a;_1) and By = (sja;1) ® (s;a;42) ®
-+ @ (sjax), and each summand in By @ (s;a;) is nontrivial since s; < r; =

o(a;) foralli = 1,2, ..., j; in particular,
o(a;) T
0(s.a.)= = > 1 (1.29)
I ged(sj, ;) ged(sj, 1)
Similarly, we have
B = (s;b)) ® (sib2) ® -+ D (s;bj_1), (1.30)

since s;by =0 forf = j, j+ 1, ..., h. Note that

o(s 1) = 0(?;‘) _ 2 _ j_l = o(s;by). (1.31)
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fori=1,2,...,j— 1. From (1.30) and (1.31) we deduce that B = B so that,
in particular, (s;a;) is trivial, a contradiction with (1.29). This shows that 1 = k
and sy =ry, 80 =1, ..., S, = 1, and uniqueness follows. O

Definition 1.3.2 The positive integers satisfying (i), (ii), and (iii) in Theorem
1.3.1 are called the invariant factors of A.

Corollary 1.3.3 (Cauchy’s theorem for Abelian groups) Let A be a finite
Abelian group. Suppose that p is a prime divisor of the order of A. Then A
contains an element of order p.

Proof. Let ry,ry, ..., r; denote the invariant factors of A. Since p divides
|A| = riry - - - 1y, by virtue of Exercise 1.1.8.(2), we can find 1 < j < k such
that p|r; (in fact, by Theorem 1.3.1.(i), we always have p|r;). From Corollary
1.2.9 we deduce that the subgroup Z,/, and therefore A, contains an element of
order p. ' O

Remark 1.3.4 The above is a quite unusual proof of Cauchy’s theorem for
Abelian groups. Indeed, any book on group theory or on undergraduate algebra
contains a direct proof of the more general result, namely the Cauchy theorem
for not necessarily Abelian groups. Often (e.g. Robinson [129]), one deduces
Cauchy’s theorem from the even more general Sylow theorem. In other books
(e.g. Herstein [71], Lang [93], Mac Lane and Birkhoff [113], and Rotman
[132]) the Abelian case is proved as a first step towards the general case. Finally,
in Machi’s monograph [102] there is an elementary direct proof of the general
result based on the paper by McKay [106] (cf. Exercise 1.3.6 below). In the
next exercise we outline a direct proof of Corollary 1.3.3 following [120].

Exercise 1.3.5 Let A be a finite Abelian group. Suppose that p is a prime divisor
of the order of A and let B be a proper maximal subgroup of A.

(1) Show that the quotient group A/B is cyclic of prime order;

(2) show thatif p does not divide |B| then there exists ¢ € A such that (c) +
B=Aand|(c)/({c) N B)| = p;

(3) use (1) and (2) to give (another) inductive proof of Corollary 1.3.3.

As mentioned above, in the next exercise we outline a direct proof of the
general Cauchy theorem. We use some elementary notions on group actions
that will be further developed in Section 10.4.
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Exercise 1.3.6 Let G be a finite (not necessarily Abelian) group: we use mul-
tiplicative notation. Suppose that p is a prime divisor of the order of G and
set

X={(g1.8---.8)€G" : g182-- g, = 1g}.

(1) Show that |X| = |G|P~};

(2) show that Z, acts on X by cyclic permutations, namely that if
x=1(81,82,...,8p) € X and ¢ is a fixed generator of Z, then tx =
(82,83, -+ 8p:81) €X;

(3) for x € X denote by Stab, = {s € Z,, : sx = x} the stabilizer of x: show
that Stab, is a subgroup of Z, and, from Lagrange’s theorem, deduce
that it is either trivial or the whole Z;

(4) denote by Z,x = {sx : s € Z,} the orbit of x € X and show that |Z,x| =
p/|Stab,| (orbit-stabilizer theorem);

(5) deduce that the only possible orbit sizes are 1 and p;

(6) show that Z,x = {x} if and only if there exists g € G such that x =
(g & -..,8),so that, necessarily, g’ = 1g;

(7) let m (respectively n) denote the number of orbits of size 1 (respectively
p): from (5) and (6) deduce that m + np = |G|P~! and m > 1;

(8) from (7) deduce that m > 2 (in fact m is divisible by p) and therefore,
by (6), there exists g € G of period p.

Theorem 1.3.7 (Primary decomposition) Let A be a finite Abelian group. Let
A| = phplh - ph (1.32)
be the prime factorization of the order of A. Then
A; = {a € A : o(a) is a power of p;}
is a subgroup of A of order pf",fori =1,2,...,t,and
A=A QA D - - DA, (1.33)

Proof. We first remark that, by virtue of Corollary 1.3.3,A; # {0}, and we leave
it as an exercise to check that A; is a subgroup fori = 1,2, ...,1.

Let a € A. Then, since o(a) divides |A|, there exists a nonempty subset
{it, iz, ..., imyof {1,2,..., ¢t} andintegers 1 < h; < k,-/.,j =1,2,...,m,such
that

o(a) = p'p - Pl
By the Chinese remainder theorem III (Corollary 1.2.7), we have

Im*

(@ =Zp ®@Lp @ ®Lyw Ay +Ap+---+A
l] im

i
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This shows that
A=A +A,+ - - +A,. (1.34)

We claim that the above sum is direct. Suppose thata; +a, +---+a, =0,
where a; € A;, i =1,2,...,t. Let 1 <i <t. Then, after multiplying by ¢; =

ﬂk,‘, we get g;a; = 0 and, since the order of a; does not divide g;, we necessar-
P!

illy have a; = 0. Thus a; = a; = --- = @, = 0 and from Proposition 1.2.2 the
claim follows. This establishes (1.33).

Let 1 <i <t. Since A; only contains elements of order a power of p;,
from Corollary 1.3.3 we deduce that |A;| = p’ for some integer r; > 1. More-
over, since the sum (1.34) is direct, we have [A| = |A;|-|Az| ... |A/] =
pPipy -+ p/ so that, by uniqueness of the prime factorization (1.32) of |A|,
we necessarily have r; = k; foralli = 1,2, ..., t, completing the proof. O

Definition 1.3.8 Let p be a prime number. A group G is termed a p-group pro-
vided that every element has order a power of p.

Sylow’s first theorem (see for instance Herstein [71]) states that if G is a
finite group and p a prime number such that |G| = p"m, where n, m > 1 with
gcd(p, m) = 1 (thus n is the maximal power of p dividing the order of G), then
G contains a p-subgroup of order p”: this is called a p-Sylow subgroup of G.

Thus, from Theorem 1.3.7, an Abelian version of Sylow’s first theorem
follows.

Definition 1.3.9 Let p be a prime number. An Abelian p-group is called a p-
primary group (cf. Definition 1.2.6). Moreover, for i = 1,2, ..., ¢, the sub-
group A; in (1.33) is termed the p;-primary component of A.

The following relates and refines the statements of Theorem 1.3.1 and The-
orem 1.3.7: we use the notation therein.

Corollary 1.3.10 (Structure theorem for finite Abelian groups) Let A be a
finite Abelian group. Then there exist unique positive integers h; and m;j, i =
1,2,...,tand j = 1,2,..., h; satisfying h; < k; and

mip = mp > - > my, (1.35)

foralli=1,2,... ¢t such that the following holds:

t h;

A EB @ Z (1.36)

i=1 j=1
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hi
A=PZm (1.37)
=1
fori=1,2,...,t and
Z, = D L (138)
1<i<t:
Rei

for j=1,2,..., k. In particular 21;:1 mjj=kifori=1,2,...,tand

[] P =r (1.39)

1<i<t:
hi=j

forall j=1,2,...,k

Proof. We shall present two proofs of this fundamental result: we can exchange
the order of the applications of Theorem 1.3.1 and Theorem 1.3.7.

First proof. We apply Theorem 1.3.1 to each p-primary component A; in (1.33):
thus we can find 1 < h; < k; and m;; > mjp > -+ > myy, such that (1.37) and
therefore (1.36) hold. Uniqueness follows from uniqueness in Theorem 1.3.1
and uniqueness of the prime factorization of |A| Let now 1 < j < k. Then
(1.35) implies that ]_[1<,<, p;"” divides ]_[ 1<,<, p;™"" so that, by Proposition

1.2.5 and uniqueness 1n Theorem 1.3.1, We deduce (1.39) and (1.38).

Second proof. Consider the invariant factors r;, j=1,2,...,¢, in Theorem
1.3.1.(ii). Let ry = p["' p)* --- p/*' denote the prime factorization of r; (so
that m;; >0 fori=1,2,...,1). Let 1 < j <k. Since rj|rj_y, ..., r|r, we
can write r; = pT"p';z’ - p/" with m;j—1 >m;; >0fori=1,2,...,1 Let

us denote by h; the largest j such that m;; > 0 (equivalently, m;, > 0 and
mj p+1 = 0). This way, r; = ]_[1<,<t D; ™7 is the prime factorization of r; and
hiz

(1.39) follows. Applying Theorem 1 3.7toeachZ,,j=1,2,...,t, wededuce
(1.38). Finally, from the direct sum decomposition in Theorem 1.3.1.(iii), we
deduce (1.36) and, by definition of A;, (1.37). O

Corollary 1.3.11 A finite Abelian group is indecomposable if and only if it is
a p-primary cyclic group for some prime p.

Proof. The “if” part is Proposition 1.2.10. Conversely, if A is indecomposable,
then in (1.36) we must have t = 1 and /; = 1. O
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Definition 1.3.12 The positive integers m;;,i =1,2,...,t,j=1,2,..., h;,in
Corollary 1.3.10 are called the elementary divisors of A.

In Corollary 1.3.10 we have shown that the invariant factors determine
uniquely the elementary divisors, and vice versa. More precisely, given the
prime factorization (1.32), from (1.39) we have a correspondence

r)i_, < ((h,-)izl, (mij) 1=i<i ) :
1<)=h;
Our next task is to compute the number of nonisomorphic Abelian groups of
a given order n € N. For this purpose we introduce the following definitions.

Definition 1.3.13 Let n € N. A partition of n is a sequence
A=A Ay Ap)
of positive integers such that
A=A == Apand A+ A+ -+ A =n.

We then write A - n.
We denote by p(n) = [{X : A - n}| the number of partitions of n.
The map p: N — N is called the partition function.

Let now A and B be two finite Abelian groups. Then A = B if and only if,
denoting by (r‘?)lj‘.": , and (rf )I;.R: , the corresponding invariant factors, then ky =
kp and r‘j“ = rf forall j = 1,2, ..., ks: we express this last condition by saying,
with a slight abuse of language, that A and B have the same invariant factors.
Equivalently, A and B are isomorphic if and only if |A| = |B| and, denoting

by (m?j) 1<i<r and (mf].) 1<i<: the corresponding elementary divisors, we have

I<j<nh} I<j<h?
h :hfandmf‘j =m} foralli=1,2,...,rand j = 1,2,..., k. Again, with
a slight abuse of language, this last condition may be expressed by saying that
A and B have the same elementary divisors.

Proposition 1.3.14 Letn > 2 and denote by n = p]il pgz .- ~pf’ its prime factor-
ization. Then the number of nonisomorphic Abelian groups of order n is

plk)p(ky) - - - plky).

Proof. Let A be an Abelian group of order n and denote by (m,f‘j) 1<i<t the

I<j<ht
corresponding elementary divisors. Then for eachi =1, 2, ..., ¢ we have the
partition p; = (m;1, msp, ..., myp,) = k;. Since, by the above observations, the

elementary divisors uniquely determine A (of the given order n) up to isomor-
phism, this ends the proof. O
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Remark 1.3.15 Theorem 1.3.1, Theorem 1.3.7, and Corollary 1.3.10 provide
three different decompositions of a finite Abelian group. In Theorem 1.3.1
and Corollary 1.3.10, the structure of the decompositions is unique (that is,
the invariant factors and the elementary divisors, respectively, are uniquely
determined). On the one hand, the associated subgroups (namely the Z,,
j=1,2,...,k, and the Zp»_n,y, i=1,2,...,t, j=1,2,..., h;, respectively)
are not uniquely determined. This aspect will be discussed in Section 1.8 (see
Corollary 1.8.4). On the other hand, the subgroups in the decomposition in
Theorem 1.3.7 are uniquely determined.

We now give a characterization of the decomposition (1.36) in Corollary
1.3.10. First recall that, by Proposition 1.2.10, every p-primary cyclic group
me,, is indecomposable.

Proposition 1.3.16 With the notation from Corollary 1.3.10, let A = @Zzl B,

be a decomposition of A as a direct sum of indecomposable subgroups. Then
1 . . .

q =Y i, h; and there exists a bijection

wi{G@, pN:1<i<t,1<j<h}—{1,2,...,q9}
such that
Zpl‘_u,;,v = B, (1.40)
fori=1,2,...,tand j=1,2,... h,.

Proof. By Corollary 1.3.11, each B, is a p-primary cyclic group. Let 1 <
i <t. Then, in the notation of Theorem 1.3.7, we can find distinct indices
1 < p@, 1), n@,?2),...,un@, k) < gsuch that

Ai = Bui1) @ Bui2 @ - @ Buaky

and B, 1), Bui2)s - - - » Bua k) are all the p;-groups among the B,,s. Up to per-
muting the indices, if necessary, we may assume that

[Bui vl = 1Bui2yl = -+ = 1Bkl

so that, necessarily, |B,, j—1)| divides | B, j| for j = 2,3, ..., k;. By applying
the uniqueness assertion in Theorem 1.3.1, we deduce (1.40) (in particular, k; =
hiforalli =1, 2,...,t). The remaining part of the statement is now clear. [J

Proposition 1.3.17 Let A be a finite Abelian group. Then, in the notation of
Theorem 1.3.7, the following conditions are equivalent:

(a) Ais cyclic;
(b) A contains exactly one subgroup of order p; for everyi =1,2,...,t;
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(c) Ajiscyclic foreveryi=1,2,...,¢t.

Proof. The implication (a) = (b) follows immediately from Proposition 1.2.12.

Suppose that there exists 1 < i < ¢ such that A; is not cyclic. Then, in (1.37)
(and with the notation therein) we necessarily have #; > 2 so that A; contains a
subgroup B isomorphic to Z i @ Z e By virtue of Cauchy’s theorem (Corol-
lary 1.3.3) applied to each direct component, B and therefore A contain two
distinct subgroups of order p;. This shows the implication (b) = (c).

Suppose (c). Let a; € A; be a generator of A; for every i=1,2,...,¢.
Then, by Proposition 1.2.15, the element a = aa; - - - a; has order o(a) =

o(aj)o(ay)---o(a;) = |Af| - |Az| - ... |A;| = |A| (the last equality follows
from (1.33) and (1.15)). This shows that A = (a) is cyclic, and the implication
(c) = (a) follows as well. ]

Remark 1.3.18 The decomposition of a finite Abelian group as a direct sum
of cyclic groups presented in (1.36) is the finer, while the one in Theorem
1.3.1.(iii) is the coarser.

1.4 Generalities on endomorphisms and automorphisms
of finite Abelian groups

In the next sections we present a complete description of the automorphisms of
finite Abelian groups in order to:

o clarify the structure theorem (cf. Remark 1.3.15);
« show examples for potential applications of Theorem 11.7.1.

We start with some basic general results.
Let A be a finite Abelian group. A map «: A — A such that

a(a+b)=a(a)+ a(b)

for all a, b € A is called an endomorphism of A. We denote by End(A) the set
of all endomorphisms of A.

Note that if @ € End(A) then «(0) = 0 and a(—a) = —a(a) for all a € A.
Moreover, End(A) is a unital ring: for o, 8 € End(A) we define their sum o + 8
and their product « 8 by setting

(a + B)a) = a(a) + B(a)

and, respectively,

(aB)(a) = a(f(a))
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for all a € A; the zero endomorphism 0 = OEnd( 4 € End(A) and the identity
map 1 = Id4 € End(A) defined by

0(a) =04
and
l(a)=a

for all a € A, are the zero and unital element of End(A), respectively.

Let @ € End(A). We denote by Ker(x) = {a € A : a(a) = 0} the kernel of
«. It is immediate that Ker(«) is a subgroup of A and that Ker(«) = {0} if and
only if « is a bijective map.

Suppose now that « is bijective. Then the inverse map o' is also an endo-
morphism: indeed, if a, b € A

ale” @+ bl =a+b=ale' (@] +ala” ()] = ala” ' (a) + o (b)]

so that, by bijectivity, we have o' (a + b) = o~ (a) + a~ ' (D).
A bijective endomorphism of A is called an automorphism of A. It follows
from the previous observation that the set

Aut(A) = {o € End(A) : Ker(a) = {0}}
of all automorphisms of A is the group of units of End(A).

Lemma 1.4.1 Let A be a finite Abelian group and m € N. Then the map
Uyt A — A defined by o,,(a) = ma for all a € A, is an endomorphism of A.
Moreover, ay, is an automorphism if and only if gcd(m, |A]) = 1.

Proof. The fact that «,,, € End(A) follows immediately from the fact that A is
Abelian. Let now d = gecd(m, |A|). If d > 1 and p is a prime dividing d, by
Cauchy’s theorem (Corollary 1.3.3) we can find a € A such that o(a) = p. Asa
consequence, o,,(a) = ma = %(pa) = %O = 0 so that «,, cannot be injective,
that is, o, ¢ Aut(A). Conversely, if d = 1, then by Lagrange’s theorem, A does
not contain elements of order ¢ for every integer g > 2 dividing m. As a conse-
quence o,,(a) = ma # Oforalla € A \ {0}, equivalently, Ker(«) = {0}, so that
oy € Aut(A). O

Let R; and R, be two unital rings. We equip their Cartesian product R; x R;
with a structure of a unital ring by setting

(ri,r)+ (ry+15) = +r,rn+7ry) and (ry, n)(r), ry) = (riry, rarh)

forall r, r] € Ry and 1, 15, € R. It is clear that the elements (0, 0) and (1, 1)
are the zero and unit elements of R; x R,. Moreover if (r, r,) € Ry X Ry we
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have —(ry, r,) = (—ry, —ry) and (ry, r2) is a unit if and only if both | and r,
are and, if this is the case, (r, r2)~! = (rl_l, r2_1 ). In other words, denoting by
U(R) the group of units of any unital ring R, we have

UR| X Ry)) =UR)) X U(Ry). (1.41)
Theorem 1.4.2 ([72]) Let A and B be two finite Abelian groups. Suppose that

gcd(|Al, |B]) = 1. Then the map ®: End(A) x End(B) — End(A & B) defined
by

[P(a, B)l(a + D) = ala) + B(b)

for all @ € End(A), B € End(B), a € A, and b € B, is a unital ring isomor-
phism. In particular,

Aut(A @ B) = Aut(A) x Aut(B). (1.42)

Proof. 1t is easy to check that ®(«, 8) € End(A @ B). Let us show that ® is a
ring homomorphism. For o, o, € End(A), B1, B2 € End(B),a € A,and b € B
we have
[D(a1, B1) + P(az, B)l(a + b) = [P(, B1)](a+ D) + [Pz, B2)](a + D)
= (ai(a) + B1(b)) + (x2(a) + B2(b))
= (a1(a) + aa(a)) + (B1(b) + B2())
= [ + a2l(a) + [B1 + B21(b)
= [®(o + a2, B1 + B2)](a + b)
= [®((a1, 1) + (a2, B2))](a + D)

and

[@(a1, B1)P(a2, B2)l(a+ b) = P(a1, BI(P(e2, B2))(a + b)]
= ®(ay, Bi)(ea(a) + Ba(D))
= ay(az(a)) + B1(B2(b))
= [P(a122, B1B2)1(a + b)
= [®((e1, B1)(a22))](a + b)
so that ®((ay, 1) + (a2, B2)) = P(ar, B1) + P(az, B2) and  P((ay, B1)
(22)) = ©(a1, B1)P(x282)-

Moreover, it is straightforward that
(1, 1) = ®(dy, Idg) = Idaes = 1. (1.43)

This shows that ® is a unital ring homomorphism.
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Let us now show that Ker(®) = {(0, 0)}. Indeed, if « € End(A) and B €
End(B) satisty ®(«, ) =0, then a(a) = a(a) + B(0) = O(a, B)(a,0) =0
for all a € A (respectively B(b) = «(0) + B(b) = O («, B)(0,b) =0 for all
b € B) so that, necessarily, « = 0 (respectively 8 = 0). This shows injectivity
of ®.

Let us show that @ is surjective. Let w € End(A & B). Denoting by m4: A x
B — Aand mp: A x B — B the canonical projections (these are clearly group
homomorphisms), we define a homomorphism y : B — A by setting

y(b) = ma(w(0, b))
for all b € B. Now, if n = |A| we have, for all b € B,
0 = ny(b) = y (nb).

Since by hypothesis gcd(n, |B|) = 1, the map B8,: B — B, defined by §,(b) =
nb for all b € N, is an isomorphism by Lemma 1.4.1. We deduce that y =0,
that is,

wa(w(0, b)) =0 (1.44)
for all b € B. Exchanging the roles of A and B, we have
mwp(w(a,0)) =0 (1.45)

for all a € A. Consider the endomorphisms o = ¢, € End(A) and 8 = g, €
End(B) defined by

a(a) = ma(w(a, 0))
B(b) = mp(w(0, b))

for all @ € A and b € B. Then, since 74 + 7 = ldsgp, we have, for all a € A
and b € B

(1.46)

w(a, b) = w(a, 0) + w(0, b)
= [7a + 7pl(w(a, 0)) + [4 + 75](w(0, D))
= ma(w(a, 0)) + mp(w(a, 0))
+ ma(@(0, b)) + 7wp(w(0, b))
(by (1.45) and (1.44)) = ma(w(a, 0)) + mp(w(0, b))
(by (1.46)) = a(a)+ B(b)
= [@(a, B)l(a, D).

In other words,

o= P(a, B)

and therefore & is surjective.
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Since @ is unital, it establishes a group isomorphism between the corre-
sponding groups of units, so that, keeping in mind (1.41), equation (1.42)
follows. 0

1.5 Endomorphisms and automorphisms of finite cyclic groups

We turn to the study of the endomorphisms of a finite cyclic group. We keep in
mind Notation 1.1.17 and (1.3), and recall that U (Z/nZ) C Z/nZ denotes the
(multiplicative) group of units of Z/nZ.

Lemma 1.5.1 Forn > 1 we have U(Z/nZ) = {m € Z/nZ : gcd(n, m) = 1}.

Proof. Indeed let m € Z/nZ and set d = gcd(n, m). If d > 1 then, setting s =
m/d e Nandt = n/d € N, we have 7 # 0 and

m-f=

f=mn/d =n5s=0

thus showing that 772 is a zero-divisor and therefore is not invertible. On the other
hand, if d = 1 by virtue of the Bézout identity (cf. (1.2)), we can find a, b € Z
such that an + bm = 1 so that

b-m=bn=1—an=1-0=1.

This shows that 77 is invertible (with inverse ' = b). ]

Proposition 1.5.2 For n > 1 we have End(Z,,) = Z/nZ.

Proof. For m € Z/nZ define ¥ € End(Z,) by setting v (k) = kin = mk for
all k € Z,. We claim that the map V: Z/nZ — End(Z,) defined by V() =
Y 1s a unital ring isomorphism. Let 0 < k,m,m’ <n — 1.

We have [Ym—1(k) = Ym(m'k) = mm'k = Yr—(k) = yr.—(k) thus show-
ing that W(mm') = W(m)W(m'). Moreover, it is clear that W(1) = Y7 =1Idz, =
1, so that W is a unital ring homomorphism.

Suppose that W() = W(m'). Then m = Ym(1) = Wm)(1) = W(m')(1) =
Y—(1) = m’, showing that W is injective.

Finally, let ¢ € End(Z,) and set m = 1//(T). Then we have

yk)=ykD) =y A+ 1+ + 1) =ky(l) = kin = km = Yz(k).
k times

In other words, ¥ = s = W(m). This shows that W is also surjective, com-
pleting the proof. O
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Corollary 1.5.3 For n>1 we have Aw(Z,) =U(Z/nZ). In particular,
Aut(Z,) is Abelian and

[Aut(Z,)| = ¢(n), (1.47)
where @ is Euler’s totient function (cf. Definition 1.1.18).

Proof. The first statement follows from the fact that the map W in the proof of
Proposition 1.5.2 is a unital ring isomorphism and therefore establishes a group
isomorphism between the corresponding groups of units. Moreover, since the
ring Z/nZ is commutative, we have that U/ (Z/nZ) is Abelian. Finally, (1.47) is
an immediate consequence of Lemma 1.5.1. U

Exercise 1.5.4 Let m > 1 and n > 2 such that gcd(m, n) = 1 and let p be a
prime number such that p { m.

(1) Prove the following (Euler’s identity)
m?™ =1 mod n;
(2) deduce the following (Fermat’s identity)
m”~! =1 mod p.

Recall that Theorem 1.1.21 may be expressed in the form: if p is a prime
then U(Z/pZ) is cyclic of order p — 1.

Exercise 1.5.5 Deduce Fermat’s identity in Exercise 1.5.4 directly from The-
orem 1.1.21.

In the remaining part of this section, we analyze more closely the structure
of the Abelian group U(Z/nZ) = Aut(Z,) focusing on its decomposition as a
direct sum of cyclic groups (cf. Section 1.3). Actually, as these are multiplica-
tive groups, we use multiplicative notation (cf. Notation 1.1.17) and decompose
into direct products.

Proposition 1.5.6 Let n = plf‘ p]; e p];’ be the prime factorization of an inte-
gern > 2. Then
U(Z/nZ) = Aut(Z,)
= Aut(Zpkll) X Aut(Zpgz) X oo X Aut(pr,)
= UL L) < UL] Py L) X -+ X UL P} ).
Proof. The first isomorphism follows from Corollary 1.5.3. The second from

(1.42) and the Chinese remainder theorem III (Theorem 1.2.7). The last one
follows again from Corollary 1.5.3. (]
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We now determine the structure of U(Z/p*Z) = Aut(Z,) for p prime and
k > 1. This requires some nontrivial calculations in number theory; our treat-
ment is inspired by the monographs by Nathanson [118], Ireland and Rosen
[79], and Rotman [132]. We first observe that

UZ/ P D) = () = p =P = (p— DpFL. (1.48)

Indeed, the first equality follows from Corollary 1.5.3, while the second is a
consequence of the fact that an integer 1 < n < p¥ is divisible by p if and only
if there exists 1 < h < p*~! such that n = ph.

Theorem 1.5.7 We have: U(Z/27) = {1}, U(Z/AZ) = (—1) = C, and, for
k>3,

UZJ2XTZ) = (—1) x (5) = Cy X Coin. (1.49)

Proof. The first two assertions are trivial. Suppose that k > 3. We observe that
(1.48) now becomes

UZ)2*7)| = 2% — 2k=1 = 2k 1, (1.50)

In particular the order of 5, as an element of (the Abelian multiplicative
group) U(Z/2¥Z), is o(5) = 2" for some 1 < r < k — 1.

Claim 1: For k > 3 we have 52 = 1 4+ 2¢~1 mod 2.

We proceed by induction on k. For k = 3 this is easy: indeed we have 5' =
5=1+4modS8.

Assume the congruence holds for some k& > 3 and let us prove it for k + 1.
Observe that there exists & € Z such that

527 = 1 42k 4 ok, (1.51)

We have
(k+1)-3 k—2
52 =52

()

(by (1.51)) = (142" + h2¥)’
= 1 4 2F 4 M 4222 (4 22
= 1+ 2" mod 2%+,
where the last congruence follows from the fact that, recalling that k£ > 3,
P2kF1 4 2k=32k+T 4 (h 4 p?)2%-12K+1 = 0 mod 2K, The proof of the claim

is completed.
It follows from Claim 1 that » > k — 2 since 1 + 2! # 1 mod 2k,
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Moreover, the order of —1, as an element of (the multiplicative group)
U(Z)2FTZ), is clearly o(=1)=2.

Claim 2: (35) N (—1) = {1}.

Indeed, suppose by contradiction that —1 € (5). Then we can find a positive
integer s such that 1= §x, equivalently, 5° = —1 mod 2k and therefore, a
fortiori, 5° = —1 mod 4. But this is impossible, since 5 = 1 mod 4 yields 5° =
mod 4. The claim follows.

Recalling (1.50), we have

N =U@Z2* D)) = (1) x 5) = [(=1)| - |{5)] =2-2" >2.2¢ 2= 2!

so that r = k — 2, that is, (5) = Cyi—2, and (1.49) follows. O

Theorem 1.5.8 Let p # 2 be a prime and k > 1. Then we have
UZIPL) = Cp_ . (1.52)

Proof. First of all, we note that for k = 1 the statement reduces to that of The-
orem 1.1.21. Thus, we may assume k > 2.

Let p—1= p’{‘ pléz e p’,‘” denote the prime factorization of p — 1 and
observe that p; # p for all i =1,2,...,t. Since U(Z/p*Z) is Abelian and
\U(Z)P*Z)| = (p — 1)p*~! (by (1.48)), we can apply Theorem 1.3.7 and write
U(Z/P*Z) = G x G, where |G| = p— 1 and |G,| = p* .

Claim 1: G; = Cp_;.

Consider the map ®: Z/p*Z — 7/ pZ defined by setting ® (i) = i where
m=m+ p*Z and m = m+ pZ, m € Z. We remark that ® is well defined
because if m = n mod pk then m = n mod p, equivalently, m 2 m, for all
m, n € Z, so that the partition of Z induced by the congruence mod p* is finer
than the one induced by the congruence mod p. In particular, ® is surjective.
Let m, n € Z. Then we have

O(m - 1) = O(mn) = mn = i - i = () D7)

so that the restriction ¢ of ® to U(Z/p*7Z) yields a group homomorphism of
U(Z]p*Z) onto U(Z] pZ).

Now, by Theorem 1.1.21, U(Z/pZ) = Cp—1, and |G| = pF=1. Thus every
element g, € G, has order o(g,) = p' forsome 0 < h < k — 1. Its image under
® has order o(®(g,)) = p/" for some 0 < i’ < h but since ged(p,p—1) =1,
necessarily 4" = 0, that is, g, € Ker(®). This shows that G, C Ker(®). Since

PN p— 1) = [UZ/P'L)| = [Ker(®)| - U(Z/pZ)| = |Ker(P)|(p — 1),
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we have that |Ker(®)| = p*~! and therefore G, = Ker(®). Then
. G x Gy ~ U(Z]Pp*T) ~
= G,  Ker(®) P

and the claim follows. Notice that we have also proved that G, = {m €
7)p*Z : m = 1 mod p}.

G

Claim 2: G = Cper.
We first prove, by induction on & € N, the following identities

(1+ p)” =1 mod p'*! (1.53)
and
(1+ p)”" # 1 mod p'*2. (1.54)

For h = 0 this is clear: (1.53) becomes 1 + p = 1 mod p and (1.54) becomes
1+ p s 1 mod p*. Assume the result for some i > 0 and let us prove it for
h + 1. Now, (1.53) implies that (1 + p)”h =1+ rph+l for some r € Z, while
(1.54) implies that p t r. Therefore

a+p”" =[a+p’]
=[1+rp"]

P
— 14 p rth—l— p r2p2h+2+§ : 17 rjpjh+j
1 2 - J
j=3
=1 + rph+2 +Sph+3

where s = Z?:z (‘J’) riplU=Dhti=3 e N since, for all A >0, p|(5), so that
ph+3|(l27)p2h+2, and ph+3|pjh+j for all ] > 3,

We deduce that (1 + p)”""" =1 mod p"*2 and, since p 1 r by (1.54), (1 +
p)"‘”I # 1 mod p*3. This proves the induction.

Taking h = k — 1in (1.53) and & = k — 2 in (1.54), we deduce that the ele-
ment 14 p € U(Z/p*Z) has multiplicative order o(1+ p) = p*~! and therefore
it generates a cyclic group of order p*~!. Thus, the second claim follows as
well.

Finally, from the two claims it follows that U(Z/p*Z) = Gi x Gy = C,—; x
Cpr and it is cyclic (of order p* — p*=1) by Proposition 1.2.15 (or Proposition
1.2.5). g
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Corollary 1.5.9 (Gauss) Let n > 2. Then U(Z/nZ) is cyclic if and only if one
of the following cases holds: (i) n =2, (il) n =4, (iii)) n = p", (iv) n = Zpk,
where, in (iii) and (iv), p is an odd prime and k > 1.

Proof. Consider the factorization (1.16). Suppose first that r = 1. If p; = 2,
then, by Theorem 1.5.7, U(Z/nZ) is cyclic if and only if k; = 1 or k; = 2 (note
that for the “only if”” part we should also invoke Proposition 1.2.17). This covers
cases (i) and (ii). On the other hand, if p; > 2, then (iii) follows immediately
from Theorem 1.5.8.

Suppose now that n is not a power of a prime, so that r > 2. If there exist
1 <i < j <t such that p; and p; are both odd, then, from Theorem 1.5.8, we
deduce that U (Z/nZ) contams a subgroup isomorphic to C gt X C & pk 1,
where both p pi "and p p];'f “are even. As a consequence L{ (Z/nZ)
contains a subgroup 1somorphlc to C, @ C,, which is not cyclic (cf. Proposition
1.2.17). Since a subgroup of a cyclic group is also cyclic, this prevents U (Z/nZ)
from being cyclic.

It only remains the case when n is even (so that py =2) and ¢t = 2. If k; >
1, then, also keeping in mind Theorem 1.5.7, U(Z/nZ) contains a subgroup

isomorphic to C; & Cpk2 SR Since p p’? liseven, by the argument above
2 2

we deduce that U/ (Z/nZ) cannot be cyclic. Finally, if k; = 1, so thatn = 2p’§2,
we have U(Z/nZ) = Cpk2 SR This covers the case (iv) and completes our
2 2

analysis. U

In the case where U(Z/nZ) is cyclic (cf. Corollary 1.5.9), a generator of
U(Z/nZ) is called a primitive root mod n.

1.6 The endomorphism ring of a finite Abelian p-group

We now examine the structure of the endomorphism ring of a finite (not nec-
essarily cyclic) Abelian group A. Observe that, by virtue of Theorem 1.3.7 and
Theorem 1.4.2, it suffices to reduce to the case when A is a p-group. We thus
suppose that

A= @me_f (1.55)

where p is prime and
Il<m <mp<---<m (1.56)

(note that, in contrast with (1.35), in (1.56) we have reversed the order of the
m;js). We closely follow the arguments in [72].
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We first introduce some specific notation. If R is a unital commutative ring,
we denote by 2, (R) the set of all 4 x h matrices with coefficients in R. We now
recall some basic facts of matrix theory; we refer to the monographs by Horn
and Johnson [75] and by Lancaster and Tismenetsky [91] as a general reference
for further details (although these books treat complex matrices, the results
that we use can be easily adapted for 9,(R); see also the book by Malcev
[114]). Let B = (bi’j)?jzl € M, (R). We denote by adj(B) the adjugate of B (in
[91], following an older terminology, the term “adjoint” is used instead), that
is, the matrix whose (i, j)-entry is equal to (—l)iﬂBj,,-, where B ; is the (j, i)-
th minor (of order & — 1) of B, that is, the determinant of the matrix obtained
by deleting row j and column i from B. Since these determinants are expressed
as polynomials in the coefficients, we have that adj(B) € 91,(R) for all B €
M, (R). Moreover, adj(B) satisfies the fundamental identity

B - adj(B) = adj(B) - B = I - det(B). (1.57)

As a consequence, B is invertible in 201, (R) if and only if det(B) is an invertible
element in R and, if this is the case, one has

B~! = det(B)"'adj(B).

In particular, if B is invertible, adj(B) is the unique matrix satisfying (1.57).
Moreover, if R is a field, then B is invertible if and only if det(B) # 0.

Continuing with our purpose of setting notation, an element of Z" (respec-
tively A) will be represented by a column vector n = (nj)?=1 (respectively n =
(n_j)flle), where n; € Z (respectively n; € Z/p™Z) for j =1,2,...,h. Note
that we use the same notation for the different congruence classes mod p",
Jj=1,2,...,h Also,for j=1,2,..., h, weset§; = (8,~,j)f?=1 ezh (respec-
tively a; = (f,j)f.’:1 € A, where ﬂ € Zyn). This way, we have n = 27:1 n;é;
andn = Y_"_, n;a; for all n € Z". Moreover,

A=(a;) ®(a) ®--- D (ay). (1.58)

Given a matrix B = (b; ;)] j=1 €My(Z) and n € 7", the usual product Bn

is given by Bn = Zh b; n;8;. In other words, setting b; = (b; ), =

i,j=1

Z?:l b ;8; € Z", we have

h
BSj=b;=> b (1.59)
i=1
forall j=1,2,...,h.
Moreover, forall j =1,2,..., h, we denote by ;: Z — 7Z/p™ Z the stan-
dard quotient map, that is 7;(n;) = 71; for all n; € Z, and by 7 : Z" — A the
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map defined by

h h
m(n) = n(z n;d;) = Zn_jaj =n,
Jj=1 j=1

for all n € Z". Note that 7 is a group homomorphism.
We now introduce a subring of 91,(Z) that plays a fundamental role in the
description of End(A). We set

R = R(p; my,myp, .. .,mh)
={B= (b,»,j)ffj:l € Mu(Z) : p™~™ilb; j, foralll < j <i<h}. (1.60)
The fact that R is a subring of 9;,(Z) will be proved below.
For instance, if h = 4, my = 1, my = 3, m3 = 4 and my = 7 then
C1,1 Cl1,2 1,3 C1,4

2
C C ..
R(p: 1,3,4, 1= £, @2 @3 Q4 ez, i j=1,234}
pc31 pe3p €33 C34

6 4 3
PCi1 P Cap P Ca3 Ca4

Consider the diagonal matrix

p’Tl] 0 ... O O
0 pm 0 0
P=1: : - : :
0 0 .- pmi 0
0 0 - 0 pm

Proposition 1.6.1

(1) A matrix B € M, (Z) belongs to R if and only if it can be represented
in the form

B = pPCcP™! (1.61)

Sor some C € My,(Z);
(i) R is a unital ring;
(iii) adj(B) € R for all invertible B € R.

Proof. (i) LetC = (Ci,j)?,jzl € M, (Z) then

PCP™" = (p" ™)l oy (1.62)
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(ii)

(iii)

Finite Abelian groups

clearly belongs to R. Conversely, suppose that B = (b;, j)ff j=1 € Rand
consider the matrix C = (¢;, j)ff j=1 € M, (Z) defined by

_— {b,-, JIpmT i >

cij=p"""bij=q " e
P, ifi < j.

From the right hand side above (1.56) and (1.60), it follows that, indeed,
¢i,j € Z for all 1 <i, j < h. Moreover, we deduce from (1.62) that C
satisfies (1.61).
Let By, B, € R. Then, by (i), there exist C;, C, € 9,(Z) such that B; =
PC;P~"and B, = PC,P~". It follows that B| + B, = P(C, + C,)P~! ¢
R and BB, = PC,C,P~! € R. Moreover, it is clear from the defini-
tions that the identity matrix € R.
Let B € R be invertible. Then, by (i), there exists C € 91,(Z) such
that (1.61) holds: we deduce that det(B) = det(C) # 0. Setting B=
Padj(C YP~! we have

BB = Padj(C)CP~" = det(B)I = PCadj(C)P~' = BB

and, by uniqueness of the adjugate satisfying (1.57) for invert-
ible elements, we deduce that B = adj(B). It follows from (i) that
adj(B) € R. g

We are now in position to describe End(A) as a quotient of the ring R.

Theorem 1.6.2 The map ¥V : R — End(A) defined by setting

W(B)n = 7(Bn) (1.63)

foralln € Z"" and B € R, is well defined and is a surjective unital ring homo-
morphism. Moreover,

Ker(¥) = {(bi,j)fszl e R:p"lbjforalli,j=1,2,...,h} (1.64)

so that End(A) = R/Ker(W¥).

Proof. Let B € R. First of all, we verify that W(B) is well defined. Suppose that
n,n' € 7" satisfy i = ', that is, n; = n; mod p™, equivalently p"i|(n; — n’),
forall j=1,2,...,h. Letalso B = (bi,j)f",jzl € R. Then we have

h h

7(Bn) — w(Bn') = 7(B(n —n')) = n(Z Zb,»,j(nj —n)8) =0

i=1 j=1

since, if i > j,

b: :
bij(nj —nl) = —=L.
h ' prTme o pt
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where —— p”’ > € Z by (1.60), and o / € Z by our assumptions, while, if i < j,
then b; ;(n; — n’;) is divisible by p’”f and therefore by p™, since m; < m;. Thus
W(B) is well defined.

The fact that W(B) € End(A) follows easily from the linearity of the maps =
and n — Bn.

In order to show that W is surjective, let M € End(A). Then we can find
B = (bi,j),}",j=1 € My (Z) such that M(a;) = 251:1 bija,j=1,2,...,h. Since
M(0) =0 and p™ia ; = 0, we get (since M is a homomorphism)

h h
0=M(p"a;) = p"M(aj) = p" Y bija; =Y pb;ja
i=1 i=1
which forces p™ib; j =0 mod p™ for all i, j=1,2,...,h (cf. Proposition
1.2.2). In particular, p™~"™i|b; ;forall 1 < j <i < h, so thatB eR.
As a consequence, given n € Z we have

M(@@) = M(Z nja;) = ZnJM(aJ) - Z nib; ja;

1]1

= n(Z nib; ;8;) = 7 (Bn) = W(B)(M).
ij=1
In other words, W(B) = M and surjectivity follows.
We now show that W is a unital ring homomorphism and determine its kernel.
It is clear that W(I) = Id,4, the identity endomorphism of A and W(0) = Og4,
the zero endomorphism of A.
Let now B = (bi,j)f',j=1, Bi,B, € R,and ny, ny, ..., n, € Z. Then, we have
V(B| + Bx)n = 7 ((By + By)n) = w(Bn + Byn) = 7 (Bn) + 7 (Byn)
= W(B))n + ¥(B,)n,
showing that W(B; + By) = W(B) + W(B,). Similarly,
W(B)Y(B2)n = V(By)r (Bon) = 7 (B1Ban) = W(B1By)n,
showing that W(BB,) = V(B )W¥(B,).
Finally,
B € Ker(V) < ¥(B)a; =6fora11j= 1,2,...,h
& 7(BS;)=0forall j=1,2,...,h
< ﬂ[(b,’,j) = 0 for all l,]= 1,2, ,I’l
& plilbjforalli, j=1,2,...,h,
and (1.64) follows. O
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Corollary 1.6.3 In (1.58) we have
\I/(B)aj (S (aj)

forj=1,2,..., h ifand onlyif p™|b; ; for i # j. Moreover, if this is the case,
then there exists a diagonal matrix B' € R such that W(B') = W(B).

Proof. We have

W(B)a; = m(BJ;)

h
(by (1.59) =Y 7 (b;))a;

i=1
and therefore
W(B)a; € (a;) & b;; =0 mod p™ fori+# j
& p"i|b;jfori # j.

The last statement follows from (1.64). O

1.7 The automorphisms of a finite Abelian p-group

Let p be a prime number and 2 > 1 be an integer. Recall that we denote by IF),
the finite field Z/pZ and by n € IF, the congruence class of n € Z mod p. We
denote by GL(#, IF,) the group of all invertible matrices in 91,(IF,,). We need to
introduce this group in order to characterize the invertible elements in End(A),
where A is a p-group as in (1.55).

Let now B = (b,-,j)?_j:1 € My(Z). We set

B = (bij)—, € M(Fy). (1.65)

As we remarked above, B is invertible in 90t,(F ») if and only if det B # 0. Since
det(B) = det(B), we have that B € GL(h, F,) if and only if p { det(B). More-
over, if this is the case, B is also invertible in R (and in 901,(Z)).

With the same notation from the previous section we have:

Theorem 1.7.1 Let B € R and set M = V(B) € End(A). Then M is invertible
(i.e. M € Aut(A)) if and only ifE € GL(h, IF)).

Proof. Suppose first that B is invertible, so that p does not divide det(B). Then
we can find g € Z such that

g-dettB)=1 mod p™ forall j =1,2,...,h.
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Indeed, gcd(det(B), p™) = 1 so that det(B) has an inverse ¢ mod p™, which is
also an inverse mod p" for all other js (recall that m;, > m;). Let us set

C =gq-adj(B).

By Proposition 1.6.1.(iii), we have C € R. Moreover, WV(C)¥(B) = W(CB) =
W((q - det(B))I) = Id4 € End(A) and, similarly, ¥(B)W(C) = Id4, so that M =
Y (B) is invertible, with inverse W(C).

Conversely, suppose that M = v (B) is invertible. Recalling that W is surjec-
tive, we can find C € R such that W(C) is the inverse of M. It follows that
V() =1dy = V(B)¥(C) = ¥(BC), equivalently, W(BC — I) = 0 (the trivial
endomorphism of A), so that, by (1.64), p divides all coefficients of BC — I,
and therefore

B-C=BC=1¢ecMF),).
It follows that B € GL(h, FF)). O

We now need some basic notions on group actions that will be recalled with
more details in Section 10.4.
Denote by V the set of all h-tuples (A;, Az, ..., Ay) such that

o A, Ay, ..., Ay are subgroups of A
e Aj =2y, j=1,2,...,h

e A=A1BA D - DA

In other words, V is the set of all invariant factors decompositions of A (see
Theorem 1.3.1 and (1.55)). Then the group Aut(A) acts on V and this action is
clearly transitive. We want to identify the stabilizer of a fixed decomposition.

Corollary 1.7.2 The stabilizer of the decomposition (1.58) is given by the set
of all W(B), where

by 0 O 0
0 b O 0
B=| .
: . 0
o o0 ... b,

is diagonal with b; € U(Z/p™Z), i = 1,2, ..., h. In particular, its cardinality
is equal to

h
(=0T "
i=1
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Proof. Tt is an immediate consequence of Corollary 1.6.3, Corollary 1.5.3, and
(1.48). 0

1.8 The cardinality of Aut(A)

In this section we determine the cardinality of Aut(A), where A is a p-group
as in (1.55). To this end, keeping in mind (1.56), we introduce the following
numbers:

tj:max{jftfh:mtzmj'}
and
si=min{l <s <i:m; =m}

foralli, j=1,2,...,h. Note thatt; > jand s; <iforalli, j=1,2,...,
in particular, #, = h and 51 = 1.

Lemma 1.8.1 Foralli, j=1,2,..., hwe have
mp>m;&i>t; & j<s;
and
mp<m; & i<t j=>s;

Proof. The proof is an immediate consequence of the fact that m; <mp <
- < my, and it is left as an exercise. O

Corollary 1.8.2 Let B = (b,;j)ﬁ”j:l € Rand 1 < i, j < h. Suppose that i > t;
(equivalently, j < s;). Then, with the notation as in (1.65), E =0.

Proof. If i > t; (equivalently, j < s;), then m; > m; and, as B € R, we have
P b ;. O

Theorem 1.8.3
h Sh h
|Aut(A)| — l_[(ptk _ pkfl) l_lpmj(hftj) np(m,-fl)(hfxrfl)‘
k=1 j=1 i=1

Proof. Let B € R and suppose that W(B) € End(A) is invertible (i.e. ¥(B) €
Aut(A)). Then, by virtue of Theorem 1.7.1, B € GL(h, F,) and, by Corollary
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1.82,B = (b;)! j1 = (ci )}, is given by

C1,1 C1,2 Cl,h

1 € ot Cop

ctl,l Ctl,Z ct],h Cqul C12 Cl,h
O Ct1+l,2 ctl-‘rl,h () O 02,52 C2,h
0 Ch2 tt Cun 0 0 - 0 cpy - Cnp
0 0 e Cptln
0 0 e ey

(1.66)

Note that the two matrices above have the same 0 entries: by Corollary 1.8.2
and Lemma 1.8.1, ¢; ; = 0if i > ¢;, equivalently, if j < s;.

Using the left hand side in the above equality, we have the following count-
ing: the first column may be chosen in p"* — 1 distinct ways (the — 1 because we
have to discard the 0-column), the second one in p> — p ways (the —p because
we have to discard the p multiples of the first column, since the two have to be
independent).

Continuing this way, setting

={CeGL(h,F,):C=B,BecR,¥B)c Aut(A)},

we have that

Gl = ﬂ(p - (1.67)

Let us now fix C = B € G as in (1.66), and set
Mc={¥U(B):BeR,B=C}C Aut(A).

We claim that

Sh h
|MC| — l_lpmj(hft_,-) np(mifl)(h*S:‘H) (168)

j=1 i=1
(in particular, n = | M| is independent of C € G).
For each 1 < j < h there are exactly h — t; zeroes below the entry c;, ; (cf.

the left hand side of (1.66)) and the ith one (corresponding to the (7, j)-entry:
note that i > t; > j, equivalently, m; > m;) gives p™ distinct possibilities for
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the (i, j)-th entry of B € R (each yielding a different W(B)): by (1.60) and
(1.64) it must be an element of p™ "™ Z/p™ 7 = 7./ p™i Z. The last isomorphism
follows from the elementary congruence: for x, y € Z, xp™ =" = yp™ =" mod
p™ if and only if x = y mod p™.

This yields the first factor in the right hand side of (1.68). Note also that
tj=h<:>m_,-=mh<:>j2sh.

On the other hand, for each 1 < i < h there are exactly 7 — s; + 1 terms on
the right of and including c; s, (cf. the right hand side of (1.66)) and the jth one
(corresponding to the (7, j)-entry: note that j > s;, equivalently, m; < m;) gives
rise to p™~! distinct possibilities for the (i, j)-th entry of B € R: it must be
equal to ¢; j+ an element of pZ/p™ 7 = 7./ p"™~'Z (again by virtue of (1.64)).
This yields the second factor in the right hand side of (1.68) proving the claim.
Since

|Aut(A)] =) [Mcl =G| - n,
Ceg

the statement follows from (1.67) and (1.68). ]

We now count the number of invariant factors decompositions of A (recall
the notation preceding Corollary 1.7.2).

Corollary 1.8.4

h ti—k Sh h

n(h—1)/2 ¢ i(h—t; —1)(h—s;

|V|=p( )/ ||(§ p),llpm,( I/),llp(m Mh=si)
k=1 \{=0 j=1 i=1

Proof. Divide the cardinality of Aut(A) in Theorem 1.8.3 by the cardinality of
the stabilizer in Corollary 1.7.2. U

Example 1.8.5 Suppose that m; =mp, =--- =m, =m. Then Aut(A) is
group-isomorphic to GL(h, Z/Z,» ) (here, according with our notation, Z/Z
is no more a field if m > 2, but just a ring). Indeed, in this case, R = I, (Z)
and, by (1.64), we have End(A) = IM,(Z/Zy). Now t; = hfor j=1,2,...,h
ands; = lfori=1,2,...,h, so that, by Theorem 1.8.3, we have

h
AU Zye @ Lo @ - ® Zp)| = p" 7T = P
k=1

h times

Two particular cases are relevant. For # = 1, we find

|AW(Zy) = p"(p—1) = p" = p"!
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and this agrees with the results in Theorem 1.5.7 and Theorem 1.5.8 (but this
follows also from the fact that ¢(p™) = p™ — p"~!, cf. Corollary 1.5.3). If, in
addition, one has m; = my = --- = m;, = 1 we get

Auw(Z, ®Z,d - ®Z,) = GL(h,F,)

h times

and

h
AU(Z, ®Z, & - @ ZL,)| = |GL(A Fp)| = [ [ - P
k=1

h times

which coincides with (1.67), since ty = hforallk=1,2, ..., h.
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2

The Fourier transform on finite Abelian groups

This chapter is a fairly complete exposition of the basic character theory and the
Fourier transform on finite Abelian groups. Our presentation is inspired by our
monograph [29], and the books by Terras [159] and Nathanson [118]; Section
2.6 contains a recent result of Terence Tao [157]. The results established here
will be used and generalized in almost every subsequent chapter.

2.1 Some notation

In this section, we fix some basic notation and results of “harmonic analysis” on
finite sets. Further notation and results will be developed in Section 8.7. These
two sections constitute the core of the preliminaries in finite harmonic analysis.

Let X be a finite set and denote by L(X) = {f: X — C} the vector space of
all complex-valued functions defined on X. Clearly, dimL(X) = |X|, where | - |
denotes cardinality.

For x € X we denote by §, the Dirac function centered at x, that is, the ele-
ment §, € L(X) defined by

1 ify=x
5 (y) = .
0 ify#x
forally € X.
The set {5, : x € X} is a natural basis for L(X) and if f € L(X) then f =
ZXEX f(-x)sx

The space L(X) is endowed with the scalar product defined by setting

(i, ) =) [iOHE

xeX

46
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for f1, f» € L(X), and we denote by || f|| = +/{f, )] the norm of f € L(X).
Note that the basis {J, : x € X} is orthonormal with respect to (-, -). Some-
times we shall write (-, -).x) (respectively || - ||.x)) to emphasize the space
where the scalar product (the norm) is defined, if other spaces are also
considered.

For a subset Y C X, we regard L(Y) as a subspace of L(X) and we denote by
1y = Zyey 8y € L(X) the characteristic function of Y. In particular, if ¥ = X
we simply write 1 (the constant function with value 1) instead of 1y.

ForY),Ys,....Y, CXwewriteX =Y, [[Va]]"--]]Yn toindicate that the
Y;s constitute a partition of X, thatis X =Y U, U---UY,and ¥, NY; =&
whenever i # j. In other words, the symbol || denotes a disjoint union. In
particular, if we write Y | [ ¥” we implicitly assume that Y N Y’ = &. Note that
ifX =Y [[¥ 1] 1] Y then L(X) = L(Y) ® L(Y2) @ - - - @ L(Y,).

IfA: L(X) — L(X) is a linear operator, setting

a(x, y) = [A8,](x) @1
for all x, y € X, we have that
[Af100) = ) a(x, )f) (2.2)
yeX

for all x € X and f € L(X), and we say that the martrix a = (a(x, y))y yex>
indexed by X, represents the operator A. We denote by End(L(X)) the com-
plex vector space of all linear operators A: L(X) — L(X).

With our notation, the identity operator / € End(L(X)) is represented by the
identity matrix, which may be expressed as [ = (8x()y yex -

If A1, A, € End(L(X)) are represented by the matrices a; and a,, respec-
tively, then the composition A = A; o A, € End(L(X)) is represented by the
corresponding product of matrices a = a; - a; that is

a(x,y) =Y a1(x, 4, y).

zeX

For k € N we denote by a* = (a®(x,y)) . _, the product of k copies of a,

X,y
namely, a® =1, the identity matrix, and, for k > 1,

a®@,y) =Y a*Vx 2a(z y).
zeX
We remark that (2.2) can also be interpreted as the product of the matrix a
with the column vector f = (f(x))yex-
Given a matrix a and a column (respectively a row) vector f, we denote by
a” and by f7 the transposed matrix (i.e. a’ (x, y) = a(y, x) for all x, y € X) and


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.003
https://www.cambridge.org/core

48 The Fourier transform on finite Abelian groups

the row (respectively column) transposed vector. This way, we also denote by
fTA the function given by

[FTAIp) = ) fWalx, y). (2.3)

xeX

If X is a set of cardinality |X| = n and k < n, then a k-subset of X is a subset
A C X such that |[A] = k.

If vy, 02, ..., v, are vectors in a vector space V, then (v, 03, ..., v,,) Will
denote their linear span.

We end with the most elementary tool of finite harmonic analysis. It will be
used and rediscovered many times (see Proposition 8.1.4, Theorem 9.1.7, and
Example 10.4.3).

Proposition 2.1.1 Let X be a finite set and set Wy = {f € L(X) : f is constant}
and Wy = {f € L(X) : )_ ..y f(x) = 0}. Then we have the following orthogo-
nal decomposition:

LX) = Wo @ W,. (2.4)

Proof. Let f € L(X). Setting fy(x) = ﬁ Z),GX f(y)forallx € X we have f;
Wo and f1 = f — fo € Wy, so that L(X) = W, + W;. Moreover, it is immediate
to check that Wy L Wy, so that (2.4) is an orthogonal direct sum. ]

2.2 Characters of finite cyclic groups
Let n > 2 and denote, as usual, by Z, = {(_), 1,..., nTl} the cyclic group of
order n, written additively.

Recall (cf. Section 2.1) that L(Z,,) denotes the complex vector space of all
functions f: Z, — C. Note that if f € L(Z,), then the function F: Z — C
defined by F(x) = f(x)forall x € Zisn-periodic (namely F (x + n) = F(x) for
all x € Z) and the map f +— F establishes a bijective correspondence between
the elements in L(Z, ) and the n-periodic complex functions on Z.

In the following, by abuse of language, we shall identify f and F and use
the same notation for the corresponding arguments: in particular, for x € Z the
(a priori improperly defined) expressions f(x) and F(X) stand for f(X) = F(x).
More generally, we shall use the same notation for an element x € Z and its
image in Z, (in other words, we shall omit the bar-symbol “~” in the notation
for X € Z,) and we shall use the bar-symbol to denote conjugation of com-
plex numbers. In particular, we shall use the symbols Z;;ol to denote the sum
Zyezn over all elements of Z,, and we regard the Dirac functions 8, x € Z,,
as elements in L(Z,).
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Let us set
2mi 2

.. 2w
w=exp— =cos — +isin— € C.
n n n

We recall that w is an n-th primitive root of 1 and that the n-th complex roots of
the unit are of, k =0, 1, ..., n — 1. Note that w® = 1" for all z € Z so that
(cf. the comments above) the map z — w* defines an element of L(Z,,). More
generally, for x € Z,, we denote by yx, € L(Z,) the function z > »%.

Definition 2.2.1 The functions x, € L(%Z,) are called the characters of Z,.

Note that x,(y) = x,(x) e T={z € C: |z] =1}, x,(=x) = xy(x) for all
X,y € Zy, and xo = 1, the constant function.
The basic identity for the characters is

X:(x+y) = x: () x:(y)

for all x, y, 7 € Z, and, in the following lemma, we prove that, in fact, it is a
“characteristic” property of characters.

Lemma 2.2.2 If ¢: Z, — T satisfies ¢p(x +y) = ¢(x)p(y) for all x,y € Z,,
then ¢ = x, for some z € Zy,.

Proof. First note that since ¢(0) = ¢(0 4+ 0) = ¢(0)¢(0), we necessarily have
¢(0) = 1. Asaconsequence, | =¢p(0) =¢d(1 +1+---+1)=¢(1)" and we
— ———

n times
deduce that ¢(1) is an n-th root of 1. Therefore there exists z € Z, such that
¢(1) = »*. This gives ¢(x) = ¢(1)* = 0¥ = x,(x) for all x € Z,,. O

Lemma 2.2.3 (Orthogonality relations for characters of Z,) Let x and ¥
be two characters of Z,. Then

(X, ¥) =ndy y. (2.5
Proof. Letx;, x, € Z, be suchthat x = x,, and ¥ = x,,. Letussetz = 0" ™
and observe that ., (V) xr, (V) = 0’17 = 2 for all y € Z, so that

n—1 n—1

OGP = O X)) = D X X () = Y2 (2.6)

y=0 y=0

Suppose first that x # i, i.e. x; # x;. Then z is a nontrivial root of the unity
(i.e.?" — 1 =0and z — 1 # 0) and from the identity

n—1
F-l=G-Dl+z+-+N=c-1)
y=0
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we deduce that Z;;é 72 =0 and the quantity (2.6) vanishes. On the other
hand, if x = ¢, that is x; = xp, then z = v =1 and the quantity (2.6)
equals n. O

Note that if x = x,, and ¥ = x,, then (2.5) may be expressed as

(Xx1» Xxa) = 18y 3y, = Ndo(x1 — X2). 2.7

From the lemma and the fact that x.(y) = x,(x) for all x, y € Z, we immedi-
ately deduce the following dual orthogonality relations for characters of Z,:

D X Xe(2) = ndo(y1 — y2) (2.8)

X€Zy,

for all yy, y, € Z,.

2.3 Characters of finite Abelian groups
Let A be a finite Abelian group, written additively.

Definition 2.3.1 A character of A isamap x: A — T such that

Xx@x+y) = xx)x®)

for all x, y € A.

The set A of all characters of A is an Abelian group with respect to the product
AxA3((,¥) > x -y € Adefinedby (x - ¥)(x) = x (xX)¥ (x), forall x € A.
It is called the dual of A.

Remark 2.3.2 Note thatif A = Z,,, then Definition 2.3.1 coincides with Defini-
tion 2.2.1 and Zn = {xx : x € Z,} is isomorphic to Z,. Indeed, since for all x €
Z, we have (x1)* = xu, then Zn is the cyclic group (necessarily of order ) gen-
erated by x; (alternatively, as x.1y(2) = x:(x +¥) = x:(X)x:(v) = x:(2)xy(2)
forall x, y, z € Z,, the map x — Y, yields a surjective (and therefore bijective)
group homomorphism Z, — Z,,).

Proposition 2.3.3 Let A be a finite Abelian group and let
A=Zp ®ZLp, ® - B Ly, (2.9)

be a decomposition of A as direct sum of cyclic groups (see, for instance The-
2mi

orem 1.3.1 or Corollary 1.3.10). Set w; =exp -, j=1,2,...,k and, for

’
mj

y=01,¥2,...,Y) €A, define x,: A — T by setting

Xy(X) = ) Wy (2.10)
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forallx = (x1,x2, ..., x) € A. Then x, is a character of A, every character of
A is of this form, and distinct y yield distinct characters. In particular, |A| = |A].

Proof. The first assertion, namely that (2.10) defines a character of A, is
straightforward:

Ko +x) = w(m+x1))1wgz+x;)yz o w]((xk+xl/<))'k
_ w)lflylw;zyz . _wzk)’k . wilflhw)zczyz ) wz’u
= Xy(x)Xy(x/)
forally = (yi,y2, ..., ), X = (x1, X2, ..., x), and X' = (x], x5, ..., x;) € A.
Let us show that every character of A is of the form (2.10). Let y : A — T
be a character of A. We first observe that, forall j =1, 2, ..., k, the restriction
X |Zm of x to the subgroup Z,,, < A is a character of Zm so that, by Lemma
2.2. 2 there exists y; € Zy, such that x|z, = Xy As a consequence, setting

y=01,Y2, .3 Y) eA,wehave

x(x) = x(x1, x2, ..., X)
= xlz,, (x0xlz,, (x2) - X1z, (%)

'mj,

= Xy (xl)Xyz (XZ) o ka(xk)

— w)lﬂylw;zyg . 'w-l’zk}'k
= Xy(x)
forall x = (x;, Xy, ..., x) € A. This shows that A = {x, : y € A}. O

Note that with the notation above we may write
k
%@ = [ x,@) @.11)

forall x = (x1,x2, ..., x)and y = (y1,¥2, ..., YVr) € A.

Corollary 2.3.4 Let A be a finite Abelian group. Then the dual group A is iso-
morphic to A.

Proof. With the notation in Proposition 2.3.3, it is straightforward to check that
Xy+y = Xy - Xy forally, y" € A (cf. the particular case where A = Z, in Remark
2.3.2) so that the map y — x, yields a surjectlve (and therefore bijective, since
|A] = |A|) group homomorphism from A onto A. O

Proposition 2.3.5 (Orthogonality relations for characters of A) Let x, Y €
A and x,y € A. Then we have the orthogonality relations

(X, ¥) = |AlSy,y (2.12)
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and the dual orthogonality relations

D x@xO) = 1A18cy = [AlSo(x — y). (2.13)
XA
Proof. By virtue of Proposition 2.3.3 and the notation therein, we can find
x=(x;,x2,...,x)andy = (y1,¥2, ..., yx) € Asuchthat xy = x,and y = y,.
Using the notation in (2.11) we then have

06 ) = (e ) = Y (@@

Z€A

k
=3 [Tx@x, @

zeA j=1

k
=11 > x,G@)x, &)

J=12;€Ly,

k
= H(XX/a X_\'j)
j=1

k
(by Lemma 2.2.3) = [ [m;sy,,,
j=1

= |A|8x.y = |A|8)(.t//‘ 0

We remark that the isomorphism in Corollary 2.3.4 (given by (2.11)) depends
on the choice of the decomposition of A and therefore on the generators for the
corresponding cyclic subgroups, that is, it depends on the coordinates. There
is, however, an intrinsic iSOIllorphism between A and the dual of Z called the

bidual of A and denoted by A, given by

Asars y, €A, (2.14)
where ¥, (x) = x(a) for all x € A.
Exercise 2.3.6 Prove that the map (2.14) is a group isomorphism.

This duality is similar to the (possibly more familiar) one coming from linear
algebra. Recall that if V is a finite dimensional vector space over a field I, the
dual of V is the vector space V* consisting of all F-linear maps f: V — F. Then
if {v1,02,...,04} CV (d =dimgV)isabasisforV and {o},05,...,0j} C V*
is the dual basis (defined by v} (v;) = §;; forall i, j =1,2,...,d), then the
map v; — v} linearly extends to a (unique) vector space isomorphism¢: V —
V*. Note that ¢ depends on the choice of basis {v, va, ..., v,}. However,
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denoting by V** = (V*)* the bidual of V,the map V 3> v > ¢, € V** defined
by ¥, (v*) = v*(v) forall v* € V* yields a canonical vector space isomorphism
between V and V**. R

Returning back to group theory, the isomorphism A — A extends to locally
compact Abelian groups: this is called Pontrjagin duality. As an example, if

= {z € C : |z] = 1} denotes the unit circle, thenT = Zand T = T (this is the
setting of classical Fourier series, see, for instance, the monographs on abstract
harmonic analysis by Rudin [134], Katznelson [85], and Loomis [98]).

2.4 The Fourier transform

Let A be a finite Abelian group. We recall (cf. Section 2.1) that L(A), the com-
plex vector space of all functions f: A — C, is equipped with an inner product
(-, -)1(a) (for short (-, -)) defined by

(fi, o) = Zf] () f2(x)
x€A
forall f1, f» € L(A). We also denote by || - ||, (for short || - ||) the associated
norm.
Note the dim(L(A)) = |A| and therefore, by virtue of the orthogonality rela-
tions for characters (Proposition 2.3.5), the set {x, : x € A} is an orthogonal
basis for L(A).

Definition 2.4.1 The Fourier transform of a function f € L(A) is the function
f € L(A) defined by

FOO=(f,x)=D_ fo»xO (2.15)

yeA

forall x € A. Then f( x ) is called the Fourier coefficient of f with respectto x.
Moreover, we shall denote by Ff = ﬁfthe normalized Fourier transform
of f € L(A).

When A = Z, (the cyclic group of order n), and f € L(Z,) we shall call %f
the Discrete Fourier transform (briefly, DFT) of f.

The following two theorems express, in a functional form, the fact that the
X 's constitute an orthogonal basis of the space L(A).

Theorem 2.4.2 (Fourier inversion formula) For every f € L(A) we have

1 -
f= me(x)x (2.16)

X€EA


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.003
https://www.cambridge.org/core

54 The Fourier transform on finite Abelian groups

Proof. Let f € L(A) and x € A. Then

1A| Zf(X)X(x) Al Z Y fOxMx@ =

XGA y€EA

= Zf(y)Zx(y)x(x)

yeA XEA

(by (2.13)) = Zf<y>|A|ao<y—x> f@).

yeA

Theorem 2.4.3 (Plancherel and Parseval formulas) For f, g e L(A)
have (Plancherel formula)

1F 1 = V1A F Ly

and (Parseval formula)

(7. 8ux = AL Q-

Proof. We first prove the Parseval formula:

(?» @L(X) = Z .?(X )@

A
ZZ Zf()’l)X()’l) Z@x(yz)
xeA \Vi€A yo€A
=Y foe0) Y xODx () =
YI€EA €A xeA
(by (2.13)) =|A] Y f()80) = IAI(S, &) rca)-
yeA

The Plancherel formula is immediately deduced from the Parseval formula

by taking g = f.

Exercise 2.4.4 Show that 3;( x)= x(x)forallx € Aand x € A

O

For fi, fo € L(A) we define their convolution as the function f; x f, € L(A)

given by
(fi )@ =Y filk = »)AHG)

yeA

for all x € A.
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Definition 2.4.5 An algebra over a field IF is a vector space A over F endowed
with a product such that A is a ring with respect to the sum and the product and
the following associative laws, for the product and multiplication by a scalar,
hold:

a(AB) = (¢A)B = A(aB)

foralla € Fand A, B € A.

An algebra A is commutative (or Abelian) if it is commutative as a ring,
namely if AB = BA for all A, B € A; it is unital if it has a unit, that is, there
exists an element / € A such that Al = JA = A forall A € A.

Given two algebras A; and A, over the field IF, a bijective linear map
®: A; — A, such that ®(ab) = ®(a)®(b) for all a, b € A; is called an iso-
morphism. If such an isomorphism @ exists, one says that the algebras .4; and
A, are isomorphic, and we write A; = A,.

In the following proposition we present the main properties of the convolu-
tion product in L(A).

Proposition 2.4.6 Forall f, fi, f>, f5 € L(A) one has

1) fi* fo = fo *x fi (commutativity)

(i) (fi * f2) * f3 = fi * (f2 * f3) (associativity)
(i) (frt o) * fs = fi* fa + fax f3 (distributivity)
iv) fixfa=fi-f

(V) dox f=fxdo=Ff.

In particular, L(A) is a commutative algebra over C with unit I = §.

Proof. We prove only (iv), namely that the Fourier transform of the convolution
of two functions equals the pointwise product of their Fourier transforms. Let
fi, f> € L(A) and x € A. Then we have

Fix 200 =Y (fi x )X ()

Xx€A

=Y A —-0hHOXC—Dx®

XEA teA
= H100RG).

The other identities are left as an exercise. O
The translation operator T, € End(L(A)), x € A, is defined by:

(LHY) = f—x)
forallx,y € A and f € L(A).
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Exercise 2.4.7 Show that T,f = £ %8, and T.f(x) = x(x)f(x) for all f e
L(A),x € A,and x € A.

LetR € End(L(A)). We say that R is A-invariant if it commutes with all trans-
lations, namely

RT, =T.R

for all x € A. Also we say that R is a convolution operator provided there exists
h € L(A) such that Rf = f x h for all f € L(A): the function # is then called
the (convolution) kernel of R and we write R = Ry,.

Exercise 2.4.8

(1) Show that every convolution operator is A-invariant.
(2) Show that
e Ry, + Rp, = Ry 1y
e Ryn = aRy;
* Ry Rp, = Rpsn,
for all hy, hy, h € L(A) and @ € C.
(3) Deducethat R = {Ry, : h € L(A)} is a commutative algebra isomorphic
to L(A).

‘R is called the algebra of convolution operators on A.

Lemma 2.4.9 The linear operator R associated with the matrix (r(x,y))
is A-invariant if and only if

rx—z,y—z) =r(xy) 2.17)

X,yEA

forallx,y, 7 € A.

Proof. The linear operator R is A-invariant if and only if, for all x,z € A and
f € L(A) one has [T,(Rf)](x) = [R(T,/)](x), that is,

Y o=z f@) =) rxu)fu—2),

ueA ucA
equivalently,
Zr(x— Lu—2)f(u—2)= Zr(x, u)f(u—z).
ueA ucA
Since the §;, t € A, constitute a basis for L(A), taking f = §,_, for all y € A,
the last equality is in turn equivalent to (2.17). 0

Theorem 2.4.10 The following conditions are equivalent for R € End(L(A)):

(a) R is A-invariant;
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(b) R is a convolution operator;
(c) every x € A is an eigenvector of R.

Proof. (a) = (b): by Lemma 2.4.9, A-invariance yields r(x, y) = r(x — y, 0) for
all x, y € A, so that if we define & € L(A) by setting

h(x) = r(x, 0) (2.18)

for all x € A, we then have r(x, y) = h(x — y) and therefore

R =Y h(x =y fO) = (h* Hx)

yeA
and R = Ry, is a convolution operator.
(b) = (c):let h € L(A) and x € A. Suppose that R = Rj,. Then
[Rx10) = D x (v = Dht) = x(3) Y xOht) = h()x»). (2.19)
1eA 1eA

This shows that every x € Alisan eigenvector of R with eigenvalue Z( X)-
Suppose now thatevery x € A is an eigenvector of R with eigenvalue A(x) €
C. Observe that

[T.x1() = x (O —x) = x()x ) (2.20)

for all x,y € A and x eX.Forx € A and x € A we have

[RT1(x) = R(x (@)x) (by (2.20))
= X(A0O0X
(by (2.20)) = 200T(x)
= T:(A00Ox)
= [T:R1(x).
By linearity of R and 7, and by the Fourier inversion theorem, this shows

that [RT,](f) = [T:R](f) for all f € L(A), and (c) = (a) follows as well. [

From the proof of the previous theorem (cf. equation (2.19)) we extract the
following.

Corollary 2.4.11 Let h € L(A). Then R;,(x) = /ﬁ(x )x for every x € A In par-
ticular, Ry, is diagonalizable, its eigenvectors are the characters of A, and its
spectrum is given by o (R,) = {h(x) : x € A}. O

Corollary 2.4.12 (Trace formula) Let h € L(A). Then
Tr(R) = Y _ h(x) = |A[h(0).

xeA
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Proof. The first equality follows from the previous corollary since Tr(R;) =
> ieor,) > The second equality follows from the Fourier inversion formula,
keeping in mind that x (0) = 1 for all x € A. O

Exercise 2.4.13 Consider the normalized Fourier transform (cf. Definition
2.4.1), that is, the map F: L(A) — L(A) defined by

1 ~ 1 —
 Fon) = — . 221
mf(x ) T y%:f(y)x ) (2.21)

for all f € L(A) and x € A (), as in Proposition 2.3.3).

[Ff1x) =

(1) Show that F € End(L(A)) and that it is an isometric bijection.
(2) Show that F~! is given by [F~!f](x) = ﬁf(x,x) for all f € L(A)
and x € A.

Definition 2.4.14 Let f € L(A). We define f~ € L(A) by setting f~(a) =
f(—a)foralla € A. Then f is called even (respectively odd) if f = f~ (respec-
tively f = —f7). Similarly, for ¢ € L(Z) we set o~ (x) = () and we say that
pisevenifo = ¢~

Exercise 2.4.15 Let h € L(A).

(1) Show thatZz-: = (/l;)’. Deduce that 4 is even if and only if Tis even;
(2) show thath = (h)~;
(3) deduce that the following conditions are equivalent:
(a) hisreal valued and even;
(b) T is real valued and even,;
(4) show that o (Ry) CR < h = (h)~.

Exercise 2.4.16 Let n > 1. A matrix of the form

ao al az ... e an_l
an_l ao al ... .. an_z
ap—2 du—1 Qo --- e anp-3
al az a3 DR PR ao
with ag, ay, ..., a,—1 € C is said to be circulant. Denote by C, the set of all

n X n circulant matrices.

(1) Let R,S € C, and «, B € C. Show that RS = SR and that RS, («R +
BS) € C,. Deduce that C, is a commutative algebra with unit.

(2) Show that R € C, if and only if its adjoint R* € C,, so that C, is closed
under adjunction.
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(3) Let B=1{8¢,61,...,6,_1} C L(Z,) so that f = Z;;é f(x)8, for every
f € L(Z,). Show that R € End(L(Z,)) is a convolution operator if and
only if the matrix representing it is circulant.

Hint. If h € L(Z,) is the kernel of R, then R = R, is represented, with
respect to B, by the (circulant) matrix (h(y — X))y yez,-
Deduce that C, is isomorphic to L(Z,,) as algebras.
4) Letw = exp(zl’%) € T and set

1 . 1
1 a)—l a)—2 . w—(n—l)
1 -2 —4 —2(n—1
F, = — & w e w0 99)
1 wf(nfl) a)72(n71) . a)f(nfl)2

Observe that F,, € 9, (C) is symmetric so that its adjoint F," is equal to
its conjugate F,. Show also that the orthogonality relations in Lemma
2.2.3 are equivalent to saying that F;, is a unitary matrix.

(5) Prove that a matrix R € 91,(C) is in C, if and only if F,RF,’ is diago-
nal. The map C, > R — F,RF; € A,, where A, C 9,,(C) denotes the
subalgebra of all diagonal matrices, is called the discrete Fourier trans-
form, briefly DFT, on C,,.

2.5 Poisson’s formulas and the uncertainty principle

In this section, following the monographs by Nathanson [118] and Terras [159],
we treat the finite analogue of two basic properties of the classical Fourier
transform.

Let A be a finite Abelian group, B a subgroup of A, and consider the quotient
group A/B.

For f € L(A/B) we define f € L(A) by setting f(a) = f(a + B), foralla €
A. In other words, ]7: fom, where m: A — A/B is the canonical quotient
map. fis called the inflation of f to A.

Note that the correspondence f +— fyields an algebra isomorphism between
L(A/B) and the subalgebra of L(A) cons1st1ng of all functlons that are constant
on the B-cosets. Moreover, if ¢ € A/B then w € A: indeed w Yomisa
composition of group homomorphisms.

Exercise 2.5.1 Let x € A. Show that there exists Ve A//TQ such that y = 1; if
and only if x|p = 1.
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Theorem 2.5.2 (Poisson summation formulas) Let f € L(A) and let S C A
be a system of representatives of the B-cosets in A. Then

Zf(b) o A| > Fa (2.23)
beB VveA/B
and
© Bl
DD o fle+b = IR (2.24)
ceS | beB 1/;@4773

Proof. Define f* € L(A) by setting

fi@)y=)" fla+b)

beB

for all @ € A. Clearly, f* is constant on the B-cosets in A. Moreover, for each
X €A,

£ =Y fax@

acA

=YY fla+byx(a)

acA beB

(settingc =a+b) = ZZf(C)x(c —b)

ceA beB

= [Z x(b)} F00

beB

BIf(x) if x|z =

(by (2.12) applied to x |5 € B) = .
0 otherwise.

Asa consequence, takmg into account Exercise 2.5.1, ff( x) equals |B| f (w) if
X = 1// for some Y € A /B and vanishes otherwise.
Then, the Fourier inversion formula (cf. Theorem 2.4.2) applied to f* gives

Z v

II/GA/B
that is,

Zf(b+ a) =

|B| beB
1//EA/B
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for all a € A. In particular, when a = 0 we get (2.23). Moreover, applying the
Plancherel formula (cf. Theorem 2.4.3) to the function f*, we get

1~ |B|? ~~
10wy = oo WA = T 2o P
Al Al —~
v eA/B
Since

151 = Y If @I

acA

=Y D Iffe+b)P

ceS beB

(since f* is constant on B-cosets) = Z B - | f* ©)?
ceS

=B >

ceS
(2.24) follows. O

2
> fle+b)| .

beB

For f € L(A) we set
supp(f) ={a € A: f(a) # 0} C A,

1flloe = max{|f(a)| : a € A}
and
supp(f) = {x € A : f(x) # 0} C A.
Lemma 2.5.3 Let f € L(A). Then
1£1Zeay < IF113 - Isupp(f)l-

Proof. This is a straightforward calculation:

If Iz =D _If@P= > If@l’

acA aesupp(f)
< > IfI% = 1f1% - Isupp(f)l. O
aesupp(f)

Theorem 2.5.4 (Uncertainty principle) Let f € L(A) and suppose that | #
0. Then

Isupp(f)| - Isupp(f)| = IA]. (2.25)
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Proof. From the Fourier inversion formula (Theorem 2.4.2) and the fact
Ixlleo < 1forall x € A, we deduce that for every a € A,

@l = A| > Foox(@)

xEA

a Z 700!

XEA

1 —~
a > 1ol

xesupp(f)

Taking the max over a € A and squaring, we get

1 —~
||f||iosm > 1ol

xesupp(f)

1 —~

xeA

Isupp(H) - Y 1F GO

XGA

Isupp(f)] - ||f||L(A)

(by the Cauchy-Schwarz inequality) < | A|2

IAI2
(by the Plancherel formula) = W |supp( f )L ||1%( 4)
(by Lemma 2.5.3) < |A—| 1F1I%, - Isupp(f)] - Isupp(f)]-
Since f # 0 we have || f|lo > 0 and therefore, comparing the first and the last
terms in the above formula, we get the desired inequality. 0

Remark 2.5.5 If we take f = §y (the Dirac function at the identity element
of A), then |supp(Sp)| = 1, while 35()() = x(0) =1 for all x €A so that
|supp(r§;))| = |A|. In this case, |supp((§(\))| - |supp(é9)| = |A| showing that the
lower bound in (2.25) is optimal.

2.6 Tao’s uncertainty principle for cyclic groups

In this section we prove an uncertainty principle, due to Tao [157], which
improves on the inequality (2.25) when the finite Abelian group A is cyclic
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of prime order. We first present some general preliminary material on number
theory together with some specific tools developed in [157]. Recall that Z[x]
denotes the ring of polynomials with integer coefficients.

Proposition 2.6.1 (Eisenstein’s criterion) Let g(x) = ap + ajx+ - -- + a,x"
€ Z[x]. Suppose that there exists a prime p such that

(i) pdivides ay, ay, ..., an—1;
(ii) p does not divide a,;
(iii) p* does not divide ay.

Then the polynomial q is irreducible over Z.
Proof. By contradiction, suppose that

q(x) = (bo + bix + - + by X" o+ crx+ - + )

with 1 <k <nand by, by, --- ,b,_x, co,C1, ..., cr € Z. Then we have
ag = boco
ar  =byci +bico

ar = bocy + bicy + bacy

a, = b,,,kak.

Since aj is divisible by p but not by p?, only one of the integers by, ¢ is
divisible by p. Suppose that by is divisible by p and ¢y is not. Since a; is divisible
by p, this forces b; to be divisible by p. Continuing this way, we deduce that
by, bs, ... are divisible by p until we arrive to

An—k = bocp—k +bicp_k—1 + -+ by_k—1c1 + by_xco,

which forces b, to be divisible by p. But this contradicts the second assump-
tion, because a,, = b,_ick. O

Example 2.6.2 Let p be a prime number. Then, the polynomial g(x) = 1 + x +
X2+ -+ xP72 4 x*~!is irreducible over Z. Indeed, we have

q(x+1)zwz( p >+( p >x+...+(l]7)xp2+xpl.

x+1D—1 p—1 p—2
!
Since (5{’) = m, k=1,2,...,p— 1, is an integer divisible by p and

(pf 1) = p is not divisible by p?, by virtue of Eisenstein’s criterion we deduce
that g(x + 1) (and therefore g(x)) is irreducible over Z.
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Definition 2.6.3 A polynomial g(x) € Z[x] is called primitive if its coefficients
are relatively prime and its leading coefficients is positive.

Clearly, any g(x) € Z[x] may be represented in the form g(x) = *cq;(x),
where ¢ € N, called the content of g(x), is the greatest common divisor of its
coefficients and g, (x) is primitive. Also, any f(x) € Q[x] may be represented
in the form f(x) = j'q(x), where g(x) € Z[x] is primitive and ¢, d € Z.

Proposition 2.6.4 (Gauss lemma) The product of two primitive polynomials
is primitive.

Proof. By contradiction, suppose that g;(x) = ag 4+ a;x+ -+ + a,_1x" ' +
a,xX" and q(x) = by +bix+ -+ by_1¥" ! + b,x™ are primitive poly-
nomials, but their product g;(x)g2(x) = co+cix+ -+ Cppmor X" 4
CrimX"t™ is not. This means that there exists a prime p that divides all the
coefficients ¢, c1, €2, - . ., Cyutm—1, Cntm- By the primitivity of g; (x) and g»(x),
we can find i (respectively j) the minimal index such that g; (respectively b;)
is not divisible by p. Then, in the expression

Civj = aibj+ (ai-1bjy1 + -+ + aobjri + ai1bj—1 + - - - + ait jbo)

all the summands are divisible by p except a;b;. Thus p does not divide c;y j,
and this is a contradiction. g

Corollary 2.6.5 A polynomial q(x) € Z[x] which is irreducible over Z is also
irreducible over Q.

Proof. Let q(x) € Z[x] and suppose that it is reducible over Q, say g(x) =
fi(x) fo(x), where both fj(x) and f>(x) belong to Q[x] and are nontrivial
(deg f1,deg f» < degq). Fori =1, 2, we can write

filx) = Z—jqxx),

where ¢;(x) is a primitive polynomial and a;, b; € Z are relatively prime. Then

ap

q(x) = %[ql(x)qz(xn. (2.26)

Since both g(x) and ¢q;(x)g»(x) are integer valued, ajas[g(x)g>(x)] must be
divisible by b1b,. Let by = p"p’? --- pi" be the prime factorization of b;.
Consider the prime power p/". It cannot divide all coefficients of g;(x)g(x)
because, by Gauss lemma, this polynomial is primitive. Also, it cannot divide
a; because this is relatively prime with b;. Therefore it must divide a,.
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Repeating the same argument with the other prime factors of b; we deduce
that b, divides a,. Similarly, b, divides a;. Thus, we can find ¢y, ¢c; € Z such
that

ay = C1b2 and ay; = Czbl.
Then (2.26) becomes

q(x) = 16291 (x)g2(x).
This shows that g(x) is (also) reducible over Z. U

Corollary 2.6.6 Let p(x), g(x) € Z[x] and suppose that p(x) is primitive and
divides q(x) over Q. Then p(x) divides q(x) over Z.

Proof. Let f(x) € Q[x] such that g(x) = p(x)f(x). Also write f(x)= £r(x)
with r(x) a primitive polynomial and a, b € Z relatively prime. Thus

q(x) = gpoc)r(x),

where the polynomials g(x) and p(x)r(x) both have integer coefficients. By
Gauss lemma, p(x)r(x) is primitive and this forces b = £1, concluding the
proof. O

Definition 2.6.7 A complex number « is called algebraic provided it is a root
of some polynomial g(x) € Z[x], thatis, g(o) = 0. A minimal polynomial of an
algebraic number « is a primitive polynomial of least degree g(x) € Z[x] such
that g(a) = 0.

Clearly, a minimal polynomial is irreducible over Z (and therefore over QQ by
Corollary 2.6.5). In Proposition 2.6.8 we shall establish its uniqueness. For the
next proposition, we need the notion of a principal ideal. Roughly speaking, a
principal ideal in a commutative unital ring R is a subset of the form 7 = fR
for some f € R, called a generator of Z: we refer to Section 6.1 for a more
comprehensive treatment of this and of other related notions.

Proposition 2.6.8 Let o € C be an algebraic number and let p(x) € Z[x] be
a minimal polynomial of a. Consider the ideal T = {q(x) € Z[x] : g(a) = 0}.
Then T is principal and generated by p(x). In particular, p(x) is the unique
primitive irreducible polynomial in Z.

Proof. Consider the ideal 7= {f(x) € Q[x] : f(a) =0} in Q[x]. Since every
ideal in Q[x] is principal (see Exercise 6.1.6), Tis generated by some element
Jo(x) of least degree. By eliminating the denominators and changing signs of
all coefficients, if necessary, we may suppose that fy(x) belongs to Z[x] and is
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primitive. Let g(x) € Z C 7. Then we can find f(x) € Q[x] such that g(x) =
f(x)fo(x). Since fp(x) is primitive, from Corollary 2.6.6 we deduce that fy(x)
divides g(x) in Z[x]. Moreover, if g(x) = p(x), we deduce that fy(x) = p(x), by
minimality of the degree of p(x). This shows that Z is principal, generated by
p(x). ]

Example 2.6.9 Let p be a prime. Consider the algebraic number w = exp(%)

and the polynomial g(x) = =1 = 1 +x +x* + -+ - +x”~!. Then g(x) is irre-
ducible (cf. Example 2.6.2) and g(w) = 0. Then, by Proposition 2.6.8, g(x) is
the minimal polynomial of @ and every f(x) € Z[x] such that f(w) =0is a

multiple of g(x) in Z[x].

Proposition 2.6.10 Let P(xy, xa, ...,x,) be a polynomial in the variables
X1, X2, ..., X, With integer coefficients. Suppose that, for some i # j,

P(xy, X2, « oy Xn)ly=x; = 0.

Then there exists a polynomial Q(x1, X2, . .., X,) with integer coefficients such
that P(x(, X2, ..., X)) = (x; — x;)Q(x1, X2, . . ., Xp).

Proof. For the sake of simplicity, suppose that i =1 and j =2 so that
P(xy,x1,...,x,) =0. Let us denote by Pj(x],x2,...,x,) (respectively
Py(x1, x2, ..., x,)) the sum of the monomials of P(xy, x2, ..., x,) with positive
(respectively negative) coefficients so that

P(xr, x0, ..o, %) = Pi(xg, X2, .00, %) + Po(x1, X2, .00, Xp).
Note that
Pr(xy, x1, .o, %) = —Pa(xy, x1, -0, X)),

since P(xy, X1, ..., X,) = 0. This implies that there exists a bijection between
the monomials in P; (xy, xq, ..., X,) and those in P»(xy, x1, ..., X,). More pre-
cisely, let us fix m > 0 and k, k3, . . ., k, > 0; then the monomial mx’fxlg3 .- ~x’,‘l"
appears in Pj(xj,xi,...,%,) if and only if —mxfx{...x% appears in
Py(x1, x1, ..., Xx,). Suppose this is the case. Then we can find mg, my, ..., my
and ng, ny, ..., n; non-negative integers such that the sum of the monomials
of P(x1, xa, ..., Xx,) whose variables x; have degree k; for i =1,2...,n and
ki +k =kis

k k
E mgxll‘_exgx? o — E rlg)cll‘_[xgxg3 P (2.27)
=0 =0
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and
mo+m +---+my=np+n +---+nm=m (2.28)
but also such that
m#0=>n=0 ng#0=>m=0

(because, otherwise, there would be a cancellation). By virtue of (2.28) with
every monomial x’{ _Kxﬁxg“ - x*» such that m; # 0 we can (arbitrarily but bijec-
tively) associate a monomial x’f‘hxgx? . xﬁ with my, # 0 and h # £. Now, for
h > £ we have the identity

—C ¢ —h_h € k—hg h—t h—t
A — I = A — )
£ k—h —t—1 h—t=2 h—t—1
= xlel‘ (x — xz)()/l' + x) X2+ X ).

Exchanging h with £ we get the analogous identity for # < £. This shows that
(2.27) is divisible by x; — x;.

Repeating the argument for each monomial mx’[x];3 <o xk (with m > 0 and
k,ks, ..., k, > 0) appearing in P;(x;, xi,...,Xx,), we deduce that, in fact,
P(xy, x2, ..., Xx,) is divisible by x; — x,. O

Example 2.6.11 Consider the polynomial P(x,x;) = xf + x1x — 2x§.
We have Pj(xq,x1)= 2x% and Pr(x1,x1) = —2x%, and m = 2. More-
over, mo=m; = 1 and my, =0, while np =n; =0 and n, = 2. We have
P(x, %) = (x] — x3) + (X102 — x3) = (1 — x)(x1 +x2) + (X — X2)x2 =

(x1 — x2)(x1 + 2x2), so that Q(x1, x2) = x1 + 2x5.

Lemma 2.6.12 Let p be a prime, n a positive integer, and P(xy,x2, ..., X,)
a polynomial with integer coefficients. Suppose that wy, w,, ..., w, are (not
necessarily distinct) pth roots of unity such that P(wy, wa, ..., w,) = 0. Then

P(1,1,...,1)is divisible by p.

Proof. Setting w = exp(%) we can find integers 0 < k; < p — 1 such that
wj =a)kf,forj= 1,2,...,n.
Define the polynomials g(x), r(x) € Z[x] by setting

POM, X2, L) = F — Dg(x) + r(x)

where deg r < p. Then r(w) = 0 and since deg r < p we deduce that r(x) is a
multiple of the minimal polynomial of w, that is (cf. Example 2.6.9), r(x) =
m(l + x4+ x>+ .- +x"~1) for some m € Z. It follows that P(1,1,...,1) =
r(1) = mp. O
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Theorem 2.6.13 (Chebotarév) Letr p be a prime and 1 <n <p. Let
N, N2, ...,N0n (respectively &,&,...,&,) be distinct elements in
{0,1,..., p— 1}. Then the matrix

27i "
A (exp w>
p hk=1

Proof. Set w, = exp(zn%) for h=1,2,...,n. Note that the wys are distinct

is non-singular.

n
pthroots of unity and A = (a)ik> . Define the polynomial D(xy, x3, . .., x,)
1=h.k
(with integer coefficients) by setting
S n
D(x1, %2, ...,x,) = det (xhk>h r
k=1
As the determinant is an alternating form, we have D(xy, x2, . . ., X)|x,=x, = 0

whenever 1 < h # k < n, so that, by recursively applying Proposition 2.6.10,
we can find a polynomial Q(xy, x,, .. ., x,,) with integer coefficients such that

D, Xy, . xn) = Q0,30 x) [ Ge—x). (2:29)
1<h<k<n
To prove the theorem, it is equivalent to show that Q(w;, ws, ..., w,) # 0
(because the wys are all distinct) so that, by virtue of Lemma 2.6.12, it suf-
fices to show that p does not divide Q(1, 1, ..., 1). For this, we need the next
three lemmas. Let us first introduce some useful notation.
Given an n-tuple k = (ky, ks, . .., k) of non-negative integers, we say that
the (monomial) differential operator

3\~ 3 \" 3 \"
L =], = _ — ) e x— 2.30
k (xl 0x1 > <x2 8x2> (x 8xn> ( )

is of type k and order oK) = k; + ko + - - - + k.

Lemma 2.6.14 Let L be a differential operator of type k and F (x1, x3, . . ., X,)
and G(x1, x2, ..., X,) two polynomials. Then

L(FG) =Y Li(F)-Li(G) (2.31)
((8))
where the sum runs over all pairs (i, j) such that (componentwise) i +j = k.
(and therefore o(i) + o(j) = k).

Proof. We proceed by induction on the order k of L. If k = 0 then L is the
identity and the statement is trivial. Suppose we have shown the statement for
all differential operators of order < k and let L be a differential operator of

order k + 1. Up to renaming the variables, we may suppose that L = (x g ) L,

Lox,


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.003
https://www.cambridge.org/core

2.6 Tao’s uncertainty principle for cyclic groups 69

where L has order k. By the Leibniz rule and the inductive hypothesis we then
have

L(FG) = 9
=|x 3

Yox;
0
= (xla—xl) %Li(F) -Li(G)

=Y Li(F)- Li(G)+ Y L(F)-Ly(G)

@.Jj) iy

) L(FG)

where ¥ = (i +1,i2,...,0,) and j = (j, + 1, jo, ..., ju), and, clearly,
o(i) + o) = (i) + o) = k+ 1. 5

Lemma 2.6.15 For 1 < j<nand1 <h < j— 1 we have

5\
(xj—> (xj —x)(x; —x2) -+ (x; —xj-1)

8)6]'
h
=Y ayY . [ Gi—x) @32
t=1

i l<i<j-1
i1 12t

wherezil runsoveralli, = (i1, iy, ..., ipwithl <1 < <...<i <j—1
and the ap; = ap,(j)s are non-negative integers such that ay , = h! In partic-
ular,

a\!
(ngj) O —x1)( —x2) -+ (xj —xj—1)

= (j— hH™!
-+ terms containing at least one factor (xj — x;)
withl <i < j.
Proof. We proceed by inductiononz = 1,2, ..., j — 1. For h = 1 we have
<xjaixj>(xj —x)(x; —x2) - (xj —xj-1)
=xj(x; — x2)(x; — x3) -+ (X; — Xj_1)

+ (= X —x3) - - (0 — xj-1)

4.

+ (o —x1)(x; —x) -+ (6 — xj-3)x(x; — xj-1)

+ (o — 2 —x2) - (X — Xj2)x;

j-1

=x; ) (5 —x)j—x) (=20 (0 = xj-1),

k=1


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.003
https://www.cambridge.org/core

70 The Fourier transform on finite Abelian groups

where the factor™~ is omitted. Since (x ]ai) Xx; = xj, keeping in mind the pre-
X
vious calculation, we have

5 \2
(x"a_x,) (xj —x)xj —x2) -+ - (xj — xj-1)
- (v )x/Dx,—m (=30 =01

_sz(xj_xl) —xk) (X —xj-1)
Z () = x0) - (G — ) (G — x) - (@ — Xy,
1<k<k/<; 1

Suppose we have proved the formula (2.32) for 2 < j — 1. Then
9 h+1
(Xja) (cj —x)(x; —x2) - (x5 — xj-1)
J

—( )Za,,[)azn )

ir 1<l<] 1

i#0) L0,y i
= Zahrijz H j =)
ir 1<1<] l
i#iy,i,.
+Zah,x’+‘ e+ J] @-x
1+ I<i<j-1
o ’#il,i25~j~~7ir+]
h+1
S o I
ir 1<l<] 1
P01 ,00y by
where
a ) anet +ap—1t fort=1,2,...,h
MU L gath+ D)=+ 1! fort=h+1. O

Lemma 2.6.16 Let L = L(O,l _____ n—1) that is,

AN/ 9\
L=(x— Xo— | -
8)61 8)62

9 n—1
(xn dx,, > ’
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Then if D(x1, x2, ..., X,) and Q(x1, X2, . . ., X,) are as in (2.29), we have
[LD](l,l,...,l):l_[(j—1)!Q(1,1,...,1). (2.33)
j=1

Proof. By virtue of Lemma 2.6.14 and Lemma 2.6.15 we have

[LD](x1, %, ... m-]‘[u DO, X, -, X)

+ terms containing at least one factor (x; — x;)

with 1 <i < j. In particular, taking x; =1 for i=1,2,...,n we deduce
(2.33).
O

End of the proof of Theorem 2.6.13 For L as in Lemma 2.6.16 we have (where
G,, denotes the symmetric group of degree n)

[LD)(x1, X5, ... X)) =L Y £y xy
e,

o (1) §o2) -1 %m
= Y s @ S E
oeq,

. o (j) =1 &0
<x'] axj> Y =50

forall j=1,2,...,n Thus

[LDY(L 1,....1) = Y e(@)E 1 any &)

since

0eB,
&1 & - &
=& &5 - &= T] ¢-8
: . I<i<j<n
1171 5[71 %-’;;t—l

is the Vandermonde determinant (see, e.g. [91]). Since &; #§; for 1 <i <
Jj < n, we deduce that [LD](1,1,...,1) is not divisible by p. Since also
]_[;le(j — 1)! is not divisible by p (because n < p), from (2.33) we deduce
that (1, 1, ..., 1) is not divisible by p either. By virtue of Lemma 2.6.12, this
completes the proof of Theorem 2.6.13. (]
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Given a non-empty subset A C Z, and a function f € L(A), in the following
we shall denote by f its extension f: 7, — C defined by setting f(z) =0 for
all z € Z, \ A. For simplicity, we regard the DFT as a map L(Z,) — L(Z,). In
other words, for f € L(Z,) and x € Z,,,

-~ 1
Jo =~ D f»e™;

Y€EZ,
see also Exercise 2.4.13.

Corollary 2.6.17 Let p be a prime. Let A, B C Z, such {ftat |A| = |B|. Then
the linear map T = Ty p: L(A) — L(B) defined by T f = f| is invertible.
Proof. SetA = {&,&,...,&}and B = {n1, n2, ..., n,} and consider the basis
of L(A) (respectively, of L(B)) consisting of the Dirac functions J,, with j =
1,2,...,n (respectively, §,,, with k =1,2,...,n), and let w = exp(27i/p).
Then we have

[T8:1(m) = 85, () = Y 8, ()™ = ™5,

XEZLy

By virtue of Theorem 2.6.13 we have det ([T(Sgk](nh))z re1 = 0, showing that
T is indeed invertible. ]

We are now in a position to state and prove the main result of this section.

Theorem 2.6.18 (Tao) Let p be a prime number and f € L(Z,) non-zero. Then

Isupp(f)| + Isupp())| = p+ 1.

Conversely, if @ # A, A’ C Z, are two subsets such that |A| +|A'| = p+1,
then there exists f € L(Z,) such that supp(f) = A and supp(f) = A'.

Proof. Suppose, by contradiction, that, setting supp(f) = A and supp(f) =C,
one has |A| 4+ |C| < p. Then we can ﬁﬂd a subset B C Z, such that |B| = |A]
and C N B = @. We deduce that T f = f| is identically zero. Since f % 0, this
contradicts injectivity of 7' (Corollary 2.6.17).

Conversely, let @ # A, A’ C Z, be two subsets such that |[A| + |A'| = p + 1.
Let B € Z,, such that |B| = |A| and B N A’ reduces to a single element, say &.
Note that (Z, \ B) U {£} D A’ so that, by taking cardinalities, |A'| = p+ 1 —
Al = p— Bl + 1 = [(Z, \ B) U {£}] = |A'|, which yields

(Z,\B)U{£} = A’ (2.34)

Consider the map T = Ty : L(A) — L(B). By Corollary 2.6.17, we can find
g € L(A) suchthat T g = ¢ |p so that g vanishes on B \ {§} but g(§) # 0. Setting
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f =28 ¢€ L(Z,) we clearly have supp(f) € A and supp(f) C (Z,\B)U{&}.
Let us show that indeed supp(f) = A and, moreover, supp(f) = A’. By the first
part of the theorem we have

p+1 < Isupp(f)] + Isupp(f) < |A| + |Z, \ Bl + 1
=Al+(p—-IBD+1=p+1
so that all inequalities above are indeed equalities. In particular, supp(f) =

A and supp(f) = (Z,\ B)U {£} = A/, where the last equality follows from
(2.34). O
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3

Dirichlet’s theorem on primes in arithmetic
progressions

In this chapter, we give an exposition on the celebrated Dirichlet theorem on
primes in arithmetic progressions. It states that, if r and m are relatively prime
positive integers, then the arithmetic progression r, r +m, r+2m, ..., r +
km, ... contains infinitely many primes. For instance, there are infinitely many
prime numbers of the form 1 + 4k, k € N. There are several proofs of this
theorem: some of them are based on algebraic number theory (see the mono-
graph by Weyl [166]), others on analytic number theory (see the monograph by
Serre [144]), but also elementary proofs are available (see the paper by Selberg
[143]). By an elementary proof we mean a proof that does not use sophisticated
methods of complex variables, algebraic geometry, or cohomology theory, but
it may be technically very difficult.

Here, the character theory of finite Abelian groups is an essential ingredient,
in particular, in order to define Dirichlet L-functions, which constitute one of
the central objects in number theory. We have chosen to follow the exposition
in the beautiful book by Stein and Shakarchi [150]. The authors have managed
to reduce the proof to the use of very elementary analysis. We have also taken
some material from the book by Knapp [88]. Other proofs may be found in the
monographs by Apostol [13], Ireland and Rosen [79], and Nathanson [118].

3.1 Analytic preliminaries

In this section, we establish some elementary results on real and complex series.
As in our main source [150], we avoid the use of complex analysis: just ele-
mentary properties of real and complex series will be used (up to and including
existence of the radius of convergence for real and complex power series, ele-
mentary properties of uniform convergence, and differentiability of real power
series). In several points we closely follow the exposition in [88].

74
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1)k+l

From the well known expansion log(1 +17) = Y 2, “Ttk fort € (—1, 1]
we deduce that

1 ooz
1 = — 3.1
0g T Zk (3.1)

for all z € C, |z| < 1. With exp we denote the usual complex exponential:
exp(x + iy) = e*e? = e*(cosy + isiny) for all x, y € R. Also, Rz denotes the
real part of z € C.

Proposition 3.1.1

(i) |zl < Lifand only if R > 3.

(i1) exp(log %_Z) = %_Zfor all |z] < 1.

(iii) log ]% = z 4 R(2) where the error term R(z) satisfies |R(z)| < |z|* if

|Z| < 3

(v) |log 7= < 31zl if |zl < 3.

Proof. (i) Setting w = 1%1 we have z = % and
1
|z|<1©|w—1|<|w|©§)‘iw>§.
(ii) Consider the polar expression of z given by z = pe® with p > 0 and

6 € R. We then have to show that

(1 B o S pkeikG _
pe?)exp Z — =1 (3.2)
k=1

For p = 0 it is trivially satisfied. By differentiating with respect to the
real variable p, we get

d o S pkeikH
%[(1_“ yexp(y | — )}

k=1

A L2 1
— | 1= i6y ,i0 i \k—1 1
|: e’ + (1 — pe)e E (pe) exp Ogl—z

k=1

which vanishes since Y po(pe ¥ = 17}06,(,. Therefore, the left hand

side of (3.2) is constant along each line § = cost and it is equal to its
value for p = 0. Thus (3.2) follows.
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(iii)
IR@)| = [log T— —2| = |3 =
k=2
o0 o0
¥ |zf? v
< - <
<y = > Il
k=2 k=0
2 o= 1 5
(for 2] < 1) 7;? Izl
(iv)
1 > 2k
lo <
gl—z _; k
o0
|Z|k_l
< 1
|Z||: +Z 5
k=2
1
(for |z] < 35) <[zl |:1 Z?
k=2
= 3| |
= B 7. D

Definition 3.1.2 Let (z,),cn be a sequence of complex numbers. The asso-
ciated infinite product, denoted [ ]’ z,, is the limit of the partial products
2122 - - - Zy @8 n tends to infinity, in formule,

o0 n

[Ter=,tim ]

n=1 k=

The product is said to converge when the limit exists and is not zero. Otherwise,
the product is said to diverge.

The following is one of the basic results in the theory of infinite products.

Proposition 3.1.3 Let (z,).en be a sequence of complex numbers and suppose
that |z,| < 1 for all n € N. Then the infinite product [ ], = Iz | converges if
and only if the series Zn | |zl converges. Moreover, if this is the case, the

infinite product [, S also converges and one has

Hl—z —exp(Zlogl_lz> 3.3)

n=1 n=1
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Proof. The only if part follows from the elementary inequalities

n n n 1
) el < [0+ 1) < p——
k=1 k=1 k=1 k

Suppose now that Y o~ | |z,| < +0c0. Then lim,_, 4« |z,| = 0 and, without loss
of generality, we may assume that |z,| < % From Proposition 3.1.1.(ii) we get

1—|zk|_n < —1|zk|>
:exp(Zlogl_l )

P |2l

n

[1

and Proposition 3.1.1.(iv) yields

lg <—|Z|
(0]
2 k

1 — fz]
for all k € N. From our assumptions we then deduce that ) .-, log ]_le con-
verges absolutely. We conclude by invoking the continuity of exp. The proof
of the convergence of [ ]2, 1 is analogous Moreover, this limit is nonzero
and equals lim,,_, 4 eXP(Zk=1 log I_Zk ). U

In what follows, we will often use Abel’s formula of summation by parts:
if (zy)nen and (w,),en are complex sequences, then setting Zyp = 0 and Z; =
25;1 z;, for k > 1, one has

n—1

Y awe =Y Zi(wi — wi1) + Zytwn = Zy- 1ty (3.4)

k=m

for all 1 < m < n. The proof is just an easy exercise.

Definition 3.1.4 Let (a,),cn be a sequence of complex numbers. The associ-
ated Dirichlet series is the series given by

oo
an
n=1 n
where s is a complex variable and n* = exp(s log n) for all n > 1.
Let A C C and (f,,)nen @ sequence of complex functions. One says that the

series Zzil fn(2) is M-test convergent on A if there exists a sequence (M},)eN
of positive real numbers such that
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o |fu()| <M, forallze Aandn > 1;
. Zzolen < +00.

Clearly, M-test convergence on A implies both uniform and absolute conver-
gence on A. In the following we regard a Dirichlet series as a series of complex
functions.

Proposition 3.1.5 Let (a,)nen be a sequence of complex numbers. If the Dirich-
; o a, —

let series )~ | S is convergent for s = so then it is uniformly convergent on

each compact subset contained in {s € C : Ns > Nso} and it is absolutely con-

vergent at each s € C such that Rs > Rso + 1.

Proof. According with the notation in (3.4), set

n
in = ) Z, = ZZI« and wn(s) =
n k=1
foralln > 1. Then ) . | z,w,(s) coincides with the Dirichlet series. Moreover
the following holds:

(1) The sequence (Z,),cn converges (by hypothesis); in particular, it is
bounded: 3H > 0 such that |Z,| < H forall n > 1.

(i1) lim,_ ;o0 w,(s) = O uniformly on each set {s € C : s > u} with u >
Nso. Indeed, for Rs > u > Rsy we have

. N(g—sg e
|na A(J| — n.ﬂ(a 50) > nt Nso

so that HO which tends to 0 as n — +o0.

(iii) The series anl |w,(s) — wpy1(s)] is M-test convergent on every com-
pact set A C {s € C: Rs > Rsp}. Indeed, if |s — 59| < § and Ns —
NRso > n > 0, we have

=< P u;o

1 1 s — s()
n5—%0 (n + ])s—so - 15— bo-‘rl
< S — 380
= Sup |———~
n<t<n+l1 ¥ so+l
— s s — sol
n<t<n+1 s=so)+1
s —sol
T pli—so)+1
1)

= n"l"'l.
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Then we can apply Cauchy’s criterion for uniform convergence:

Z 2k wy(s)
k=m

(by 3.4) < Y 1Z - [wi(s) — wip1()]

k=m

+1Zu| - (wn($)] + | Zn—1] - [0m($)]
HéS H H

Jn+1 + ni—MNso mi—NRso :

n a
25

k=m

(by (1), (i1), and (iii))) < Z
k=m

Thus, for each ¢ > 0 there exists N € N such that ‘ZZ:m Tl <eforalln>
m > N and s € A, and uniform convergence is proved.
Finally, if s > MNso + 1 then, setting n’ = Rs — Rsg — 1 > 0, we have

1 1

ns—so nl+’]/

an al‘[

nso

an

nso

1 a,
D s—sy

nS nX()

an
750

for all n > 1, so that boundedness of the sequence (
convergence of the Dirichlet series.

)n> , yields absolute

Remark 3.1.6 By a celebrated theorem of Weierstass (see [3, 133, 115]) if a
series of analytic functions converges uniformly on each compact subset of
a set A C C, then the sum is analytic on A. Then Proposition 3.1.5 ensures
that if a Dirichlet series converges at so € C then it is analytic on the region
{s € C: Ns > Nso}. We will not use this important fact.

Proposition 3.1.7 Let (a,),cn be a sequence of complex numbers. If the Dirich-

let series y .-, “u is absolutely convergent at s = s, then it is M-test conver-

genton{s € C:Ns > Nsp}.

Proof. Just note that
1

nS—So

1

T Ms=Ns =

an An Ay Qp

n® nso — In nso

foralln > 1. O
A sequence (a,)nen of complex numbers is called strictly multiplicative if
a=1 and a,, = a,a, foralln,m > 1. 3.5)

We are now in position to state and prove one of the central results of this
chapter. We use analytic methods to prove a number theoretical result from the
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algebraic property (3.5). Its consequence, Euler product formula (3.11), is a
landmark in number theory.

Theorem 3.1.8 Let (a,).en be a strictly multiplicative sequence of complex
numbers. Suppose that the associated Dirichlet series converges at s € C and
that |a,| < P for each prime p. Then, for such an s, the Dirichlet series has
the product expansion

nd 1

ay
ns 1_[ 1 — appfs'

n=1 p prime

Proof. First of all, the infinite product in the right hand side converges by Propo-
sition 3.1.3 applied to the sequence (%) p prime- FOT 1, m > 1 we set

an,m=l_[<ia—ii)=H(1+;—f+%+-..+“ﬂ>,

1—a,p=’
pePp, p prime rP

Note that we have to prove that S = E. Then, since (a,,)k = a, (by strict mul-
tiplicativity), the formula for the sum of a geometric series and an easy combi-
natorial argument yield

pePy \h=0 P

=
=

n

(1]

)4 )4
m o0
=Y (Z “L) . ( @)
ACP,: | peP,\A \h=0 P peA \h=m+1 P

A+D
For n; m > 1 we also set

Qn,mz{kzp}l“pgz~-~p?’:piprime,pl,pz,...,p,Sn;hl,hz,...,htfm}.
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Clearly, 1 € Q,, . Since the sequence (a,),eN is strictly multiplicative, if k =
p}l’1 pgz . pi” then

hy h hy
ay a a a
_ hy ha h Y A Pr
ar = (ap, )" (ap,) ...(apl)zandF_ i hzs...ﬁ_
1 2 t
Then
m a a
i
= 4 k
Sn,m = | | E pﬁ = F 3.7
peby \h=0 k€Qum

because in evaluating the product we get all possible factorizations of integers
ln QV!,WI'
Let ¢ > 0. By the convergence assumption, we can find an integer n. such
that, for all n > n,,

IS, — S| <¢e and |E,— E| <e.

(3.8)
Fix n > n,. Then, by virtue of (3.6), for m sufficiently large we have

- o " Jay . ay
=g = Y | 1T (z|p:1|).n(z f“)
/ﬁ%: peP\A \h=0

hs
peA \h=m+1 |p |

o Bl o (3.9)
< oln (Z m) 5~ lad
k=1

s
k=m+1 |k |

<é&

lax|

because n is fixed, ) -, 0

converges, A # J, and, for any p € A,

= Japl _ 2
PRI D

hs| — s
Pl ) 2 B k|

which tends to 0 as m — 400 (for the last inequality, just note that certainly
pm-H >m+ 1)

=m+1

Moreover, if in addition m > log, n, we clearly have Q,,, 2 {1,2,...,n}
As a consequence, (3.7) and (3.8) imply that

o0
- Ay |a|
k€Qnm: k=n+1
k>n
Finally, from (3.8), (3.9), and (3.10), we deduce that

|S_ E| =< |S_Sn|+|Sn_

En.m| + |En,m - Enl + |E
As ¢ was arbitrary, this ends the proof.

n

[1]

| < 4e.
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If a, = 1 for all n € N, then the sequence is strictly multiplicative and the
associated Dirichlet series is the celebrated Riemann zeta function

1
L(s) = —.

From the equality |%| = # we deduce that this series converges absolutely at
each s € C with Ns > 1. From Theorem 3.1.8 we deduce, as a particular case,
the Euler product formula

1
—p

(3.11)

= T]

p prime

forall s € C with Ns > 1.
Remark 3.1.9

(i) Examining the proof of Theorem 3.1.8 in the case of the Riemann zeta
function, that is, considering the expressions

1 1 q 1 i 1
—_ = —  an = —_—
ns psl'hlpaz'hz . p;‘h, 1— pfs — psh

the identity

1
Y=

n=1 p

1—[ 1

prime 1- p -
may be seen as an analytic formulation of the fundamental theorem of
arithmetic (see Exercise 1.1.9).

(i1) Actually, the Riemann zeta function has a meromorphic continuation on
the whole C with exactly one simple pole at s = 1 with residue 1. For
this and other properties and applications of the Riemann zeta function
we refer to [151].

We end this section by analyzing two remarkable asymptotic estimates for
partial sums of particular values of the Riemann zeta function.

Proposition 3.1.10

(i) There exists y > 0 (the so-called Euler-Mascheroni constant) such that,
foralln > 1,

n

1 1
Z— =logn+y + O(-).
— k n
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(ii) There exists o € R such that, for alln > 1,

n
1 1
— =2yn+0o +O0(—).
;ﬁ Vn
Proof. (i) Set
1 k+1 1
= - — —dx.
Ve k /k X *
Smceﬁ < % < %fork<x<k+l,weget
1 k+1 1 1
_— </ —dx < —
k+1 X k
so that
1 1
O<py<-——. 3.12)

kK k+1

It follows that the series Y -, ¥ is convergent and has positive terms.
Let us define y as the sum of such a series.
Letn > 1. From (3.12) we get

Y on=gm Y ows i Y (1)

k=n+1 k=n+1 k=n+1

. 1 1 1 1
= lim < —.
m—oo \ n+ 1 m+1 n+1 n

Finally, from

k+1 1

V—Zyk Z——Zf —dx
k=n+1
n+ll

—z-—/ L
k=1

we deduce (using % > log(1 + %) =log(n+ 1) — logn > 0) that

o0

"1 1
1D~y —lognl=llog(l+ )= 3 wl=<

k=1 k=n+1

SN
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(i) We set
1 k+1 1
m=—F7— [ —=dx
VoS Wx
Arguing as in the proof of (i), but replacing x and k by /x and /k,
respectively, we get
1
f VE+1

which replaces (3.12). We deduce that the series ZZ‘:’I N converges so
that, denoting by 7 the sum of such a series, Y~ .| m < JLE and

0<m <

[o.¢]
EPIRES o5 SENCEARS)
k=n+1
Finally, setting 0 = n — 2, we get

o0

|Z_—o—2ﬁ|=|z<m—ﬁ)— dooml ===

where the last inequality follows from v/n + 1 — \/n < \/Lﬁ g

We will also use the following elementary inequality: for s > 1

+00
1

1 1
(s)<1+2f —dt—l—i—/ Sds=1+— (13

1 forn—1<t<n.

r_zr5

where the inequality follows from -

3.2 Preliminaries on multiplicative characters

In this section we consider the multiplicative characters of the ring Z/mZ, that
is, the characters of the multiplicative Abelian group U(Z/mZ) (see Section
1.4), where m is a positive integer. If v € U WZ) we extend it to the whole
Z/mZ, by setting ¥ (x) = 01if x € Z/mZ is not invertible and then we think of it
as an m-periodic function defined on Z. More precisely, if € U WZ), the
associated Dirichlet character x = xy is the function x : Z — T U {0} defined
by setting

0 otherwise,

Y(@) if ged(n, m) =1
x(n) =
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for all n € Z, where, as usual, n € Z/mZ denotes the class n + mZ. Clearly,
x(1) =y (1) = land x(nk) = x(n)x (k) forall k, n € Z; thus a Dirichlet char-
acter is strictly multiplicative (see (3.5)). The principal Dirichlet character mod
m, denoted by o, is the extension of the trivial character, that is,

1 if ged(n,m) =1

0 otherwise,

Xxo(n) = {

for all n € Z. We denote by DC(m) the set of all Dirichlet characters mod m.
From Corollary 1.5.3 and Corollary 2.3.4 we deduce that |DC(m)| = ¢(m). If
0 < n < mand ged(n, m) = 1, we define a variant A, of the Dirac function, by
setting,

1 ifk=n modm
Ay (k) = ) (3.14)
0 otherwise,
for all k € Z. In other words, A, is the characteristic function of the class 7 mod
m. Clearly, for the Abelian multiplicative group U(Z/mZ) a Fourier analysis
(as described in Section 2.4) is still valid: we may translate it in terms of the
Dirichlet characters, as follows.

Proposition 3.2.1 If gcd(n, m) = 1, then, for all k € 7Z,

A(k) = > xmx (k).

won)xeDCmﬂ
Proof. The Fourier transform of A, (assuming 0 < n <m — 1) yields

m—1

A(x) =Y A (h) = x(n),

h=0
for all x € DC(m). Then we may apply the Fourier inversion formula
(2.16). U

We now describe some specific technical results on the Dirichlet characters.
We begin with a cancellation property.

Lemma 3.2.2 Let x € DC(m). If x # Xo, then

> x
k=1

<m

foralln € N.
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Proof. Indeed, the orthogonality relations for characters (Proposition 2.3.5)
yield

(h+1)m (h+1)m
Yooxt= ) xhxok) =
k=hm+1 k=hm+1

for all & € N. Therefore, if n = gm + r, with 0 < r < m, we have

n q—1 (h+1)m qm+r r
Doxtr=>" > xtbh+ Y xtk)=> xk
k=1 h=0 k=hm+1 k=qm+1 k=1

so that

(k)

<Y Ml <r<m _

Lemma 3.2.3 Forall x € DC(m), x # xo, and for all positive integers h < n,
we have the following asymptotic estimates:

x (k) 1

2 : L = O(—): 3.15

— Jk (JZ) ©3-15)
" x (k) 1

Y A= =00 (3.16)
o K h

Proof. First of all, by applying the mean value theorem to the function f(x) =

1
5 We get

1 1
—— =[G+ 1) —KfE) =—
NESERN [((k+1)—klf' (&)

for some & € [k, k 4+ 1] so that

26312

1 1
0< —— < —. (3.17)
f VE+1 7 2kvk
Using (3.4) with z, = x(n), w, = [, and Z, = Y }_, x(k), we have

B Sal- ) 5%

But, by Lemma 3.2.2, |Z;| < m, so that (3.17) yields

n—1 1 oo

ZZ < ) i 1 m 2m
- _— X = il
k=h Ve Vk+ k3! h1 X2 h—1" <h

I/\
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\—} — Z”—f‘ < ﬁ, proves
(3.15). The proof of (3.16) is similar, but now one uses the inequality (for 4 > 2)

”2“: 1 1 /+°°1 12
S — _x— p—
kK k+1 h -1~ h 0

k=h

for h > 2, which, together with the trivial estimate

Definition 3.2.4 A Dirichlet character y € DC(m) is called real if x(n) € R
(sothat x(n) € {—1,0, 1}) forall n € Z.

Lemma 3.2.5 If x € DC(m) is real, then, for all n € N, we have

Zx(k) - {O foralln e N

1 ifnisasquare.

keN
Proof. If n = p", p prime, then the divisors of nare 1, p, ..., p"~!, p" so that
D ox®) = x(+x(p)+ -+ xP"H + x (")
k’iN:

=x()+x@P+-+x@P" "+ x(p)
41 ifx(p)=1

1! if x(p) = —1 and h is even
o if x(p) = —1 and h is odd
1 if x(p) =0

Note also that x(p) = 0 if and only if pjm. If n = pl' > ... p}" is the prime

factorization of n as the product of distinct primes, then

D oxty=[TIxM+x@)+x@)* + -+ x(p)"]

keN: Jj=1
kin

so that the sum in the left hand side vanishes if and only if x (p;) = —1 and h;
is odd for at least one j € {1, 2, ..., t}, otherwise the sum is > 1. O

For the last result of this section, we make use of a simple technique devel-
oped by Dirichlet (but for another problem in number theory, the so-called divi-
sor problem; see [150]). For f: N x N — C and & € N we set

Sh=Y_ fnk.

n,keN:
nk<h
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We can write this sum in the following useful ways:

h

Sy = Z Z f(n, k) (summation along hyperbolas)

£=1 n,keN:
nk=¢

h h/n

ZZ (n, k) (vertical summation)
n=1 k=1

= Z f(n, k) (horizontal summation).

Proposition 3.2.6 Let x € DC(m), x # xo, and suppose that x is real. Set

x (k)

=22
flnd ===

foralln, k> 1 and

=) fonk

n,keN:
nk<h

for all h > 1. Then there exists a constant ¢ > 0 such that, for all h > 1,
Sn > clogh.

Proof. Using summation along hyperbolas, we get

>~

~~~
>

N

A\

Il
)
a

o~
Il
=
I m
S22

S

x(k)

Il
M=
-

o~
I

~
m
Z

=
~

&
~ | =

(by Lemma 3.2.5 and £ = %) >
1

(by Proposition 3.1.10.(1)) > clogh,

~
Il

for some ¢ > 0 sufficiently small.
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3.3 Dirichlet L-functions
Definition 3.3.1 Let m € N and yx € DC(m). The associated Dirichlet
L-function is the complex function L(-, x ) defined by setting
oo

L(s, x) = Z x(n)

N

n=1
for all s € C where the series converges.
Since |x(n)| < 1 for all n € N, the function L(s, x ) is defined for all s € C
with fs > 1, because for these values the series is absolutely convergent:
1

- s’

x (1)
nS

We limit ourselves to give the most elementary properties of L-functions, fol-
lowing again our main reference [150]. More extensive treatments may be
found in [13, 81]. For instance, L(s, x ) may be extended to an analytic (respec-
tively, meromorphic with just a simple pole at s = 1) to the whole C, if x # o
(respectively, x = xo)-

From Theorem 3.1.8, since any y € DC(m) is strictly multiplicative, we
deduce that

1 .
L(s, x) = 1_[ W (Dirichlet formula)

p prime
forall s € C with 9is > 1. Inthe case x = 1, Dirichlet formula reduces to Euler
product formula (see (3.11)).

Proposition 3.3.2 Let m = p}]" pgz e pﬁ” be the factorization of m into powers

of distinct primes, then

L(s, xo) = [ (1 = p;*) - ¢(s),

j=1
forall s € Cwithfs > 1.

Proof. Indeed, by Dirichlet formula,

1
L =
(s, x0) ]_[ =
p prime:
ptm
since

1 ifpim

Xo(p) = , f
0 if pim. O
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Following [150], we now focus our study to the case s € R, that is, we ana-
lyze L(-, x) mainly as a function of a real variable. This leads to a more ele-
mentary and simpler proof and more specific statements. However, note that,
in general, L(s, x) € C,evenifs € R.

Proposition 3.3.3 Let x € DC(m), x # xo. Then

@

(ii)

L(s, x) converges for s > 0 and the convergence is uniform on each
compact subset of (0, +00);
the map s — L(s, x) is C' (0, +00);

(iii) fors — +oo

Proof.

(ii)

Lis, x\)=1+0Q2™%) and L', x)=0Q27").

(1) Set zx = x(k) and w; = kl in the summation by parts formula
(3.4). Then, Lemma 3.2.2 yields |Z,| < m for all n € N and therefore,
by (3.4),for0 < h <nands > 0,

[l L Jymym_2m
e k] w sk

 x (k)
Z ks

k=h

which tends to 0 as i — +o0. Then, by the Cauchy criterion, the series
defining L(s, x ) converges at all s > 0 and, moreover, it converges uni-
formly on each compact set in (0, +00), by Proposition 3.1.5.

First of all, note that if we set g(x) = x~*log x for x > 0, then ¢'(x) =
x5 = slogx) and, for x > 1,

lg ()| < x* (1 + slogx)
= x5yt log x°
<3y 12
since x* < x™%/? and logx* = 2logx*/?> < 2x*/?, for x > 1 and s > 0.
By the mean value theorem, it follows that, for k € N,

logk log(k+1)
kS (k+ 1)

3
< '(x) < —. 3.18
< UI{I}%]g(x) < aon (3.18)

Then, by differentiating the series defining L(s, x ) we get

=1
L(s. )= Y === x ().

n=2
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logk

Setting 7 = x (k) and wy = =3

we get

Xn: log k 2| <

k=h

in (3.4) and using |Z;| < m as in (i),

n—1

log(k +1) logk logh logn
- +m +m
(k+1) kS hs ns

k=h

n—1

1 logh logn

(by (3.18) =3m ) s +m— =+ m—
k=h

which tends to O uniformly in s € [§, 400),8 > 0,as h < ntend to +oo.
In other words, uniform convergence of Z,fi, W#/z in [, +00), 8 > 0,
together with the Cauchy criterion, ensures uniform convergence of the
series of L' (s, x).

(iii) Fixso > l andsetC =) - Then for s > 5o we have

n=2 11‘0

[}
IL(s, x) — 1] =
n=2

IR
=22 Gy

n=2
2 (/2
=2%C27° = 0Q™).

1

Similarly,

, ad logn_ s _ s
L0 =Y —— =2 =0 O

n=2 n=2

Remark 3.3.4 Actually, from Proposition 3.3.3.(i) and elementary complex
analysis, a stronger result than Proposition 3.3.3.(ii) follows, namely, that
L(s, x) is analytic on {s € C: s > 0}; see [88]. But, as mentioned at the
beginning of this section, this is not the strongest result: L(s, x) has an ana-
Iytic continuation on the whole C, if x # xo.

Corollary 3.3.5 For y € DC(m), x # xo, the integral

/+OO L/(t, X)dt
s L)

is convergent for all s > 1.
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Proof. From Proposition 3.3.3.(iii) it follows that
L', x)
L(t, x)

as t — +oo. Note also that L(¢, x) # 0 for ¢t > 1, by Proposition 3.1.3 and
Dirichlet product formula. U

=027

Proposition 3.3.6 For s > 1 and x # xo, define the logarithm of L(s, x) by
setting

oL@, x)
logL(s, x) = —/ dr.
& . L0
Then, for s > 1, we have
expllog L(s, x)] = L(s, x), (3.19)
1
logL(s. x) = Y log ————— (3.20)
» prime 1—x(pp

where the logarithm in the right hand side is defined by means of (3.1), and

AP
[T LGs.x)=exp | o(m) Z > o | (3.21)
x€DC(m) p prime k=1

where Ay is as in (3.14).

Proof. We have

d
o {L(s, x)exp[—1log L(s, x)1} = L'(s, x) exp[—log L(s, x)]

LG x)

L0 T 0

exp[—log L(s, x)]
=0
and by Proposition 3.3.3.(iii),
x—le—Poo L(s, x)exp[—logL(s, x)] = 1.

Since the argument of the above limit is constant, (3.19) follows.

We now prove (3.20). First of all, we note that by Proposition 3.1.1.(iv) and
Proposition 3.1.3, the series at the right hand side is uniformly convergent on
each interval [§, +00), § > 1, so that it is continuous in (1, +00). Moreover,
for s > 1, the exponential of both sides of (3.20) is equal to L(s, x ). Indeed, for
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the left hand side this follows from (3.19), while, for the right hand side,

1 1
1 T . < . = . .= L ) )
xp| D T [1 1=xPp~* o0

p prime p prime

where the first equality follows from (3.3) and the second from Dirichlet prod-
uct formula. Since exp has imaginary period equal to 27, it follows that there
exists an integer valued function 4 such that

logL(s, x)= Y _ log 1 + 27ih(s)
p prime 1- X(p)p7

But £ is continuous, because both sides of (3.20) are continuous, and therefore
it is constant. Since both sides of (3.20) tend to zero for s — 400, this constant
is equal to zero, and (3.20) is proved.

We now turn to the proof of (3.21). By (3.20) we have:

[T Le0=ex Z > o ﬁ
x€DC(m) XEDC(m)pprtme x\p)p i
z DT L

p prime xeDC(m) p)p i

(by 3.1)) = exp Z > ZX(’”

p prime xeDC(m) k=1

e zz Y a0

p prime k=1 x€DC(m)

- A(pH)

by Proposition 3.2.1) =

(by Proposition ) =exp | p(m) Z Z kpks

p prime k=1 [

Corollary 3.3.7 Fors > 1 the product in the left hand side of (3.21) is real and
satisfies

[] ts.0=1 (3.22)
x€DC(m)

Proof. The argument of the exponential in the right hand side of (3.21) is real
and non-negative. U
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Lemma 3.3.8 With the assumptions and notation as in Proposition 3.2.6 we
have:

Sy = 2vhL(1, x) + O(1).

Proof. We partition A, = {(n, k) € N x N : nk < h}, the summation region in
the definition of Sj, into the regions

h
AV = {(nk)eNxN 1<n<«/_«/Z<k<-}

n

and

h
Af)z{(n,k)eNxN:lskf«/Z,lfn§§}~

Correspondingly, S, = Sﬁll) + 52 where
x (k) x (k)
=2 == Z 2.
(n,k)eA“) nk \/_ Vh< k<” \/_
(the last equality follows from vertical summation) and
x (k) x (k) 1
(n,keA? nk l<k<vh Vi n<t v

(the last equality follows from horizontal summation). Then

‘SZI)‘S Z X(k)
ns«f Vh<k< 7’
1 1 (3.23)
by (3.15)) = — 0| —=
(by (3.15)) % 7 ( ﬁ)

(by Proposition 3.1.10.(ii)) = O(1),
and, by Proposition 3.1.10.(ii),

: *) K
K Y [2\/;+ +O(ﬁﬂ (3.24)

1<k<vh
=2vhL(1, x) +O()
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where in the last equality we have used the following estimates:

wh Y %k)zzx/h(l,x)—zﬁz %
1<k<vh k>h

1
by (3.16)) = 2vAL(1, 2Vh O —
(by (3.16)) = 2vhL(1, x) +2vh (ﬂ)

= 2vhL(1, x) + O(1),

by (3.15)

x (k)
o Y ===00),
1<k<vh \/%

and, finally, for some constant C > 0,
x (k) k C
3 T o(/; <7 > x| =o0W).
1<k<vh I<k<vh
From (3.23) and (3.24) the proof immediately follows. U
We are now in a position to state and prove the main technical result in the proof

of the Dirichlet Theorem. Most of the preliminary results will be used, directly
or indirectly, in its proof.

Theorem 3.3.9 (Dirichlet) Let x € DC(m) and suppose that x # xo. Then

L(1, x) 0.

Proof. First of all, we establish two simple inequalities. If L(1, x) = O then
there exists C; > 0 such that

IL(s, x)I = Cils — 1] (3.25)

for 1 < s < 2 (this follows from the mean value theorem; recall also Proposi-
tion 3.3.3.(ii)), and there exists C, > 0 such that

C
LG, x0)l = = _21| (3.26)
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for 1 < s < 2. Indeed, by Proposition 3.3.2 we have
t
ILGs. xo)l < []11 =P}l - 12 (s)]
j=1
1
(by 3.13) =C (1 " —1)
5 —

G
s—1

=

where C = maxj<s<» ]_[’jz1 1 — p;s| and C, = 2C. The rest of the proof is
divided into two cases.
First case: x is complex, that is x (n) € C \ R for some n € Z. Therefore, x #
x. By contradiction, assume L(1, x) = 0. Then also L(1,%) = L(1, x) = 0.
But then, taking into account (3.22), (3.25), (3.26), and the notation therein,
we have, for1 < s < 2,

1< J] L. x)=Les 0L 0L, x0) - [ Lis 1)
x'eDC(m) x'€DC(m):
X'#X. X X0

G
ls — 1]
where C3 > 0 is a constant (cf. Proposition 3.3.3), a contradiction.
Second case x # xo is real valued, that is, x (n) € {—1,0, 1} foralln € Z. On
the one hand, by Proposition 3.2.6 and the notation therein, we have

<Clls—1 - C3 = C1GGsls — 1,

Sy > clogh
while, on the other hand, by Lemma 3.3.8, we have
Sy = VhL(1, x) + O(1).

This clearly leads to a contradiction if L(1, x) = 0. ]

3.4 Euler’s theorem

In this section we present a celebrated theorem of Euler. We begin with a further
technical result, which is a consequence of Theorem 3.3.9.

Theorem 3.4.1 Let x € DC(m). If x # xo then

Z x(p) o)

)

p prime

fors — 17,
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Proof. By virtue of (3.20), for s — 17 we have

1
log L(s, x) = log —————
Z 1 —x(pp~
p prime
. X (p) 1
(by Proposition 3.1.1.(1i1))) = Z Z =
p prime p prime P

= > MJFO(U

p prime

On the other hand, since L' (¢, x ) and L(t, x ) are continuous in (0, +00) (Propo-
sition 3.3.3) and L(1, x) # O (Theorem 3.3.9), by Corollary 3.3.5 and Propo-
sition 3.3.6 we have

L, x)

logL(s,x)=—/ 0 X)d =0O(1)

fors — 17F. O

We are now in a position to state and prove Euler’s theorem. We give two
proofs: the first one is Euler’s original proof and follows from some of the
results in the preceding sections; the second proof is due to Erdds and it is
more elementary but based on a clever trick ([60]; see also [5]).

Theorem 3.4.2 (Euler)

p prime

Euler’s proof For s > 1 the zeta function ¢ (s) is real valued and, by virtue of
Euler product formula (3.11), we have (here log is the usual real function)

logz(s)= Y log -

p prime

(by Proposition 3.1.L(ii) = Y [l R (%)] .
pb

p prime
Moreover, again from Proposition 3.1.1.(iii) we deduce that
1 IR B &
CR()= T m=r st

ps pZS

p prime p prime n=1
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Therefore,
2

1 b4
Z ; 6

> logg(s) — —
p prime

which tends to +oco for s — 17, since {(s) =) o 1 tends to +oo for

s— 1T, O

Erdés’ proof By contradiction, assume that

Z l<—i—oo.

p prime

Then there exists a partition P | | O of the set of all primes such that P is finite
and

Zl<l (3.27)
5 .

Forn € N, set

A, = {k € N: k < n, kis divisible by at least one prime in Q}

B, = {k € N : k < n, kis divisible only by primes in P}.

Clearly,
(1,2,...,n =A,,]_[B,,. (3.28)
From (3.27) we get
n n
A, - <= .
A<~ <3 (3.29)
peQ

because if p € Q, then the multiples of p less than or equal to n are at most n/ p.
We now estimate the cardinality of B,.

We uniquely write each k € B, as the product of a square and a square-free
integer

k= s,%rk,

in other words sy is the largest divisor of k such that si divides k. We first note
that there are at most 2/¥! possible choices for ry (this is a product of all primes
in P each with exponent 0 or 1). Moreover, it is clear that s; < vk < \/n s0
that, altogether

|B,| <21 /n. (3.30)
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Then for

= D2PI+4

we have 2/ = ‘/Ti and therefore, by virtue of (3.28),

n=|A,| + |Bl
(by (3.29) and (3.30)) < g + 2% /n
3

= —-n,

_ n
4 4

+

n
2

a contradiction. |

3.5 Dirichlet’s theorem

Theorem 3.5.1 (Dirichlet’s theorem on primes in arithmetic progressions)
Let m, r € N and suppose that gcd(m, r) = 1. Then the arithmetic progression

nr+m,r+2m,r+3m,...,r+km,...
contains infinitely many primes.

Proof. We show that

1
l — = +o0, 3.31
fim 2 = (a0
p prime:
P=r mod m

from which it immediately follows that the set {p prime: p = r mod m} is infi-
nite. (3.31) is clearly a generalization of Theorem 3.4.2, but it requires a lot
more work. The first step is the use of the discrete Fourier inversion formula in
Proposition 3.2.1 (with n = r and k = p): for s > 1 we have

1 A (p)
Z P - Z P

p prime: p prime

p;rmodm
1 — x(p)
Y M

m) x€DC(m) p prime
since xo() = 1) = —— 3 2P L5~ s 5 x0)
(p(m) p prime ps §0(m) x€DC(m) p prime ps

XFXo
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Now, on the one hand, by Euler’s theorem (Theorem 3.4.2) and the fact that
there are only finitely many primes p dividing m,

DT

p prime 4 ptm P
for s — 1. On the other hand, for x # xo Theorem 3.4.1 ensures that the
quantity >, .. % is bounded for s — 1. g

Remark 3.5.2 One of the most important and difficult results in number theory
proved in recent years is the celebrated Green-Tao theorem [67], which states
that the set of prime numbers contains arbitrarily long arithmetic progressions.
This may be considered as a kind of “reciprocal” of Dirichlet’s theorem, which
ensures that certain arithmetic progressions contain infinitely many primes. The
Green-Tao theorem, also, is a particular case of a celebrated conjecture, due to
Erdds, on arithmetic progressions, which states that if A is an infinite subset of
N such that ), _, 1/n = +o0, then A contains arbitrarily long arithmetic pro-
gressions. Other particular cases of Erdés’ conjecture are the celebrated theo-
rems of Roth [131] and Szemerédi [155, 156], which we do not state here but
for which we refer to the expository paper by Tao [158]. We only mention that
Erd8s’ conjecture is still open and that a prize of 3000 USD is offered for its
proof or disproof.
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4

Spectral analysis of the DFT and
number theory

In this chapter, following [104] and the exposition in [15], we present the spec-
tral analysis of the normalized Fourier transform on Z, (cf. Exercise 2.4.13).
In the last two sections, as an application, we recover some classical results
in number theory due to Gauss and Schur, including the celebrated law of
quadratic reciprocity.

4.1 Preliminary results

We will use the notation and convention as in the beginning of Section 2.2.
This way, the normalized Fourier transform F: L(Z,) — L(Z,) is given by

1 n—1 o
[mm=ﬁ2mmk

k=0

for all f € L(Z,) and m € Z,; see Definition 2.4.1.
Similarly, the corresponding inverse Fourier transform F~': L(Z,) —
L(Zy,) is given by

1 n—1
—1 _ km
VﬂM—ﬁgmm

for all f € L(Z,) and m € Z,. Note also that now Proposition 2.4.6.(iv)
becomes

F(fi % fo) = /n F(FOF(fo).

Recall (cf. Definition 2.4.14) that for f € L(Z,) we denote by f~ € L(Z,)
the function defined by f~(x) = f(—x) for all x € Z,.

101
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Lemma4.l1l () F'F=FF ! =idyg,.
(i) F and F~' are unitary operators.
(iii) F2f = f~ forall f € L(Zy).
(iv) Fym = /nb,, for allm € Z,.

V) Fou = JxXem =z Xnm-

Proof. (i) and (ii) are just a reformulation of the Fourier inversion formula (The-
orem 2.4.2) and the Plancherel formula (Theorem 2.4.3), respectively; they
can also be immediately deduced from the orthogonality relations (Proposition
2.3.5).

(iii) Let f € L(Z,) and m € Z,. Then

1 n—1 /n—1
UOEEDY (Z f(k)w"‘h) w "

h=0 \k=0

[
M1

f(k) Zx «(1) Xon ()

hO

~
Il
=}

n—1
(by 2.7)) =) f(k)So(—k — m)

k=0
= f(—=m).
(iv) Let m, h € Z,. Then

n—1

1 -
[-Fm]hz_ mk k
Xm1(R) ﬁgx(m()

1
(by 2.7)) = ﬁmso(m —h

(v) Letm, h € Z,. Then

n—1

[F 8] (h) = Z S (k)™

1
= —w

N

—mh

1
= %X—m(h)'
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Proposition 4.1.2 Let m € Z,,.

() F*=idyaz,;
(11) ]:28m = a—m = 371—}’!1;
(111) J:ZXm = X-m = Xn—m-

Proof. (i), (ii), and (iii) follow immediately from Lemma 4.1.1 after observing
that ()~ = fforall f € L(Z,), (xm)” = X—m> and (6,,)” = 8_p- U

Theorem 4.1.3 The characteristic polynomial p(L) € C[A] of F? is given
by
G=DTO+D'T  ifnisodd

P()\-) = nt2 n—2
(A — 1)%()\ + 1)z ifniseven.

Proof. By virtue of Proposition 4.1.2.(ii), the matrix A, € 9,(C) representing
F? in the basis {6y, 81, ..., 8,_1]} is given by

10 - 00
00 -~ 01
A =|00 10
0 1 0 0

0 o0 - 0 1

00 - 1 0
By =

01 0 0

1 0 O 0

Then

det(A, — A,) = (n — 1)det(Ay_; — By_y) @.1)
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and
A 0 0 -1
0 A -1 0
det(AMy—1 — By—1) =
0 -1 A0
-1 0 0 X
A -1 0 0 A -1
! o F(—1)2 :
—1 - A0 —1 A
o --- 0 A -1 0 -~ 0

= A*det(Al,_3 — B,_3) + (=1)*" 7 det(Al,_3 — B,_3)
= (A — 1)det(M,—3 — B, 3)
so that, keeping in mind (4.1),
det(rl, — A,) = (A2 — 1)(A — 1)det(Al,_3 — B,_3)
= A2 = I)det(M,_r — Ap_2).

Since
A—10 0
detMz —A3)=| 0 A —1|=A—-DR*=D=GQ—-1D**+1)
0 -1 2
and
A—1 0 2
A —Ap) = =R-1
det(Al, — Az) ’ 0 A—l‘ ( ),
the statement follows by induction. O

By virtue of Proposition 4.1.2.(i), the minimal polynomial of F divides A* —
1, and therefore its eigenvalues are among =£1, +i; see [91] for the relations
among eigenvalues and the minimal polynomial. Let us show that from the
trace TrF of F we can recover the geometric/algebraic multiplicity of these
eigenvalues.

Proposition 4.1.4 Suppose that Tr(F) = a + i. Denote by m, (respectively
my, m3, my) the multiplicity of 1 (respectively —1, i, —i). If n is odd (respectively
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even), then the m;’s constitute the unique solution of the linear system

my—m; =
my—my =p
m +m = % (respectively %)
my+my = % (respectively %).

Proof. By definition of the trace, we immediately have Tr(F) = m; —my +
i(m3 — my): this explains the first two equations. Moreover, m; + my (respec-
tively m3 + my) is the multiplicity of 1 (respectively —1) as an eigenvalue of
F?2. Thus the last two equations follow from Theorem 4.1.3. O

In what follows, for x € R, we denote by [x] € Z the greatest integer less
than or equal to x. Setting v = [n/2] 4 1 we consider the functions

dpand§; +4,_jforj=1,2,...,v—1 “4.2)
and
O —Op_pfork=1,2,....,n—v. “4.3)

For example, if n = 4 then v = 3 and the functions in (4.2) are 8¢, §; + §3 =
81 +8_1, and 28, = 5, + §_, (note that these are even functions), while there
is only one in (4.3), namely §; — §3 = §; — 6_; (note that this is, in turn, an odd
function).

If n = 5,then v = 3 and the functions in (4.2) are ¢, §; + 84 = §; — §_;, and
8 + 83 = 8, + 5_5 (note that these are even functions), while those in (4.3) are
81 — 84 =08 —6_1, and 8, — 83 = 8, — §_, (note that these are, in turn, odd
functions).

Note that, more generally, if n = 2h is even, then v =h+ 1 and 6,—; +
Sn—vt1 = Op 4 8_p = 28,.

Moreover, we observe thatv — 1 = [n/2] <n/2,and j <n— j <& j<n/2
(respectivelyn —v=n—1—[n/2] <n/2,andk < n—k & k < n/2).1tfol-
lows that the n functions in (4.2) and (4.3) are all distinct and nontrivial.

Let Ly (Z,) € L(Zy,) (respectively L_(Z,) < L(Z,)) denote the subspace of
complex valued even (respectively odd) functions on Z,,.

Proposition 4.1.5 The functions in (4.2) are even, i.e. belong to L, (Z,), while
those in (4.3) are odd, i.e. belong to L_(Z,). Moreover, the functions in (4.2)
and (4.3) altogether form an orthogonal basis of the whole L(Z,). In particular,
we have the orthogonal decomposition

L(Zy) = L+ (Zy) ® L—(Zy) (4.4)
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and dimL,(Z,) = v and dimL_(Z,) = n — v. Moreover, (4.4) is the spectral
decomposition of F*: L.(Z,) is the eigenspace corresponding to 1 and L_(Z,)
is the eigenspace corresponding to —1.

Proof. Since §;(—t) = 8_,(t) = 8,_5(t) for all s,t € Z,, it is clear that the
functions in (4.2) (respectively (4.3)) are even (respectively odd). The mutual
orthogonality of functions in (4.2) (respectively (4.3)) is obvious since their
supports are disjoint. On the other hand, any function in (4.2) is orthogonal
to any function in (4.3) since either their supports are disjoint, or they have
the same support, say {s, ¢}, and then (8; + &, §; — ;) = (8, &) — (8, 8;) = 0.
Finally, it is clear that n orthogonal functions constitute a basis of L(Z,). The
remaining statements are now clear; in particular, the last statement follows
from Lemma 4.1.1.(iii) or from Proposition 4.1.2.(ii). O

Lemma 4.1.6 Let f € L(Z,) be an eigenvector of F. Then either f is even and
its associated eigenvalue is 1 or —1, or f is odd and its associated eigenvalue
isior—i.

Proof. Let A denote the eigenvalue associated with f, that is, 7 f = A f. Then
F2f = A>f. We now express f in the basis in Proposition 4.1.5, that is,

v—1 n—v
f=ado+ ) a8 +8-)+ ) bl — 8ur)
j=1 k=1
with ag, a1, ...,a,—1,by, by, ..., b,_, € C. Then, by Proposition 4.1.2.(ii) we
have
v—1 n—v
Ff=aodo+ Y aj@+8,-)— > b8 — 8us)
j=1 k=1

so that the condition F2f = A2 f yields

v—1 n—v
aodo + ) aj(Bu-j+8)) = D bi(Sk — 8us)
j=1 k=1
v—1 n—v
=22apdo + Y W2a;(8;+ 8 )+ D Ahi(8 — 1) (4.5)
j=1 k=1

that is,

(A —1aj=0for j=0,1,...,v—1
A+ Dby =0fork=1,2...,n—v.
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It follows that if A = 4i thena; =0for j =1,2,...,v — 1, and therefore f
is odd, while if A = £1 then by =0fork = 1,2, ..., n — v, and therefore f is
even. O

Exercise 4.1.7 Let v = [n/2] + 1 as above. Let f € L(Z,).
Show that if f is even, then

1 2 2kmm
Ffm = —=fO) + —= Z fkycos

v — 1)cos =" if 1 is odd
{ff( : " (4.6)

ff(v — (=" if n is even

forallm e Z,,and F f = ]-'_lf.
Show that if f is odd, then

Ffom) = %l 3 k) sin 227
k=1

forallm € Z,,and F~'f = —FF.
Exercise 4.1.8 (cf. [55])
(1) Suppose that F € L(Z,) is even and define T € End(L(Z,,)) by setting
[T£1(x) = [f * F1(x) + V/n[ FF1(x)f (x)
for all f € L(Z,) and x € Z,. Show that
TF=FT.

(2) Deduce from (1) that the matrix

21 0 0 - 0 0 1
1 2cosZ 10 0 0 0
0 1  2cosZ 1 ... 0 0 0
0 0 0 0 -+ 1 2cos2=2x 1
10 0 0 - 0 1 2cos 2207

commutes with the matrix (2.22) of the Fourier transform.

4.2 The decomposition into eigenspaces

This section and the next one are among the most important sections of the
book. We achieve a complete spectral theory of the DFT on Z, by showing a
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decomposition into eigenspaces together with a careful computation of their
dimensions.
Let us now set

Wi ={Fg+g:8¢€Li(Zn)}
Wy ={Fg—g:g8€Li(Zn)}
Wi ={iFg—g:g€ L (Zy)
Wi={iFg+g:ge L (Zn).
Theorem 4.2.1 For the Fourier transform F the following holds:
o W, is the eigenspace corresponding to 1
o W, is the eigenspace corresponding to —1

o Wj is the eigenspace corresponding to i
o W, is the eigenspace corresponding to —i

so that
Li(Zy) =W &Wrand L_(Z,) = W3 ® Wy
and therefore
LZy)y =W, oW, oW, 0 W,
is the decomposition of L(Z,,) into the eigenspaces of F.

Proof. First of all, we show that each W;, j =1,2,3,4, is an eigenspace.
Indeed, if g € L} (Z,) then, by virtue of Lemma 4.1.1.(iii), F 2g = g, and there-
fore the functions f, = Fg+ g€ W, and [~ = Fg— g € W, satisfy:
Ffe=F(Fg£g)
=g+ Fg
=+(Fgtg)
==+fy.
Similarly, if g € L_(Z,) then, again by virtue of Lemma 4.1.1.(iii), F2g = —g,
so that the functions f; = iFg— g€ Wi and f_; = iFg+ g € Wy satisfy:
Ffei=FUFgF Q)
=—igF Fg
= Fi(iFgFg)
= *ify;.
For the converse, we use repeatedly Lemma 4.1.6. Thus, if 7 f = f, then f
is even and f = Fg+ g, with g = %f € Ly (Zy); it Ff = —f, then f is still
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evenand f = Fg— gwithg= —%f € Ly (Zy);if Ff =if, then f is odd and
f=iFg—gwithg= —%f € L_(Zy); finally, if Ff = —if, then f is odd and
f=iFg+gwithg=1f e L (Z).

Since F is unitary, L(Z,) can be expressed as the direct orthogonal sum of
its eigenspaces and the remaining statements are trivial. U

Exercise 4.2.2 Let W be a finite dimensional Hermitian spaceand 7: W — W
a unitary operator. Suppose that 7% = Iy,. Show that the eigenspaces of T2 may
be used to construct the eigenspaces of T as in Theorem 4.2.1.

Exercise 4.2.3 Let W be a finite dimensional Hermitian spaceand 7: W — W
a unitary operator. Suppose that 7" = Iy for some positive integer n and let w
be an n-th root of unity.

(1) Show that a vector w € W satisfies Tw = ww if and only if there exists
v € W such that

w=T""+oT 20+ -+ 'v.

(2) Suppose that n = hk with 1 < h,k < n and set S = T" (so that §* =
I). Show that w € W satisfies Tw = ww if and only if w = T" 1o +
wT"2p + - + " 'p for some v € W such that Sv = o'v.

We are now in a position to exhibit suitable bases for the spaces Wy, W,, W3,
and W, in Theorem 4.2.1. One of the main tools is the notion of a Chebyshév set:
we refer to the Appendix for the corresponding definition and related properties.
Moreover, we work separately on each of the spaces Wy, W,, W, and Wy, and
we summarize the results in Theorem 4.3.1. In particular, for each space we
consider four different cases, corresponding to the congruence modulo 4 of 7.

Theorem 4.2.4 Let n=4m+r, with r € {0,1,2,3}. Then the functions
uy, Ui, . . ., Uy € Wi defined by setting

ug = /n(Fdo + &),

n
uj = \/7_[?(8]4‘57])4‘81'4-8,]‘]

forj=1,2,...,m—1,and

tn = { L LF S + 8-20) + 8om +8_2m]  ifn="4m+1
%ﬁ[f(am+a_m)+5m + 8-l ifn=4m+2,4m+3

are linearly independent.
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Proof. We divide the proof into the four cases corresponding to the possible
values of r.

n = 4m. It suffices to show that the restrictions of ug, uy, ..., u, to the set
{m,m+1,...,2m} C Z, are linearly independent. Therefore, we consider the
(m + 1)-dimensional vectors:

zj = (ujm), uj(m+1), ..., u;(2m)) 4.7
for j=0,1,..., m. By virtue of Lemma 4.1.1.(v) we have:

e Uy = xo + /ndp and therefore zo = (1, 1, ..., 1);
o Uj = %(xj—l—x,j)—i— ‘/TE(Sjﬁ—B,j) and therefore, since %(Xj‘i_xfj)(m"i_

= 7 jom+k)
k) = cos S

Tm+1) T(m+k)
_—j,...,C08 ———
2m 2m

. cos(nj))

T,
z; = | cos EJ’ cos

forj=1,2,...,m—1;
o Uy = Xom + /N8 and, since xo,(m + k) = cos 7w (m + k) + isinz(m +
k)= (=1,
Z, = (=), (=)™ (=D 1+ ).

We conclude by using Proposition A.2.(ii) applied to the Chebyshév set
{1,cos@,...,cos(m— 1)} (cf. Proposition A.3) with # = %, for
k=0,1,.

n = 4m + 1. Following the previous case, we consider again the vectors (4.7):

ezo=(1,1,....1):
o since 2()(, + x—j)(m+ k) = cos 2’2(”’:1")],

2mm 2n(m+1) . 2n(m+ k) . dmm .
=(cos : cOS—————j,...,cos
Am+ 17 dm+ 1 dm+ 1 dm+ 1’

forj=1,2,....m—1;
o since (o + Xoam)(k + m) = cos LT

< Am’m dm(m+ D 4mQ2m — ) 8m’mw ﬁ)
={cos ..., COS

5 e ey

’

S
dm—+1 2

27 (m+k)
“Am+1

Sp = COSW fork=0,1,...,m—1,ands,, = cosfﬂj + ‘[ . Just note
that
dm(m + k)
4m+ 1

, COS v
dm+1 dm+1 dm+1

Thus we can conclude as in the previous case by taking # = and

m+k
dm+ 1

(m+ k)
dm 4+ 1

= cos |:(m + k) — 7r1| = (=1)"**cos
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and (Z‘rﬁ){’ <% for k=0,1,...,m so that the ss alternate in sign,

and, for k=m—1 one has (—=1)*"!'=—1 so that s,_; <0, while
_ 2mm f

Sm = €O8 5 + > 0.

n = 4m + 2. We proceed as in the previous cases, now appealing to Proposition
A.2.(1) and replacing (4.7) by

zj=wim+1),uj(m+2),...,u;2m+ 1)).

From the equality

1 2 (m+ k)j w(m+k)j
(v, . k) = LN TR O
2 Wt a=p)m ) dam+2 % oamtd
we get the (m + 1)-dimensional vectors

(m+Dm . (m+2m . (m+km . .

0s , COS cos ——, COSTT j
2m+1 2m+1 2m+1

for j =0,1,...,m. The Chebyshév set is again {1, cos#,...,cosmf} and

tkz”z(r’ﬂf),fork—l 2,...,m+1.

Zj:

)

27 (m+k) j

n=4m+ 3. Nowz(x,—i-x m+k) = cos ===

ing case,

2n(m+1) . 2n(m+2) . 2n(2m+1) |
Z; = J, cos ..., CO8 ————
4m+3 4m 43 dm+3

for j=0,1,...,m, and we may apply Proposition A.2.(i) with the same

Chebyshév set as in the previous case and f; Z’Z(”:fgk), for k=1,2,...,

m+ 1. O

so that, as in the preced-

Theorem 4.2.5 Let n = 4m + r, with r € {0, 1, 2, 3}. Consider the functions
00, V1, ..., Oy € Ws defined by
vg = /n(Fdy — &)

and

v = ?[]—"(8 j+8-) = (6 +8-))]

for j=1,2,...,m. Then the following holds:

o ifn = 4m,4m + 1, then the functions vy, v1, . .., 0,1 are linearly indepen-
dent;
o ifn=4m+2,4m + 3, then the functions vy, vy, ..., v, are linearly inde-

pendent.
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Proof. As for the proof of Theorem 4.2.4, we divide the proof into the four
cases corresponding to the possible values of r.

n = 4m. Arguing as in the cases n = 4m + 2 and n = 4m + 3 in the proof
of Theorem 4.2.4, and evaluating the functions at the points {m + k : k =
1,2, ..., m} we get the vectors

m(m+1) a(m+2) w(m+k) .
z; = | cos J, cos Jyeeey COS ——j,...,COSTT
2m 2m

for j=0,1,...,m—1, and we may apply Proposition A.2.(i) to the
Chebyshév set {I,cosé,...,cos(m — 1)0} with f; = ”('2”—;1’]‘), for k=1,
2, ...,m.

n = 4m 4 1. This is very similar to the previous case: now

2n(m+1) | 2r(m+2) . 2r(m+k) | dam
Zj= J, cos ..., COS—————j,...,COS J
dm+1 dm+1 dm+1 dm+1
for j=0,1,...,m—1, and we may apply Proposition A.2 to the same
Chebyshév set as above and #, = ngfnmﬁk), fork=1,2,...,m.

n = 4m + 2. This leads exactly to the same vectors as in case n = 4m + 2
of Theorem 4.2.4, evaluating the functions at the points {m+k:k =
1,2,...,m+1}.

n = 4m + 3. This leads exactly to the same vectors as in case n = 4m +
3 of Theorem 4.2.4, evaluating the functions at the points {m + k: k=
1,2,...,m+1}. O

Theorem 4.2.6 Let againn = 4m + r, withr € {0, 1, 2, 3}. Consider the func-
tions

w; = \/7%[1]:(8] —871') - (8j —871')] € W3

for j=1,2,..., m. Then the following holds:
o if n = 4m then the functions w, wa, ..., w,_1 are linearly independent;

e ifn=4m—+1,4m+ 2, 4m + 3 then the functions wy, wy, ..., w, are lin-
early independent.
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Proof. Here, we divide the proof into two cases.

n=4m.Fork > 1and j > 1, by virtue of Lemma 4.1.1.(v)

i . jim+k)
w;im+k) = E(X,j — xj)m+k) = sin —.
m
Therefore, if we restrict to the set {m+k:k=1,2,...,m — 1} we get the

(m — 1)-dimensional vectors

(, a(m+1) . . w(m+2) .
z;=sin J, sin J
m 2m

5 e ey

. w(m+k) . L m(2m—1) |
sin———j, ..., sin———
2m 2m
for j=1,2,...,m— 1, and we can apply Proposition A.2 to the Chebyshév
set {sin®, sin26, ..., sin(m — 1)0} (cf. Proposition A.3) with f, = ZZ4) for

k=1,2,...,m—1.

n=4m+r,r=1,2,3. Now we restrict to the set {m+k:k=1,2,...,m}
obtaining the m-dimensional vectors

L 2n(m+1) . . 2a(m+2) . C 2n(m—+k) . . 4dmm
z;=|sin , sin s ..., SIN———j, ..., sin Jj
dm+r dm+r dm—+r dm—+r
for j =1,2,...,m. Using the Chebyshév set {sin@, sin20, ..., sinm6} (cf.
Proposition A.3) with#, = %’ﬁk), fork =1, 2, ..., m, we conclude the proof.

O

Theorem 4.2.7 Let againn = 4m + r, withr € {0, 1, 2, 3}. Consider the func-
tions
N
Zj= 7
forj=1,2,...,.m—1,
n ViF Bom—1 — 8—amy1) + Sam—1 — 821 ifr=0

im = —5~

2 |iF@Sm—8-m)+8m— - ifr=1,2,3

[iF (S —8-)+8;—8_]

and, only forr =3,

n _,
Tl = % [iF (Bomt1 — 8—2m—1) + S2my1 — S—2m—1].

Then, all these functions belong to Wy (cf. Theorem 4.2.1) and the following
holds:

o ifr =0, 1,2 then the functions zi, 22, . . . , Zn, are linearly independent;
o if r = 3 then the functions z1, 22, . . . , Zm, Zm+1 are linearly independent.
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Proof. We divide the proof into three cases.

n = 4m. We restrict the functions to the set {m+k:k=0,1,...,m— 1}
obtaining the m-dimensional vectors

<. T, . wm+1). . mw(m+k) . . 7(2m—1) >
Zj= 51n5],sm—] sin ——j, ..., sin ——

2m B 2m 2m
for j=1,2,...,m—1and, since
T kQ2m — 1 T k
sin (m + k)(2m )=sin n(erk)_M
2m 2m
T k
— (_1)m+k+l sin ﬂ’
2m
with sinﬂ('z"f:k) > 0 (because 0 < ”('2"—m+k> < %), fork=0,1,...,m—1, and
2n(2m—1) = sin(z’"z% + ‘/TE > 0, we have
1
2 = (=1 sin = (— 1"+ gin =D
2 2m
k 2m — 1
(=1 sinﬂm—ﬂ,...,sinw—i—ﬁ .
2m 2m 2
By Proposition A.2.(ii) with the Chebyshév set {sin 6, sin 26, . . ., sin(m — 1)6}
with f = 240 for k = 0,1,...,m — 1 and s = (—1)"**+1 gin 80 for
k=0,1,...,m—2, and s,_; = sin % + */TE, this completes the first
case.

n=4m+ 1,4m + 2. These cases lead to the same vectors in the corresponding
cases in Theorem 4.2.6.

n = 4m + 3. We restrict the functions tothe set {m+k:k=1,2,... m+ 1}
obtaining the m-dimensional vectors

C2m(m+1) . . 2n(m+2) . C2n(2m+1) |
zj = | sin J, sin Jyonn,SiD ————MM—
4m+3 4m+3 4m+3

forj=1,2,...,m.

Since,
k)4 2 k
mn(m+ Yém + )=sin 7r(m+k)——n(m+ )
w(m+k)

— (_1)m+k+l sin
4m+3
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with sin Z249 > 0, fork = 1,2, ..., m, and
. 7@m+1)  J/n
a1 (2 1) = —_—+ — >0,
Zmr1(2m 4+ 1) = sin pr—— +2>
we conclude by using the Chebyshév set {sin6,sin26,...,sinmf} with
f = %jg‘), fork=1,2,...,m+1, and s = (—1)"tk+1 sin’fjﬂ—g‘), fork =
1,2,...,m,and s, = sin ”ﬁ;ﬁl) —i—%z. O

4.3 Applications: some classical results by Gauss and Schur

Theorem 4.3.1 (Schur) With the notation in Theorem 4.2.1, the multiplicities

of the eigenvalues of the DFT are given in Table 4.1 (recall, cf. Proposition
4.1.4, that mj = dimW,, for j = 1,2, 3, 4).

Table 4.1. The multiplicities of the

eigenvalues of the DFT.
n m myp ms3 my
4dm m+1 m m—1 m
dm+1 m+1 m m m
dm+2 m+1 m+1 m m
dm+3 m+1 m+1 m m+1

Proof. Consider first the case n = 4m. Then the following holds:

o Theorem 4.2.4 implies m; = dimW; > m + 1;
o Theorem 4.2.5 implies my = dimW, > m;
o Theorem 4.2.6 implies m3 = dimWs > m — 1;
o Theorem 4.2.7 implies my = dimW; > m.

Since m; + my + m3 + my = 4m, all the inequalities above are indeed equali-
ties.
The other cases can be handled similarly. O

Remark 4.3.2 In the previous theorems we have given the spectral analy-
sis of the matrix (2.22) of the DFT, namely of F, = \/Lﬁ(a)_jk)’}’;':o. Other
authors (for instance Auslander and Tolimieri [15] and Terras [159]) consider,
instead, the matrix \/Lﬁ (' );;;0 (the kth column is switched with the (n — k)th
column).
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Corollary 4.3.3 (Gauss, Schur) The trace of F is given by

1—i ifn=0 mod4

Te(F) 1 ifn=1 mod4
T =
ifn=2 mod4
—i ifn=3 mod 4

and its characteristic polynomial p(L) € C[\] is

A=1D2A+ DA+ DA = D4 ifn=0 mod 4

Gy 10 DA — 1)n=D/4 ifn=1 mod 4
PEO=0 02— 1ot — e ifn=2 mod 4
(A2 — DL+ DA — =D/ ifn=3 mod 4.
Corollary 4.3.4 (Gauss)
(1+i)/n ifn=0 mod4
i <2mk2> Jn ifn=1 mod4
— ~ o ifn=2 mod 4
i/n ifn=3 mod 4.
Proof.

n—1 k2
To(F) = Y (For, &) = Z —= 1) = Zexp( 2 ) 4.8)

k=0

where the second equality follows from Lemma 4.1.1.(v). The statement then
follows from Corollary 4.3.3 by conjugating both sides of (4.8). U

The case n = 2 mod 4 is trivial, as it is shown in the following exercise.

Exercise 4.3.5 Suppose n = 2 mod 4. Prove the identity

2mi n\2 27 ik?
exp T<k+§) = —exp .

and deduce the case n =2 mod 4 in Corollary 4.3.4.

4.4 Quadratic reciprocity and Gauss sums

This section is based on the monographs by Nathanson [118], Ireland and Rosen
[79], Apostol [13], Terras [159], Nagell [117], and the paper [15] by Auslander
and Tolimieri.
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Definition 4.4.1 Letn, m € Z with gcd(n, m) = 1. We say that m is a quadratic
residue mod n if the congruence

¥=m modn 4.9)

has a solution x in Z; otherwise, we say that m is a quadratic nonresidue mod n.

This section is devoted to the study of the solvability of (4.9). It culminates
with the celebrated Gauss law of quadratic reciprocity (Theorem 4.4.18).

Remark 4.4.2

(1) Itis clear that m = 1 + kn is a quadratic residue mod n for all n € Z \
{0} and k € Z. Indeed, the congruence (4.9) has solution x = 1.

(2) Let n,m € Z with gcd(n, m) = 1, so that m € U(Z/nZ) (cf. Lemma
1.5.1). Then m is a quadratic residue mod n if and only if m is a square
in U(Z/n7Z) (that is, there exists X € U(Z/nZ) such that X> = ).

(3) Let ny, ny, m € Z with ged(ny, m) = 1 and nj|ny, and suppose that m
is a quadratic residue mod n;. Set ¢ = np/n; € Z and suppose that x is
a solution of the congruence x> = m mod n,. Then there exists k € Z
such that x2 = myk +m = m (gk) + m. This shows, in particular, that m
is a quadratic residue mod 7.

Proposition 4.4.3 Let n, m € Z with gcd(n, m) = 1. Suppose that n = n\n,
with ged(ny, ny) = 1. Then m is a quadratic residue mod n if and only if it
is a quadratic residue mod n; fori =1, 2.

Proof. The “only if” part is obvious. Conversely, suppose that there exist
x; € Z such that m Exiz mod n;, i = 1,2. By the Chinese reminder theo-
rem I (Corollary 1.1.23), there exists x € Z such that x = x; mod n;, i = 1, 2.
Then, x> = x} = mmod n;, i = 1, 2, and ged(n, ny) = 1 implies x> = m mod

niny. |

Lemma 4.4.4 Let 1 < pu < 3 and suppose that m € 7 is odd. Then the follow-
ing conditions are equivalent:

(a) m is a quadratic residue mod 2*;
(b) m =1 mod 2*.

Proof. Suppose that m is a quadratic residue mod 2*. Then we can find x € Z
such that x> = m mod 2*. Note that x cannot be even (otherwise m itself would
be even, contradicting the assumptions). Thus there exists & € Z such that x =
2h + 1 and therefore m = x> = (2h + 1)> = 4h(h + 1) + 1 = 1 mod 2*, since
h(h + 1) € 27Z. This shows the implication (a) = (b).
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Conversely, suppose that m = 1 mod 2*. Thus we can find k € Z such
that m = 1 4+ 2*k and it follows from Remark 4.4.2.(1) that m = 1 4+ 2"k is
a quadratic residue mod 2. 0

The following two theorems reduce the problem to the case n is an odd prime.
To simplify notation, we denote by

In| =2pi' ph? - - Pl (4.10)

the prime factorization of |n| with the convention that if » is odd, then © = 0
and the factor 2# is, in fact, missing.

Theorem 4.4.5 Let p be an odd prime. Then m € Z is a quadratic residue mod
p-1
pifandonlyifm= = 1mod p.

Proof. The multiplicative group F} is cyclic of order p — 1 (cf. Theorem
1.1.21). Thus, we can find 1 <y < p — 1 such that y generates I. For x € Z
(respectively m € Z) such that p f x (respectively p{ m) we choose 1 < s =
s(x) < p— 1 (respectively 1 <t =t(m) < p— 1) such that

¥ = X (resp. y' = m), equivalently, y* = x (resp. y = m) mod p.

Then, m € Z (with gcd(m, p) = 1) is a quadratic residue mod p if and only
if the equation x2 = mmod phas a solution x € Z and, with the above notation,
this holds if and only if the equation y** = ¥', which in turn is equivalent to the
congruence 2s =t mod p — 1, has a solution s (with 1 < s < p — 1). But this
is the case if and only if ¢ is even (just take s = ¢/2). Now

- 1 P— P— —
tiseven < tpT =0modp—-1 & (m)T] = @)’T] =1,
where the last equality follows from y having order p — 1. O

Theorem 4.4.6 Let n, m € Z with gcd(n, m) = 1. Let (4.10) be the prime fac-
torization of |n|. Then, m is a quadratic residue mod n if and only if the following
conditions are satisfied:

@) m#zl mod pjfor j=1,2,...,k
(i1) and, (only) if n is even,
em=1 mod2*ifu=1,2;
em=1 mod8ifu>3.

Proof. Tt follows from Proposition 4.4.3 that (4.9) has a solution (that is,
m is a quadratic residue mod ) if and only if all the equations x> = m
mod p';’ forallj=1,2,..., kand, (only)if nis even, X2

solution.

=m mod 2*,havea
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Claim 1. m € Z is a quadratic residue mod 2" if and only if

em=1 mod2*ifu=1,2;
em=1 mod8ifu>3.

If 1 < u < 3, the claim is equivalent to Lemma 4.4.4.

Suppose that o > 3 and that m is a quadratic residue mod 2*. Then, it follows
from Remark 4.4.2.(3) with n; = 8 and n, = 2* that m is a quadratic residue
mod 8. From Lemma 4.4.4 we deduce that m = 1 mod 8.

For the converse, suppose that m = 1 mod 8. We show, by inductionont > 3,
that the congruence x2 = mmod 2 has a solution in Z. For ¢ = 3, the statement
follows from Lemma 4.4.4. Suppose now that for t > 3 there exists x € Z such
that x> = m mod 2 and let us show that there exists y € Z such that y> = m
mod 2/*!. Let ¢ € Z be such that

¥ —m=q2 4.11)

and observe that if g is even then we are done: just take y = x. Therefore, we
suppose that g is odd. Set y = x + 2/~!. Then we have

yz_m:(x+21—l)2_m
=x2 _m+2tx+22t72
(by (4.11)) =2/(g+x)+ 21273

=0 mod 2!,

where the last equality follows from the fact that g 4 x is even because x is
odd (since m is odd). This completes the proof of the claim.

Claim 2. Let p be an odd prime and . > 1. Then m € Z is a quadratic residue
mod p" if and only if m is a quadratic residue mod p.

As in the previous claim, the “only if ” part is obvious.

Conversely, we again proceed by induction. The basis is trivial. Suppose that
x> =m mod p' with r > 1 and let us show that we can find y € Z such that

y> =m mod p'*!. By the inductive hypothesis, we can find ¢ € Z such that

¥ —m=qp (4.12)
and observe that if g is a multiple of p, then we are done: just take y = x. There-
fore we suppose that p { g. By our assumption we also have p t x and there-
fore, since p is odd, gcd(2x, p) = 1. By virtue of Bézout identity, we can find
a, b € Z such that ap + 2bx = —gq, equivalently,

q+ 2bx = —ap. (4.13)
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Sety = x + p'b. Then we have
Y —m=@+pb?’—m
=x* —m+ 2bxp' + p*b*
(by (4.12)) = p'(q +2bx) + p*'p'7'p?
(by 4.13)) = p'(p'0* —a)
=0 mod p'!
This completes the proof of the claim.

The statement then follows from Theorem 4.4.5. OJ

From now on, p is a fixed odd prime and we study quadratic residues mod p.

Definition 4.4.7 The Legendre symbol (E) is defined by setting
p

1 if ged(n, p) = 1 and n is a quadratic residue mod p

n
(;) =1 —1 ifgcd(n, p) =1 and n is a quadratic nonresidue mod p
0 ifpln

for every n € Z.
We now collect some basic properties of the Legendre symbol.
Proposition 4.4.8

. ny .
(i) The map n+— | — | is constant on the congruence classes mod p, and

therefore it may be seen as a function defined on IF ,;

p-1

(i) nz = <E> mod p foralln € Z;

n
(ii1) (m_) = < ><E> forallm,n € Z;
p p

. 1 ifp=1 mod 4
= 1 2 =
) > SN —1 ifp=—-1 mod 4.

Proof. (i) This follows immediately from the definition of the Legendre

symbol.
(i1) If p|n thisis trivial; otherwise, from the fact that the multiplicative group
IF’; has order p — 1, we have n”~! =1 mod p (cf. Fermat’s little theo-

rem [Exercise 1.1.22]), which implies

(in_]_l).(n,':;l+1):np71—1EO mod p,
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that is, npz;] = +1 mod p. By Theorem 4.4.5, n% =1 mod pifand
only if n is a quadratic residue mod p and therefore n'T = —1 mod p
if and only if » is a quadratic nonresidue. In both cases, the statement
follows from the definition of the Legendre symbol.

(iii) Again, this is obvious if p|n or if p|m, so that we may assume p 1 n and
p 1 m (and therefore p { nm). By (ii) we have

(7)

(nm)pr] mod p

p—1  p-1

n2zmz? modp

()(5) mer

Since p is odd, 1% —1 mod p and we deduce that <ﬂ) =
p

()G

(iv) This follows from (ii), after taking n = —1 therein. O

Corollary 4.4.9 Let Q C Z (respectively P C 7Z) denote the set of quadratic
residues (respectively nonresidues) mod p and denote by Q (respectively P) its
imageinF,. ThenP-PC Q=Q -QandP-Q = P (respectivelyP - P = Q =
0-0QandP-Q = P). Moreover,

— - p—-1

10l = |P| = > (4.14)
Proof. The inclusions Q- Q,P-P C Q, and P- Q C P follow immediately
from Proposition 4.4.8.(iii). Since 1 € Q, the equalities Q- Q = Qand P - Q =
P follow. Projecting onto I, we have P.PCQ0=Q-QandP-Q=P.In
order to show the equality P-P = Q and determine the cardinalities of Q
and P, let us fix an element 7 € P. We first observe that, since Q,PCZ\
PZ,

o[[P=TF; (4.15)
Since multiplication by 7 yields a bijection of F*, from (4.15) we deduce that
nQ | [nP =TF;

so that, since 7Q C P and P C Q, we necessarily have that the above inclu-
sions are indeed equalities. In particular, P - P = Q and (4.14) holds. O
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Exercise 4.4.10

(1) Deduce Corollary 4.4.9 from the proof of Theorem 4.4.5.
(2) Deduce Proposition 4.4.8.(iii) from Corollary 4.4.9 (which has been
proved independently in (1)).

Definition 4.4.11 A finite subset S C Z of cardinality |S| = ”T_l is called a

Gaussian set modulo p if, for all n € Z with gcd(n, p) = 1, there exist ¢, € S
and ¢, € {1, —1} such that

n=egyt, mod p. (4.16)
Exercise 4.4.12

(1) Show that if S is a Gaussian set, then r % =5 mod p for all distinct
r,seSs.

(2) Show that the sets S = {1,2, ..., pr1} and S, ={2,4,...,p— 1} are
Gaussian sets modulo p.

Lemma 4.4.13 (Gauss’ lemma) Let S be a Gaussian set modulo p.
Then, for every n € Z with gcd(n, p) = 1 we have

<%) = Hgns = (_l)k»

ses

where k = |{s € S : g5 = —1}|.

Proof. First of all, we show that for all s, r € §
Iy =ty < S=T

Indeed, if t,;, = t,,, then

nr = gty mod p

= gty mod p
= te,5tys mod p
=+4ns mod p

that, after simplifying, yields r = s mod p. By virtue of Exercise 4.4.12.(1),
we deduce that r = s. In other words, the map s > t,, is a permutation of S so
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that

[Ts-TTew=TTo-Ten

ses ses seS ses
= l_[ ths€ns
seS
(by (4.16)) = l_[sn mod p
seS
(since |S| = ”771) =n'T Hs mod p
seS
(by Proposition 4.4.8.(ii)) = <E> l_[s mod p.
p

seS

Simplifying by [ [,y 5, and taking into account that both [ ] _, &, and <ﬁ> are

ses

equal to either 1 or —1 (and these are different mod p), the lemma follows. []

Corollary 4.4.14

(2)_( DE 1 ifp=+1 mod38
) -1 ifp£+1 modSs.

Proof. Take S ={1,2, ..., 1%1} and n = 2. Then, by Gauss’ lemma, we have

2
<— = (—1)¥, where k is the number of s € S such that &,, = —1. For every

s € S, we clearly have 2 < 25 < p — 1. Since
p—1
2§2s§T:>2seS:>52S:1

while, setting t = p — 2s,

1 —1
%§2s§p—1:>1§p—2s§pT=>t€S

=2s=p—t=—t mod p= gy =—1,
we deduce that k is equal to the number of s € S such that

p+1 p—1
<< 4.17
4 == (4.17)
Now if, on the one hand, p = £1 mod 8, then we can find & € Z such that
p = 8h=£ 1 and (4.17) becomes

2h+1:l:1< < 4h 1:I:1
4T3 =°= 272
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2
so that, in both cases, k = 2hand (= ) = (—=1)*" = 1.

p
If, on the other hand, p = 43 mod 8, then we can find & € Z such that p =
8h £ 3 and (4.17) becomes

2h+1j:3< <4h lj:3
47T
2
so that k = 2h +£ 1 and, in both cases, <—> = (=1 = 1. O
p

Now, following the monograph by Nathanson [118], we study the Legendre
symbol as a character of the multiplicative group . We recall (cf. Section 2.2)

that for n, k € Z \ pZ we have defined x,(k) = exp (2”'"’<>
For all n € Z we set

p—1
k
tpm =) (E) K (k). (4.18)

k=1
n
Note that setting £,(n) = (—) for all n € Z then, in the notation in Section
P

~ k
2.4, we have t(p, n) = £,(—n). Clearly, (—) is a multiplicative character (cf.
Proposition 4.4.8.(iii)), while x,, is an additive character. Note also that
p—1 k
Z =) =o. (4.19)
=1 \P

Indeed, the left hand side in (4.19) may be seen as the scalar product of the
nontrivial multiplicative character £, with the trivial multiplicative character,
so that we may use Proposition 2.3.5 (for multiplicative characters of [F)).

Theorem 4.4.15 (Gauss) Let n € Z. Then the following holds:

Q) t(p.n) = f; 7(p, 1).
(ii) If ged(n, p) =1 then

2,
(pon) = Zexp(th )

in particular,

p—1 )
2mih
t(p, 1) = E exp( » >

h=0
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(i)

p ifp=1 mod4 12
tp, D= */_ : =i P
iy/p ifp=3 mod4

Proof. We first recall that x,(k) = x;(nk). Assume gcd(n, p) =1 so that
<E) =Zland,forl <k<p-—1,
p

O-OO-0 e

where the last equality follows from Proposition 4.4.8.(iii). Then

p—1 k
(p,n) = Z (;)xn(lo

n

(by (4.20)) = <
p

“

~
-G

It is easy to check, by means of (4.19), that if p|n then 7(p, n) = 0, and this
ends the proof of (i).

(ii) Let P (respectively Q) be as in Corollary 4.4.9 and set P = PN
{1,2,...,p— 1} (respectively Q' = 0N {1,2,...,p—1}).

Let ke Q' and he{1,2,..., p— 1} such that > =k mod p. Then also
(p—h)? =h*=kmod p and p — h % h mod p. Therefore

pX_l: ( >Xn(k)

1
1

)
)£ (5
)i

S|

| 3

p(=D)

IS

)r(p, 1).

p—1

Do’y =2 xi(nk) 4.21)

h=1 ke
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and

p—1 k
tp.n)=Y_ (;)xl(nk)

k=1

=00k = xik)

keQ’ keP'

p—1
=142) xi(nk) = x(nk)
keQ' k=0

p—1

(by (421) and (2.5)) =1+ Y xi(nh?)
h=1

p! <2n inh? )
= Z exp .
h=0

p

(iii) This follows from (ii) and Corollary 4.3.4. Moreover, it is immediate to
check that

1 4 =

12 1 ifp=1 mod4
i ifp=3 mod4.

O
Definition 4.4.16 Given m, n € Z, n # 0, we define the Gauss sum G(m, n) by

setting

n—1

2 imk?
G(m,n) = E exp( T )
n
k=0

(see also Definition 7.4.1 for Gauss sums over finite fields).

Observe that by virtue of Theorem 4.4.15.(ii), if gcd(p, n) = 1 then
t(p,n) = G(n, p) (4.22)

and that Corollary 4.3.4 may be reformulated in the form
(I1+ia/n ifn=0 mod4

Jn ifn=1 mod 4
G(1,n) = (4.23)
0 ifn=2 mod4
in ifn=3 mod 4.
Proposition 4.4.17 Let m,r,s € Z, r, s # 0, and suppose that gcd(r, s) = 1.

Then
G(mr, s)G(ms, r) = G(m, sr).
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Proof.

s—1 . —1 )
2 2 2 2
G(mr, s)G(ms, r) = } :exp < JTLIMro ) ) Zexp ( 7T imsu )
§ r

=0 u=0
s—1 r—1
) r202+s2u2
=E E exp | 2mrim———
sr
=0 u=0

s—1 r—1

. . _(ro + su)?
uosr\ __ _ NT e
(since exp (2mim#) = 1) = E E exp <2mm - )

v=0 u=0

sr—1 me
(by Lemma 1.1.16) = Zexp <2m’—>
= sr

= G(m, sr). O

We are now in a position to prove the main result of this section.

Theorem 4.4.18 (Gauss law of quadratic reciprocity) Let p,q be distinct

odd primes. Then
(E) (2) —(—)T T,
q) \p

Proof. By virtue of Theorem 4.4.15 we have

q q\ .e-v?
,q) =\ — D =1=)i =
©(p, q) (p)r(p ) (p)l Jr

and, exchanging p and ¢,

p D\ .q-1*
, == ,D=1- 7 .
t(q, p) (q)f(q ) <q>l «/5

Moreover, from Proposition 4.4.17 (with r = g, s = p, and m = 1) and (4.22)
we deduce that

©(p, @)t (g, p) = G(q, p)G(p, q)
= G, pg)

(pg=1
4 NPg-

(by (4.23)) =i

Then the equality

(E) (€>iW+W@= e

q/ \P
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yields the quadratic reciprocity law because
1
7[Pa =1 = (=1 —(@—17]

1
= 1 [-2 - g - D+’ - D@ - 1)

and
4m+3Y=@m+1’=1 modd4 = p>—1=¢"—1=0 mod 4,
so that
P
while

. Z2p=Dg-1) p=1 g-1
1 4 =

Exercise 4.4.19 From Theorem 4.4.18 deduce that

(1) if p=1 mod 4 org=1 mod 4 then p is a quadratic residue mod ¢
if and only if ¢ is a quadratic residue mod p;

(2) if p=¢g =3 mod 4 then p is a quadratic residue mod ¢ if and only if
q is a quadratic nonresidue mod p.

For instance, using the congruences

179=59=3 mod4, 179=2 mod 59, and 59=3 mod 8,

5)--5)--6)-

where the last equality follows from Corollary 4.4.14.

we get

Exercise 4.4.20 Deduce the following identities from Proposition 4.4.8 and
Theorem 4.4.15: if gcd(n, p) = 1 and p is an odd prime, then

—l p—1
T(p,n)* = (—)p= (=17 p;
p

if g is another distinct odd prime

p—

t(p, )t = (—1)FE (S) mod g.

Another, more elementary proof of the Gauss law of quadratic reciprocity
will be sketched in Exercise 6.5.7: it avoids Corollary 4.3.4 and, therefore, all
the machinery on the spectral analysis of the DFT.
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The Fast Fourier Transform

The Fast Fourier Transform (for brevity, FFT) is a numerical algorithm for the
computation of the Discrete Fourier Transform. It is one of the most important
algorithms, because it applies to an extremely wide class of numerical prob-
lems. It was discovered by Gauss who applied it to astronomical computations.
It was rediscovered several times, and the most celebrated paper devoted to
it is the seminal one by Cooley and Tukey [41] (one then often refers to this
algorithm as the Cooley-Tukey algorithm).

However, as indicated in [15], this algorithm also has interesting theoretical
interpretations. We will discuss this approach in Section 12.5.

In the present chapter, following the books by Tolimieri, An, and Lu [160]
and by Van Loan [163], as well as the papers [50, 130, 168], we present a matrix
theoretic approach to the FFT. Actually, [130] will constitute our main source,
[50] is a fundamental inspiration for our treatment of stride permutations, and
[160] has given us the general framework and the treatment of Rader’s algo-
rithm. Recent developments can be found in [46].

Before embarking on the formalism of Kronecker products and shuffle per-
mutations, following the exposition in [150], we present the simplest example
of the FFT.

5.1 A preliminary example

As in Section 2.2, set w, = exp % (note that we have added the subscript n

to w). Then, the (unnormalized) Discrete Fourier Transform of f € L(Z,,) (cf.
Definition 2.4.1) is given by

n—1

~n 1
Flam= =3 fw,*". (5.1)
k=0

129


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.006
https://www.cambridge.org/core

130 The Fast Fourier Transform

~n

We have used the symbol ~ " to emphasize the fact that we are computing the
DFT of a function f € L(Z,). Then the computation of the Fourier coefficients
of f requires:

« n — 2 multiplications to compute the numbers »?, 2, ..., ®""! (note that
in (5.1) these numbers may occur with repetitions and do all appear in the
expression of some of these coefficients);

¢ each coefficient fn(m) requires n multiplications (to compute f(k)w, oy
n — 1 sums, plus a final multiplication by }1

Therefore, to compute all Fourier coefficients, one needs (at most)
n=24+nn+m—D+1)=2+n—-2<2n4+n=0u* (2

elementary operations. We denote by in the minimum number of operations that
are needed to compute all the Fourier coefficients of any function in L(Z,,).

Remark 5.1.1 Note that in the definition of in, the minimum is over all pos-
sible algorithms: we are not necessarily using the expression of the Fourier
coefficients provided by their definition (i.e. by (5.1)).

We begin with a preliminary lemma.
Lemma 5.1.2
#(2n) < 2tn + 8n.

Proof. As above, we may compute the numbers a)2n, k=0,1, ,2n — 1, with
2n — 2 multiplications. Note also that

2 _ 2541 — s
wy, = w, and Wy = wy,w). (5.3)

Then, for f € L(Z,,) , we define fy, fi € L(Z,) by setting
Jo(k) = f(2k)
fHik) = f(2k+1)
forallk=0,1,...,n—1.Then

2n—1

77 m) = Z Fw™

(by (5.3)) =

n—1 n_1
|:] D folrwy™ + ~ Zfl(S)w"” —S’”:| G4

r=0 s=0

va— N =

= [F "o+ w5 f " om)].
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As an application of this formula, in order to compute the coefficients of f we
need (at most):

o 2fn operations to compute the coefficients of both fy and fj,
e 2n — 2 operations to compute the numbers w’z‘n, k=0,1,....,2n—1,
e 6n operations (4n multiplications and 2n additions),

so that
f(2n) < 2tn+ 8n — 2 < 2fin + 8n. 0

Theorem 5.1.3 Let n =2". Then the Fourier coefficients of a function
f € L(Z,) may be computed with at most 2M2p = 4p log, n = O(nlogn)
operations.

Proof. We proceed by induction on A. If 2 = 1 then n = 2 and the Fourier coef-
ficients are

~ 1

7o) = 5 LO) + (1)

~ 1

7= 5 O+ (=Df).

These computations require 5 < 8 = 2!*2 . 1 operations. Assume the statement
for n = 2", so that #in < 2"*2h. By Lemma 5.1.2, for 2n = 2"+! we have

2(2n) < 2ftn + 8n
<202"2h) 48 . 2"
— 2h+3 (l’l + 1) 0
As the above result shows, a factorization of n yields an improvement on the

computation of the DFT. We will explore this after the introduction of a couple
of basic theoretical tools.

5.2 Stride permutations

Let n, m be two positive integers. By means of the Euclidean algorithm, any
integer 0 < i < nm — 1 may be (uniquely) represented in the following forms:

i=sm+r 0<s<n-—-1, 0<r<m-—1 5.5)

i=fm+5 0<§<n—1, 0<F<m—1 (5.6)

The expressions (5.5) and (5.6) are called the (m, n)-representation and the
(n, m)-representation of i, respectively.
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Definition 5.2.1 The stride (or shuffle) permutation is the bijection
om,n): {0,1,...,nm—1} - {0, 1,...,nm — 1}
defined by setting
om,n)i=oc(mn)(sm+r)y=rn+s
for every 0 < i < nm — 1 represented in the form (5.5).

We now present an alternative description of o (m, n). Divide the ordered
sequence (0, 1,2, ..., nm — 1) into n consecutive blocks (see Table 5.1), that
is,

(O,1,...,nm—1)2(80,61,...,8,1,1)

where By=(0,1,....,m—1), Bi=mm+1,...,2m—1),...,B,=
(sm,sm+1,....,sm+r,....,s+1)m—1),..., and B, =((n— m,
(mn—Dm+1,...,nm—1). Then

(oc(m,n)0,c(m,n)l,...,oc(m,n)(nm—1)) = (Cy,Ci,...,Cu_1)

where the blocks Cy, Cy, ..., C,_ are the ordered sequences defined by setting
Cs=(s,s+n,....,s+rn,....,s+(m—n)foralls=0,1,...,n— 1.

Table 5.1. The action of the stride permutation o (m, n): in the first array, the
rows are the blocks Bs, while, in the second array, the rows are the blocks Cs.

0 1 oo om—1 0 n (m—1)n
m m—+1 - 2m—1 om.n) 1 n+1 --- (m—1Dn+1
n—1m m—1m+1 .-+ nm—1 n—1 2n—1 --- mn—1

For instance,

03,20 =00(3,2)1 =2 0(3,2)2 =4
0(3,23=10(3,2)4=30(3,2)5=5.

Clearly, o (m, 1) and o (1, n) are the identity permutation and
o(m,n)"" = o(n, m). 5.7

Let now m, n, k be positive integers. Then for any integer 0 < i < mnk —
1 two applications of the Euclidean algorithm yield firstly i = tmn + s, with
0<t<k—1and0O <s; <mn-—1,andthens; =sm+r,withO <s<n-—1
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and 0 < r < m — 1, so that we may write
i=tmn+sm+r. (5.8)

We refer to (5.8) as to the (m, n, k)-representation of i. Moreover the positive
integers z, s, r (or, to emphasize their ordering, the triple (¢, s, 7)) are called the
coefficients of this representation.

Lemma 5.2.2 Let 0 < i < mnk — 1 with (m, n, k)-representation as in (5.8).
Then

()
o(mn, k)i = smk+ rk +1,

that is, the o (mn, k)-image of i is the number whose coefficients in the
(k, m, n)-representation are (s, r, t); we then write (symbolically):

o (mn,k)

[(m, n, k); (t,s,r)] = [(k,m, n); (s, r, 1)];
(ii)
o(m,nk)i = rnk +tn+s,

that is, the o (m, nk)-image of i is the number whose coefficients in the
(n, k, m)-representation are (r, t, s) and we again write (symbolically):

[(m, n, k): (2, 5, 7] 8™ [0, ke m): (1, 5)].
Proof. We have

o(mn, k)(tmn + sm+r) = o (mn, k)[tmn + (sm + r)]
(by Definition 5.2.1) = (sm+r)k+1¢
=smk +rk+1

and this gives (i); moreover

o(m, nk)(tmn + sm + r) = o (m, nk)[(tn + s)m + r)]
(by Definition 5.2.1) = rnk +tn+s

and (ii) follows as well. O

Theorem 5.2.3 (Basic product identities) Ler m, n, k be positive integers.
Then

o (mk, n)o (mn, k) = o (m, nk) 5.9

o (n, mk)o (m, nk) = o (mn, k). (5.10)
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Proof. By two applications of Lemma 5.2.2.(i) we get

a(mn k) zr(km n)

[(n, n, k); (¢, 5,71)] [(k, m,n); (s, 1, 1)] [(n, k,m); (1,1, 5)]

which coincides with o (m, kn) by Lemma 5.2.2.(ii). This proves (5.9).
By two applications of Lemma 5.2.2.(ii) we get

a(m)

[(n, k, m); (1, ¢, 5)] [(k,m, n); (s, 1, 1)]

a(m nk)

[(m, n, k); (s, 7)]
which coincides with o (mn, k) by Lemma 5.2.2.(i). This proves (5.10). ]

Definition 5.2.4 Let m, n, k be positive integers. We define the partial stride
permutations t(m, n, k) and t(m, n, k) by setting

t(m,n, k)i = skm~+tm+r
and

t(m,n,k)i=tmn+rn+s
for all i = tmn + sm + r as in (5.8).

Note that in the definition of «(m, n, k) we have skm + tm + r = (sk + t)m +
r, that is, in i = tmn 4+ sm + r = (tn + s)m + r we replace tn + s by sk 4.
Moreover, we have the following (symbolic) representation

[(m. n, ): s, ) ™5 [m, ko) (5., ).
Analogously, in the definition of 7 (m, n, k) we have sm + r replaced by rn +
s, and the corresponding (symbolic) representation is:

r(m n,k)

[(m, n, k); (t,s, r)] [(n,m, k); (¢, r,9)].

Theorem 5.2.5 (Product identities for partial strides) We have

1(n, m, k)T (m, n, k) = o (m, nk) (5.11)
and
t(m, k, n)(m, n, k) = o (mn, k). (5.12)
Proof. We have
[0m, n, k); (2,5, 01 7 [ m, ) (2, 015 [, ko m); (1, 9)]

which coincides with o (m, nk), proving (5.11). Similarly,

[m. n, k): (¢, 5. 1)1 5% [m, k) (s, 0] T2 [k, ) (s, 7, )]

which coincides with o (mn, k), proving (5.12). O
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Theorem 5.2.6 (Mixed products identities)

t(k, m, n)o (mn, k) = t(m, n, k) (5.13)
t(n, k, m)o(m, nk) = t(m, n, k) (5.14)
o (mk, n)t(m,n, k) = t(m, n, k) (5.15)

o(n, mk)t(m,n, k) = t(m, n, k).
Proof. The proofs are easy and left as exercises. U
Corollary 5.2.7 (Similarity identity)
o(mn, k)t(m, n, k)o (k, mn) = «(k, m, n).
Proof. Starting by using (5.14) we have

o(mn, k)t(m, n, k)o (k, mn) = o (mn, k)t(n, k, m)o (m, nk)o (k, mn)
(by (5.15) and (5.10)) = t(n, k, m)o (mk, n)
(by (5.13)) = u(k, m, n). O

Exercise 5.2.8 Give a direct proof of the similarity identity.

Notation 5.2.9 From now on, given integers 0 <k <n and a map
f:{0,1,...,n—1} = {0,1,...,n— 1}, we write “f(k) =j mod n” to
indicate that, if j ¢ {0, 1,...,n — 1}, then the value f(k) equals the unique

element j/ € {0,1,...,n— 1} such that j/ = j mod n. In other words, we
regard {0, 1,...,n — 1}, the domain and codomain of f, as the additive
group Z,,.
Definition 5.2.10 Let 0 < k <m — 1 and suppose that gcd(k, m) = 1. Then
the elementary congruence permutation y (m, k) of {0, 1, ..., m — 1}is defined
by setting

y(m,k)j =kj mod m

forall j =0,1,...,m— 1 (recall Lemma 1.5.1).

Let also 0 < h < m — 1 and suppose that gcd(k, m) = 1. Then the prod-
uct congruence permutation y (m, k; n, h) of {0, 1, ..., nm — 1} is defined by
setting

y(m, k;n, h)i=sm+7r

for every i = sm + r as in (5.5) and s’ = hs mod n and ¥’ = kr mod m.
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The proof of the following proposition is trivial.
Proposition 5.2.11 Let 0 < h,k <m — 1.

(1) If gcd(h, m) = ged(k, m) = 1 then y (m, k)y (m, h) = y (m, hk mod m)
=y (m, h)y (m, k);

(i) if ged(k,m) =1 then y(m, k)" = y(m, k*), where k* denotes the
inverse of k mod m. a

Definition 5.2.12 Suppose that gcd(n, m) = 1. We define one more permuta-
tion of {0, 1, ...mn — 1}, denoted B(m, n), by setting

B(m, n)i =sm+r (5.16)

for all i = sm + r as in (5.5), where s; = s — m*r mod n (here m* denotes the
inverse of m mod n).

Note that B(m, n) defined above is indeed a permutation: for, with the nota-
tion as in Definition 5.2.12,if0 < so <n — 1and0 < ry < m — 1, we have that
B(m, n)i = som + ry if and only if 51 = sg and » = ry, so that also s = m*r + 59
mod 7.

Definition 5.2.13 Suppose that gcd(m, n) = 1, ged(k, m) = 1, and ged(h, n) =
1. Let n* be the inverse of n mod m. Then the composite bijection permutation
w(m, k;n, h)of {0, 1, ..., nm — 1} is defined by setting

w(m, k;n, h)i = hsm + kn*nr  mod nm
for all i = sm + r as in (5.5).

Theorem 5.2.14 In the notation of Definition 5.2.13, w(m, k; n, h) is indeed a
permutation and

B(m, n)y (m, k; n, h) = 7 (m, k; n, h). (5.17)
Moreover, its inverse is given by the map
jsm+r 0<j<nm-—1,

where, denoting by k* (respectively h*) the inverse of k (respectively h) mod m
(respectively mod n),
s =h*m*j mod n
(5.18)
r=k*j mod m.
Proof. 1t suffices to prove (5.17), since its left hand side is a permutation. We
claim that if 0 < n* <m — 1isthe inverse of n mod mand 0 < m* <n—11is
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the inverse of m mod n, then
mm* +nn* =1 mod nm. (5.19)

Indeed, recalling that gcd(m, n) = 1, by virtue of Bézout identity (1.2), there
exist a, b € Z such that an 4+ bm = 1. Clearly, this last identity implies that a
(respectively b) is the inverse of n (respectively m) mod m (respectively mod n).
Ifa=am+a,withO <ay <m—1,andb = n+ by, withO < by <n—1,
then

ain+bm+ (o + Bynm =1

and we can take n* = a; and m* = b, proving the claim.
Now suppose 0 < s <n—1and 0 <r <m — 1. Then

B(m, n)y (m, k;n, h)(sm+r) = Bm, n)(sm~+r)=sym+7r,
where (cf. Definition 5.2.10 and Definition 5.2.12)

kr=am+7r and0<r <m-—1
hs=bn+s and0<s <n—1,

for suitable a, b € Z, and

S —m*r =cn+s;and 0 <s; <n-—1,
for a suitable ¢ € Z, and m* as in (5.19). It follows that

s1 =8 —m*Y —cn = hs — bn — m*kr + am*m — cn.
Therefore
sim+ ¥ = hsm — bnm — m*mkr + am*m* — cnm + kr — am
= hsm + (1 — m*m)kr — am(1 — m*m) mod nm
(by (5.19)) = hsm + nn*kr mod nm,

proving (5.17).
Finally, we prove the last assertion. Suppose that 0 < j <nm — 1 and
w(m, k; n, h)(sm + r) = j. Then

Jj = hsm+ kn*nr mod nm.
Multiplying by k*, we get
k*j = k*hsm + k*kn*nr = r mod m,
while, multiplying by i*m*, we get
Wm*j = sh*hm*m + h*'m*knn*r = s mod n,

showing that conditions (5.18) are satisfied. O
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Remark 5.2.15 Two special cases of 7 (m, k; n, h) are worth mentioning.
For k = 1 and h = m*, we define the Chinese remainder mapping c(m, n) =
w(m, 1; n, m*). We have

c(m, n)(ms + r) = mm*s +nn*r mod nm.

Note that (cf. (5.18)), j = mm™*s 4 nn*r is a solution of the system
j=s modn
j=r modm

(this explains the name of the map c(m, n), cf. Corollary 1.1.23).

For k = n and h = 1 we define the Ruritanian map r(m, n) = w(m, n; n, 1).
We have

r(m,n)(ms +r) = sm+ n*n*r mod nm
=sm+nr mod nm

since nn* = 1 mod m implies that

n*n* =n mod nm. (5.20)

Theorem 5.2.16 (Permutational Reverse Radix Identity) If gcd(m,n) =
ged(k, m) = ged(h, n) = 1, then

7w (m, k; n, h)y (m, n; n,m*) = w(n, h; m, k)o (m, n),
where, as usual, m* denotes the inverse of m mod n.
Proof. For0 < s <n—1and 0 < r < m — 1, by applying the definitions of y
and 7, and setting

ss=sm* modn and ¢ =rn mod m, (5.21)

we have
w(m, k;n, h)y(m, n; n,m*)(ms +r) = w(m, k; n, h)(s'm +7')
= hs'm + knn*r  mod nm
(by (5.21)) = hsm*m + kn*n*r mod nm
(by (5.20)) = hsm*m + knr mod nm.
On the other hand, applying the definition of o (m, n), we get

w(n, h;m, k)o(m,n)(ms +r) =m(n, h;m, k)(rn +s)

= krn + hsmm™ mod nm. O

The Permutational Reverse Radix Identity in the cases discussed in Remark
5.2.15 may be expressed as follows.
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Proposition 5.2.17
c(m,n) = c(n,m)c(m,n) and r(m,n) = r(n, m)o(m,n).
Proof. ForO0 <s<n—1and0 <r <m— 1 we have
c(n,m)o(m,n)(ms +r) = c(n,m)(rn + s)

= rnn* +mm*s mod nm
= c(m,n)(ms +r)

(note that c(n, m) = m(n, 1; m, n*)) and

r(n, m)o (m, n)(ms + r) = r(n, m)(rn + )
=rn+sm mod nm

=r(m,n)(ms + r)

(and now r(n, m) = 7w (n, m; m, 1)). O

5.3 Permutation matrices and Kronecker products

We begin with some elementary but useful remarks on the product of matrices.

Let A = (a; ;) 1<i<n be an n x m matrix with complex coefficients.
I<j<m
Note that often we will actually use {0,1,...,n— 1} (respectively

{0,1,...,m—1}) in place of {1,2,...,n} (respectively {1,2,...,m}) as
index sets.
We denote by A,; its j-th column and by A its i-th row, that is,

Cll’j
Clz’j
A*j = : and Ai* = [ai,l’ ain, ", ai,m]
an’j
forj=1,2,...,mandi=1,2,...,n This way, we may decompose A as
Al*
AZ*
A= [A*IA*Z te 'A*m] = .

An*

Let B = (b;t)1<j<m be an m x h matrix. Then the product AB may be written
1<k<h
in the following two forms. The first is:

AB = [(AB);1(AB)s2 - - - (AB)s]
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where, fork=1,2, ..., h,

(AB)uc = Y Ayjbji = A(Bu). (5.22)

j=1

In other words, the k-th column of AB is the linear combination of the columns

of A with coefficients by x, ba, . .., by i (the k-th column of B). The second
one is:

(AB)I*

(AB)Z*

AB = .

(AB)ys

where, fori=1,2,...,n,
(AB);, = Za,, iBjx = AiB. (5.23)

j=1

That is, the i-th row of AB is the linear combinations of the rows of B with

coefficients a; 1, a; 2, - . . , @i (the i-th row of A).
With a permutation 7 of {1, 2, ..., n} we associate the n x n permutation
matrix
Prr = (Sn(i),j)zjzl' (524)

That is, the (i, j)-coefficient of P, is equal to 1 if j = 7 (i), and O otherwise. In
other words, the i-th row of P, is

where the unique 1 is in the 7 (i)-th position (column). Noting that
Sn(i.j = Six1(j)» (5.25)

we can also conclude that the j-th column of Py is

0

(Pn)*j =

—_—

0

where the unique 1 is in the 7 ~!(j)-th position (row).
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Lemma 5.3.1 (Product rules)
(1) Let m, o be permutations of {1, 2, ...,n}. Then
P.P, =P,.
Moreover,

(Prr)71 = lg-1 = (Pﬂ)T-

141

(5.26)

(ii) Let A (respectively B) be an m x n (respectively n x m) matrix. Then

APy =[AuAx - Al P = [A*U*I(I)A*N*I(Z) = 'A*rl(n)] ,

while
B B (1)«
By, B (2)«
Pr[B = Pn = .
By Bn(n)*

Proof.

(i) The (i, j)-coefficient of the product P, P, is:
n n
Y Srwabowr = ) S kdro1)
k=1 k=1

0 otherwise

0 otherwise

B {1 if j = o ()

= 8o (m(i).J-
Moreover, (5.26) follows from (5.25).

(ii) Taking into account (5.22) we have, for j =1,2,...,n,

(APr)yj =Y Aubrto.j
k=1

n
= ZA*kSk,rr‘(j)
k=1
= A*T{’l(j)’

Similarly, by (5.23), fori = 1,2, ..., n we have

n

(PrB)ix = Z 85(i) kBix = Br(iyx-

k=1

{1 it (i) = o~ 1(j)
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Corollary 5.3.2 Let A = (a,-,j)l'.” =1 be an n x n-matrix. Then
PrAP] = (an(yn()} j=1-

In other words, multiplication on the left by P, is equivalent to a permutation of
the rows (in the i-th position we find the 7 ~! (i)-th row). Multiplication on the
right by P, is equivalent to a permutation of the columns (in the j-th position we
find the 7 (j)-th column). Note also that if we set O, = P; then 0,0y = Orys.

Definition 5.3.3 Let A = (a; j); ;,_; and B = (b; ;);";,_, be an n x n matrix and
an m X m matrix, respectively. Then the Kronecker product of A and B is the
nm X nm matrix A ® B given in block form by

a B aipB -+ a1,B

(12,13 az’zB az_,,B
A®B=

an,lB a,,ygB a,,,,,B

This notion will be used in Section 8.7 and Section 10.5.

Example 5.3.4 Denote by , the n x n identity matrix. Then

B
B
I, ®B = . (5.27)
B
and
al,llm al,ZIm al,nlm
a2,11m a2,21m T a2,nlm
AQL, =
an,llm an,ZIm e an,nlm
In particular,
L@, =L (5.28)

Note that, in general, A ® B is different from B ® A (but we will show that they
are similar).

Proposition 5.3.5 The Kronecker product satisfies the following properties.
(i) Bilinearity:

(a1A1 + 00A2) ® B =a1(A; @ B) + ax(A2 @ B)
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and
AQ (B1B1 + B2B2) = Bi(AQ B) + (A ® By);
(i1) associativity:
A®B)Q®E=AQ(BRE);
(iii) product rule:
(A®B)(C® D)= (AC) ® (BD);
@iv)
ARB=(AQ®L)U,®B)= (I, ® A)B® I,,);
(v) ifboth A, B are invertible then A ® B is invertible and
A®B)' =AT'®B";
(vi)
A®B) =A" @B,

foralln x nmatrices A, A1, Ay, C; m X mmatrices B, By, By, D; h x h
matrices E; and oy, az, By, B2 € C.

Proof. (i) and (ii) are easy exercises left to the reader.

(iii) If C = (¢; ;)] ;_, then (A ® B)(C ® D) equals
a B aipB -+ arB\ fc1iaD c12D -+ cinD
612,13 az.zB cee az.nB C2,]D CZ’ZB cee CzﬁnD
an,lB an,ZB e an,nB Cn,lD Cn,ZD e Cn,nD

(2?21 au%l) BD (2321 al,jcﬂ) BD - (Z'}zl al,,-c_,-,,l) BD

(Z?zl ag,jcﬂ) BD (Zj‘:l azhl'Cj.z) BD ... (Z?zl azijj’,,) BD
(27:1 an,jchl) BD (Z;:l a,,,jchg) BD ... (Z?:l an_jCj’n) BD

and this is exactly (AC) ® (BD).

(iv) and (v) are easy consequences of (iii). Finally, (vi) is an easy exercise. [

We now adopt the notation in [130]. We set

P = Poonn (5.29)
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that is, P;" is the permutation matrix associated with the stride permutation
o (m, n) (see Definition 5.2.1). Note that, by (5.26) and (5.7), we have

The following important result connects stride permutations and Kronecker
products.

Proposition 5.3.6 (Similarity of tensor products by stride permutations)
Let A = (a; )7L, and B = (b; ;)" Then

PL(A® B)P!' = BRA.

Proof. Denote by (A ® B);» (0 <,i,i < nm — 1) the (i, i')-coefficient of A ®
B. Then, in the notation of (5.5) and (5.6), the matrix A ® B may be expressed as
follows: ifi =sm+randi = sm+r,withO <r, ¥ <m-—1and0 <s,s§ <
n — 1, then

(A & B)i,i’ - a.v,x’br,r’- (531)

Moreover, if j = rn + sand j/ = r'n + s, with, as above, 0 < r, ¥ < m — 1 and
0<s,5 <n-—1,then

(B ®A)j,j’ = br,r’ax,s’ (532)
and

j=o(m,nij =o(mn)i
i=o(m,m)ji =0 mj.

(5.33)
Therefore, taking into account Corollary 5.3.2 and (5.7), we have
[Ph(A® B)RT]J»,]-, = (A ® B)o(n,m)j,o(n,m)}'

(by (5.33)) = (A®B)iv

(by (5.31)) = ayybyy

(by (5.32)) =(B®A); ;. 0

We now examine the partial stride permutations introduced in Definition
5.2.4: we keep the same notation.
Proposition 5.3.7 We have
Prinniy = Ik ® B’

and

Pt(m,n,k) = P]:l ® Im~
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Proof. Note that
(P,:n)i,i’ = 80(m,n)i,i’ = 5r,ﬂ5s,s’ (534)

fi=sm+randi =rn+s,withO<s,§ <n—1land0<rr <m-—1.
Therefore, if i =tmn+sm+r, with0<r<k—1,0<s<n-—1,and 0 <
r<m-—l,andi/ =¢mn+rn+s,with0 <t <k—-1,0<¢¥ <m-—1,and
0 < s < n— 1, then (cf. Definition 5.2.4)

tmnk)i=i t=t,s=s,r=7r
so that

(Pr(m,n,k))i,i’ = 8r(m,n,k)i,i’ = 8t,t’5r,r’5s,.v’~ (535)

Similarly, by virtue of (5.31) (with n replaced by k and m replaced by nm), we
have
(Ik ® P,rln)i,i’ = 8t,t’ (P;n)sm—t-r,r’n—t-s’

5.36
(by (5.34)) = 8,18,,:8, . (5.36)

Comparing (5.35) and (5.36), we deduce the first identity.
Now suppose thati’ = s'km +t'm+ ' with0 <t <k—1,0<r <m—1,
and 0 < s < n — 1, while i is as above. Then (cf. Definition 5.2.4)

imnk)i=i ot==t,s=s,r=r
so that

(Pt(m,n,k))i,i’ = 81(m.n,k)i.i/ - (St,t’af,s’sr,r’» (537)

while, writing i, i’ in the forms i’ = (sk +)m + ¥ and i = (tn + s)m + r, we
have

(PI? ® Im)i,i’ = (P/?)tn+s,s’k+z’8r,r’
= 8o (n k) en-ts), sk S (5.38)
= 83,3’8r,r’8t,t’ 5

where the first equality follows from (5.31). Comparing (5.37) and (5.38) we
deduce the second identity. U

By means of Lemma 5.3.1.(1) and of Proposition 5.3.7, all the identities in
Theorem 5.2.3, Theorem 5.2.5, Theorem 5.2.6, and Corollary 5.2.7 may be
translated into identities for permutation matrices. We list then in the following
proposition.
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Proposition 5.3.8 Basic product identities:

mn pmk __ pm
Pk Pn _Pnk

e - (5.39)
Pl = B

Product identities for partial strides:

(U ® PP ® 1) = Pl
P ® L), ® P = P

Mixed product identities:

P, @ P =Pl @1,

PL(PL®L) =L ® P

(P ® L)P = I ® Py’

(Ik®P;:1)P,’,llk =P]:l®lm
Similarity identity:

Pt @ PP = P ® I.

Proof. The proof is immediate and is left to the reader. We just note that, using
the matrix formalism, the second identity follows from the first one by means of
an application of (5.30). The same observation holds true for the other group

of identities. Note also that the similarity identity is just a particular case of
Proposition 5.3.6. O

With the notation in Definition 5.2.10 we set
Bt =P, (5.40)
Proposition 5.3.9
Py(m,k;n,h) = BZ ® Bﬁr
Proof. First note that, forO < r,r¥' <m—1,

« 1 if¥ =kr modm
(Bm)r,r’ = ay(m,k)r,r’ = . 541
0 otherwise.
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Therefore, fori=ms+rand i/ =ms' + 7, with 0 <s,5 <n—1,and 0 <
r, ¥ < m — 1, by virtue of (5.31) we have

(Bi ® Bl,)iv = (Bh)s.¢(By)r.r
1 ifsy=hs modn andr¥ =kr mod m

0 otherwise

(by (5.41)) = {

= 8y (m.kin, )i,

= (Py(m.isn,h))ii - 0

Note also that, if ged(k, m) = gcd(h, m) = 1, from Proposition 5.2.11 we
get:

B B" = B = B! B

m-m m-m

and
B =B =B, (5.42)

where, as usual, k*k =1 mod m.

In order to describe the matrix formulations corresponding to B(m, n) in
(5.16), we introduce a few more definitions and notation. The elementary cir-
culant permutation matrix of order n is the matrix

00 .- 01
1 0 .- 00
o1 --- 00
C, = ;
00 .--- 100
00 .--- 010

(cf. Exercise 2.4.16). In other words, denoting by ¢ = ¢, the permutation of
{0, 1,...,n — 1} defined by setting (i) =i — 1 mod n, then

(Cij =08, 0<i,j<n—1,
equivalently (cf. (5.24)),
C,=P. (5.43)

Clearly, C* = P, and therefore

" 1 ifi—k=j modn
(C)ij = ) (5.44)
0 otherwise.
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We also define the m-th block diagonal power of an n x n matrix W, as the
mn x mn matrix D,,(W) defined by setting

WO
Wl
D,,(W) = w? (5.45)

wm— 1

where WO =1, and W = WW ! fori = 1,2, ..., m — 1. Note that, for j =
rm+sand j ' =rn+s,withO <r,ry <m—1and0 <s,s <n— 1, wehave

[Dm(W)]]]’ = 3r,r’ : (Wr)s,s" (546)
In what follows, for0 < k <n — 1, we set
Q. (k) = P)'D,u(Cy)Py. (5.47)
Then, with the notation in Definition 5.2.12 we have
Proposition 5.3.10
Pﬂ(m,n) = QZ(m*)
Proof. Leti =sm+randi’ =sm+r,with0 <s,s <n—1land0 <r,r <
m — 1. Then, setting j = o (m,n)i =rn+ s and j/ = o(m,n)i’ = rn+ s, by
virtue of Corollary 5.3.2 and (5.7), we have
[P Du(Cy PR = D C ey (mmyi
= [Du(C )]} 5
(by (5.46)) = 8, (C)' sy

1 if¥ =rands =s—m*r modn
(by (5.44)) = )
0 otherwise

(by (5.16)) = 8pmmyi.i- [

Finally, we define the permutation matrix corresponding to the composite
bijection permutation by setting, with the same notation as in Definition 5.2.13,

B, (1, k) = Prmkinh- (5.48)
Therefore, for 0 < i, < mn — 1 with i = sm + r as in (5.5), we have

o 1 if i/ = hsm 4+ knn*r mod nm
[E(h b))y = i
0 otherwise.
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By means of Lemma 5.3.1.(i) we immediately get the matrix version of Theo-
rem 5.2.14 and Theorem 5.2.16.

Theorem 5.3.11 Suppose gcd(n, m) = ged(k, m) = ged(h,n) =1, mm* =1
mod n and nn* = 1 mod m. Then we have:

(1) Matrix Factorization of Composite Bijection Permutations
g2 (h, k) = (B! @ BY) 07, (m™). (5.49)
(i) Reverse Radix Identity
(Bl ® B},) El (h, k) = PI'EN(k, h).
Denote by
Cr. = Py (= B, (m*, 1)) and R}, = Pronny (= 80 (1,n))  (5.50)
the permutation matrices associated with the Chinese remainder mapping and
with the Ruritanian map (cf. Remark 5.2.15), respectively. Then from Proposi-
tion 5.2.17 we deduce the following symmetry relations.
Proposition 5.3.12
Ch=P'C' and R, =P'R).
We need a generalization of (5.49).

Letn, m, h, k, £ be positive integers such that gcd(n, h) = ged(m, k) = 1. We
set

g2 (h, k, ) = (B! ® BY) Q%(0). (5.51)
Therefore, by (5.49), if gcd(n, m) = 1 then we have
B (h, k) = &), (h, k, m"), (5.52)

where mm* =1 mod n.

Before embarking on the study of the matrix formulation of the FFT, we
show how to apply the machinery of stride and partial stride permutations to
get some useful factorizations of tensor products.
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Proposition 5.3.13 For k, m, n positive integers and A an n X n matrix we
have:

L ® A® Ly = Piy (i @ AP
and
L®A®L, = I @ P Y1y ® A)Ir @ Py)
(recall, cf. Proposition 5.3.7, that Iy @ P = Py ni))-
Proof. First observe that [, ® A is a kn x kn matrix, so that

Pl @ A L)P, = Pk ® A) ® 1P,
(by Proposition 5.3.6) =1, @ (I ® A)
(by Proposition 5.3.5.(ii) and (5.28)) = Lz ® A.
Recalling that (P")~! = P (cf. (5.30)) we get the first identity by conjugating
with P, Similarly,
L @P)I ®A® L)k ® P') = (I ® Py ® (A® 1,)](x ® P")
(by Proposition 5.3.5.(iii)) = Ik ® [P, (A ® I,,)P)']

- Ik ® Im ® A
= Ikm ® A7
and the second identity follows as well. 0
We now introduce some further notation. Suppose thatny, ny, .. ., n; are pos-
itive integers, h > 3, and A; is an n; x n; matrix, for j =1, 2, ..., h. Set

k] =1 and kj=n1n2-~-nj_1 forj=2,3,...,h;
mj=nj+1nj+2-~~nhf0rj=1,2,...h—1, and mh=1

and, for j=1,2,...,A,

Xj =Im ®Inz ®"'Inj—l ®AJ®I’1 ®®Inh =1kj ®Aj®1m.f’

j+1
Y, = Ik,-mj ®A;.
Finally, we set

Q./ = Pf(m,+1»nj+1,1<j+|)T("jsm,,k,)

i . (5.53)
= (I, ® Py (L., ® i1,

where the second equality follows from Proposition 5.3.7 and Lemma 5.3.1.(i).
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Theorem 5.3.14 With the above notation, the following factorization identities
hold.

(i) Fundamental factorization:
AlQ®A® - ®A, =X Xy Xp.
(ii) Parallel tensor product factorization I:

Al®A Q- @Ay = Pl VPE Yo PE™ - PIIMSY, P,

Np—1

(iii) Parallel tensor product factorization II:
AI®RA® - @A =P Y101Y20) -+ Op-2Y-10n-1Y-

Proof. The first identity is just an iterated form of Proposition 5.3.5.(i1)—(iv).
For the second identity, first observe that Proposition 5.3.13 yields

_ pmi oy pkini . _
Xj =P, YiPu  j=12,.... h
Moreover, since kjy = kjnjand m; = njyymjqq,

plmipmie - phin o pmis o pRiaimin
Mj ks RIS K st

where the last equality follows from (5.39) in Proposition 5.3.8. Therefore,

XXX, = P,TY]P"] pm Y2Pk2n2 . YjP;I:,jjan?HI Y Y,

m~ kany my 1M1 J+1

_ pm komy . Kjt 1141 . pReeamy kp
= PIUY,PY, - P Yjg1--- Py, Py,

nj+1

Finally, from Proposition 5.3.13 we also deduce
X; = I, ® P\ ) Uiym; @ AUk, @ Pri)

which, by virtue of (5.53), immediately implies the last equality in the
statement. (]

5.4 The matrix form of the FFT
This is the central section of the present chapter. It is devoted to the matrix form
of several algorithms that reduce the matrix of the DFT to a tensor product of
smaller matrices, when the size of the DFT is factorizable.
Let w € C be an arbitrary n-th root of 1, that is, " = 1. Following [130], we
define the n x n matrix A, (w) by setting

Ay(@) = (@)1 (5.54)
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Clearly, A, (w) is symmetric. In the notation of Exercise 2.4.16.(4), we have

1 2xi
—A, (e )=F,.
NG ( )

Note also that if w is a primitive n-th root of 1, then A, (w)~! exists and
o
Ap(w)™ = —Ay(@).
n

The proof is similar to that one of Lemma 2.2.3. In general, if " =1 and
" # 1for0 <h <r—1, for some r > 1 (note that » necessarily divides n),
then rkA,(w) = r.

Recall that C,, denotes the elementary circulant matrix (see (5.43)) and D, ()
is the n-th diagonal power matrix (see (5.45)).

Proposition 5.4.1 (Eigenidentities) Let n be a positive integer, k > 0, and w
an n-th root of 1. Then we have

Ap(@)CE = D,y (0")A (@) and CEA (@) = Ay(@)Dy(w ™).

Proof. From (5.43) we get, for0 <i,j<n—1,

n—1

[An(@)Cilij =Y "8y,
h=0

n—1
§ ih

= w 6hq£7k(j)
h=0

= D

— U+

— wkei
= [D,(0")A(0)]; ),

proving the first equality.
The second equality follows from the first one, by transposing: observe that

' =@ =P =C*
so that we must replace k with —k. 0
We also need the following transformation formula.
Proposition 5.4.2 Suppose that gcd(h, n) = 1 and h*h = 1 mod n. Then

A()B" = A, (") and B'A,(0) = A, (o").
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Proof. For 0 < i, j <n— 1 we have

[An(@)BLi.; =+ [An(@)i ) niy1
(by Proposition 5.2.11.(i1)) = [A,(@)]in*;
— ol
= [A, (")) ;

where =, follows from Lemma 5.3.1.(ii) and (5.40). This proves the first equal-
ity. The proof of the second one is similar and left to the reader. U

Using the notation in (5.45), we define the diagonal matrix of twiddle factors
by setting

T, (@) = Dy(Dy(w)),

where now w is an nm-th root of 1.
Note that, by virtue of (5.46), forO <r,/¥ <m—1and0<s,5 <n-—1,
we have

(T (@)t rnts = 8 [Du(@D)]s 5 = 8085, 50" (5.55)
Proposition 5.4.3 With the above notation we have
P ()P, =T ().
Moreover, for integers k and h,
TH )T (") = T ™).
Proof. By virtue of Corollary 5.3.2 we have

[P,:VLT,;; (a))PIZ]vaLr,S’mer’ = [Tn’; (w)]a(n1,n)(sm+r),a(m,n)(s’err’)
= [Ty:: (w)]rn+s,r’n+s’
(by (555)) = 8nr’8s,s’wm
(again by (5.55)) = [T, (&) )smtr.smtr -
The second identity is trivial. U
Proposition 5.4.4 (Tensor form of the eigenidentities) For n,m positive
integers, w an nm-th root of 1, and an integer k, we have

Dm(Cllj)[Im ®Ap(@)] = [In ® An(a)m)]Trg(wikm)
[Im ®An(a)m)] Dm(Cﬁ) — T,:,‘(a)k’”)[lm ®An(wm)].
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Proof. We only prove the first identity: the proof of the second one is similar
and left to the reader.

Dy (CHIL, ® An(w™)]
I, An(0™)
ck An(0™)
C}];(m_l) An (a)m)

Ay (™)
CrA (0™)

CHm=DA, (")
and, by Proposition 5.4.1, this equals

Ap(w™)
An(@™)Dy (™)

An(@™)D, (@m0 =D)

Ap(0™)
An (wl‘ﬂ)

Ap(™)

1,
Dn (w—km)

Dn(a)fkm(mfl))
= [y ® Ay (@™ (@™"),
where the last identity follows from the definition of 7, and the identity

D,(@*"") = Dy~ M), O

We are now in position to prove the basic tensor product form of the FFT and
to derive all its consequences.

Theorem 5.4.5 (General Radix Identity) Let n,m > 1 be two positive inte-
gers and w an nm-th root of 1. Then

Aun(@)P,, = [Ay(@") @ L] T, ()T, & Ap(w)]. (5.56)
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Proof. Let i=sm+r, i =sm+7v, j=am+ B, and j/ = o'm+ B/, with
0<s,5,a,0/ <n—1 and 0<r,r,B,8 <m—1. Then, on the one
hand,

nm—1

{[An(@™) ® LT (@) ® An(@ir = Y [An(@™) & Inli jIT; ()]
J.=0

: [In ® Am(wn)]j’,i’

n—1 m—1

D7 1A@sabrp
a,a'=0 B,8'=0
Su.wdpp 0P S y[Am(@]p
[A(@™)]s.0 @ TA (@],
(by (554)) — wmss'-}—s’r-&-nrr/'

(by (5.31) and (5.55))

(@=d' =sandr=8=4")

On the other hand, by Lemma 5.3.1.(ii), (5.7), and (5.29),

[Anm(a))P:q]i,i’ = [Anm(w)]i,a(m,n)i/

= [Aun (a))]sm+r,r’n+s’

— w(sm+r)(r’n+s’)

I /
(wnm — 1) — wmss +s'r+nrr . |:|

We now show how, multiplying on the left and on the right the left hand
side of the General Radix Identity (5.56) by suitable permutations, changes the
diagonal matrix of twiddle factors in the right hand side (of (5.56)).

Theorem 5.4.6 (Twiddle Identity) With the notation of Theorem 5.4.5, for
arbitrary ki, ky € Z we have:

0" (k) A (@) [P Q2 (k)T
= [Ay(0™) ® LT (@' "R, @ A, (w™)].

Proof. First of all, note that (C*)" = C,* (compare with (5.26) and (5.43))
and therefore, from (5.45) and (5.47) it follows that

() (k)" = Q) (—k2).
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Therefore, taking into account Theorem 5.4.5,
Ol (k) A ()P O (k)]" = O (k1) [Aw(@™) ® LT, ()
I ® An("MP)' Q) (—k2)P,,
(by (5:47)) = P'D(C; )P [An(@™) ® L]
Ty ® Ap(@")1D4(C,)
(by Proposition 5.3.6) = P"D,,(C)[1,, ® A,(w™)]P"
T (@)l ® An(@)]ID,(C,)
(by Proposition 5.4.4) = P'[I,, ® A,,(wm)]Z;f(wfk‘m)P,’,’lTnm(w)
T (@™l ® Ap(o")]
(by Propositions 5.3.6 and 5.4.3) = [A,(0™) ® I, ]T" (' F1mkm).
1 ® Ap(™)]. O
Corollary 5.4.7 With the notation of (5.51) and supposing gcd(k;, m) =
ged(h;, n) =1, fori =1, 2, we have
E” (hy, k1, £0)Aum(@)[PME™ (ka, ha, €2)]"
= [A,(@"™) @ BYIT" (@' "B @ Ap(@")], (5.57)
where hyhs =1 mod n.
Proof. This follows immediately from Proposition 5.3.5.(iii), Theorem 5.4.6,
(5.51) and Proposition 5.4.2. Just note that, if k,k5 = 1 mod m,
[Py &) (ko B, £2)]" = [P)(B2 @ By) 2 (£2)]
(by Proposition 5.3.6) = {(B" ® B)[P"Q™(¢)]}"
=. [P0 () (B) ® B,

where, in =, we used the equality [BZ2 ® Bﬁj]T = BZ; ® Bﬁ%, which follows
from Proposition 5.3.5.(vi) and (5.42). O

Remark 5.4.8 Note that Theorem 5.4.5 and Theorem 5.4.6 are particular cases
of Corollary 5.4.7. Indeed, for h; = k; = 1,i = 1, 2, Corollary 5.4.7 reduces to
Theorem 5.4.6, by virtue of (5.51). If, in addition, £; = £, = 0, then it reduces
to Theorem 5.4.5.

Until now, we have determined algorithms for tensor product factorizations
of the matrix Ay(w), where N = mn is an arbitrary factorization. In what fol-
lows, we examine the case when ged(m, n) = 1.
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Theorem 5.4.9 (Twiddle Free Identity) Suppose that gcd(m,n) = 1. Then,
with the notation and hypotheses of Corollary 5.4.7, we have

E" (hy, kDA (@)[PME™ (Ko, ho)]T = Au(0™2™) @ A, (0®h™).

Proof. In (5.57) choose ¢; = m* and £, = n* (where, as usual, mm* =1
mod n and nn* = 1 mod m) and recall (5.52). Then, by (5.19), we have

l1—4im—ton=1—mm* —nn* =0 mod nm

so that the twiddle factor disappears and, by Proposition 5.3.5.(iii) and Propo-
sition 5.4.2, the right hand side in (5.57) becomes

[A(@"™) ® BYIIBYE ® An(@')] = Ay (@""") @ A, (47),
(|

A special case of Theorem 5.4.9, where only elementary circulant matrices
and stride permutations are used, is of particular interest.

Corollary 5.4.10 Suppose gcd(m, n) = 1 and let w be an nm-th root of 1. Then
O (M)A (@) [P} O (n*)]" = Ap(@™) @ Ap().

Proof. Set hy =hy =k =k, =1 in Theorem 5.4.9, and recall Theorem
5.3.11.¢0). O

Theorem 5.4.11 (Generalized Winograd’s Method) With the same notation
and assumption of Theorem 5.4.9, we have

B2 (h1, kDA (@) EL (ha, k)] = Ay (@) ®@ Ap(0™),
where « = hih,m mod n and B = kikon* mod m.

Proof. Using the Reverse Radix Identity (Theorem 5.3.11.(ii)), the identity in
Theorem 5.4.9 becomes

E" (hy, kDA () E" (2, ka)]” (B ® B") = A("™) @ A, (1521

Multiplying both sides on the right by (B” ® B™ )~! = B" ® B" and taking
into account Proposition 5.4.2, the statement follows. O

From the generalized Winograd’s method we deduce the following four par-
ticular cases.

Corollary 5.4.12 (Winograd’s Method [168]) Suppose hihym =1 mod n
and £10,n =1 mod m. Then

(1, L) A (@) E), (ha, Lan)]" = Ay(0™) ® Ap(@").
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Proof. Just note that now k; = €in, k, = {>n, and £,£,n = 1 mod m, which
imply that k kyn* = €,£,n°n* = 1 mod m. O

Corollary 5.4.13 (Good’s Method [66]) With the notation in (5.50) we have
C,’,ZLAnm(w)[R:;]T = An(wm) ® Am(a)n)-

Proof. Justseth; = m*, k; = 1, h, = 1, and k; = n in Theorem 5.4.11, so that
a=mm*=1 modnand 8 =nn* =1 mod m. O

Corollary 5.4.14 (Similarity Identity) Suppose that gcd(k, m) =
ged(h,n) = 1. Then

E" (h, K)Aum(@)[EL (B, )]T = Ay(@™™) ® Ap(0P™)

m

where o = h*m mod n and B = k*n* mod m.
Proof. Justset hy = h, = hand k; = k, = k in Theorem 5.4.11. [l
A special case of Corollary 5.4.14:
Corollary 5.4.15 (Winograd’s Similarity)
CrAm(@)C]T = Ay (@™) ® Ap(@™).

m

Proof. Set h = m* and k = 1 in Corollary 5.4.14. O

For instance, forn = 4, m = 3, and @ = /%, we have m* = 3, n* = 1, and

CiAn(@)[C3]" = As(0”) ® As().

‘We end this section with a brief description of the matrix form of the so-called
Rader-Winograd algorithm. It was developed in [125]; see also [14] and, for
the computational aspects, [15, 160, 163]. We consider first the case n = p, a
prime number. By Theorem 1.1.21, I} is cyclic of order p — 1. Letar € ) be a
generator and define the permutation &, of {0, 1, ..., p — 1} by setting §,(0) =
0and §,(k) = "' mod p, fork =1,2,...,p—1.Then Q, = Q,(a) = P;,
denotes the corresponding permutation matrix, as in (5.24). If @ is a nontrivial
p-th root of 1, then, by Corollary 5.3.2,

QpAp(CU)Q[T, — (wép(i)ép(j))f;zlo ,
that is,

1
QpAp(@)Q) = | . , (5.58)

Cp
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where
i\ P2
G = (o), Ly

p-1 Y )ii=o
is called the core matrix. Note that C,_; is a symmetric (p— 1) x (p— 1)
matrix, its (i, j)-entry only depends on the sum i + j mod p — 1 (i.e., itis a
Hankel matrix: each ascending (from left to right) skew-diagonal is constant,
see Example 5.4.16) and its first row is (0, ®*, @®, -+, ®* ). The Rader
algorithm consists in the use of (5.58) to compute the DFT on Z,,. Explicitly,
forY = (yo, y1, -+, yp_1)” weset X = (xo, x1, ..., x,-1)" = Q,Y so that

Ap(@)Y = Q) [QpAp ()] X ] (5.39)
and we have
[0p4p(@)0)X], = XiZg
[QpAp(a))QZX]j =x0+ Y0 o xy forj=1,2,...,p— L.

In some papers, matrix (5.58) is replaced by

Qp(a)Ap(w)Qp(_a)T =
© D,
1
. -\ P2 —1
with D, = (w"‘ ) - Then, [Q,(@)A,(@)Q,(—a) X], = Y47} % and, for

i, j=

j=12....p—1,

p—1 .
[Qp(@)A)@)Qy(~e)X], = x0+ .

k=1

which has a convolutional form.

Example 5.4.16 (Winograd) For p = 7 and o = 3 we get
11 1 1 1 1 1
1 o & o o o o
1 o o o o & o
0:3)47()2:3) =1 @* o® o* & o o
1 o o & o o o
1 o & o o o o
1 & o o o o o

Exercise 5.4.17 Fill in the details in Example 5.4.16.
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Forn = ph, with p prime and & > 2, Winograd developed a variation of the
Rader algorithm. We describe it only for the case p > 3. Recall that U(Z/p"7Z)
is a cyclic group of order (p — 1)p"~! = p" — p"~! (see Theorem 1.5.8). Then
we deduce the following decomposition

h
z/p'Z =0 [ [ [r"u@/v'z). (5.60)
j=1

Indeed, for j = 1,2, ..., hwehave thatx € Z/ pf Z is not invertible if and only
if it is divisible by p, so that we have

Z/p'Z = p(Z/p' D) | [Uz/p'Z).

By iterating this relation we get (5.60). Fix a generator «; of U(Z/ P'7), for
Jj=1,2,..., h.Using (5.60), we define a permutation & of {0, 1, ..., ph — 1}
by setting &,:(0) = 0 and

Epk) =i P mod p

for p7' <k<p/—1and j=1,2,...,h In other words, &, maps the
set {p/~!, p/~1 +1,..., p/ — 1} bijectively onto p"JU(Z/p'Z) for all j =
1,2, ..., h. We then set

The matrix form of Winograd’s generalization of the Rader algorithm is
obtained as in (5.59) by applying

QpA ()0,

with w a p"-th root of 1. The above matrix is symmetric, but no longer Hankel
(though it is made up of blocks consisting of Hankel matrices; see Example
(5.4.18) below).

Example 5.4.18 (Winograd) For p =3, h =2, a; = 2, and ap, = 2 we get
7./9Z = {0} ]_[ 3U(Z/3Z) ]_[L{(Z/9Z) = {0} ]_[{3, 6} ]_[{1, 2,4,5,7, 8}
so that

£(0) =08(1)=38((2)=6850C)=184) =2
§9(5) =4 8(6) =8 &(7) =7 8(8) =5
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and
1 1 1 1 1 1 1 1 1
1 1 1 & o & o & o°
1 1 1 o & 0 o o &
1 o o o o o o o &
QgAg(CD)Qg =]1 o & & o % o & o
1 o o o o o & o o
1 o & o o & o o o
1 o o o & o o o o
1 o & & o o o o o

Exercise 5.4.19 Fill in the details of the above example and show that the
matrix is made up of the multiplication tables of the following three groups
(written multiplicatively): the trivial group, U(Z/37Z), and U(Z/9Z).

Extensions of Rader’s algorithm will be discussed in Section 7.8.

5.5 Algorithmic aspects of the FFT

In this section we examine some of the algorithmic aspects of the formulas
obtained in Section 5.4. For a more complete discussion we refer to [160, 163].

First of all, we want to derive the general form of (5.4), which is also the
basic nonmatrix form of the Cooley-Tukey algorithm. We consider the action
of A,u(®) to a column vector X = (xp, X1, ..., Xum—1)’ . The General Radix
Identity (Theorem 5.4.5) yields

Apn(@) = [Ay(@™) @ In]T," ()l & Ap(w™)]P;". (5.61)

Therefore, arguing as in the proof of Theorem 5.4.5, and using the formulas
established therein, from (5.61), for j = sm+r and j' = rn+ s, with 0 <
s, <n—1and0 <r,r <m— 1, we get (by Lemma 5.3.1.(ii) and (5.29))

nm—1

[Anm(a))X]j = Z {[An(wm) by Im]T,:n(w)[In ® Am(wn)]}j,a(n,m)j’xj’
Jj'=0

m—1 n—1

=Y {[An@™) ® L]

=0 s'=0

: Tnm(w)[]n ® Am(wn )] }Sm+r,s’m+r/xr/n+s’

m—1 n—1

_ mss'+s'r+nrr’
= E E @ Xr'nt-s'

=0 s'=0
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(where =, follows from the last equality in the first part of the proof of Theorem
5.4.5), that is,

n—1

m—1
(A (@)X Tgnr = Y 0™ 0> " 0" Xy (5.62)
5'=0 =0
The above is the nonmatrix form of the General Radix Identity and constitutes

one of the basic formulations of the Cooley-Tukey algorithm.

Exercise 5.5.1 (5.61) is also called the Decimation in time form of the Cooley-
Tukey algorithm. Prove the following equivalent formulas:

¢ (Decimation in Frequency)
Apn(@) = P11 @ (0T (0)[An(0™) @ Il
o (Parallel Form)
Apn(@) = P [Ly @ Ay(0™)P, T, ()l @ Ap(0™)IP;
o (Vector Form)
Aun(@) = [An(@™) @ L] T, (@) [An(0") @ I,].

Now, following [130], we examine the number of operations needed to compute
the DFT by means of the General Radix Identity in Theorem 5.4.5 or, equiva-
lently, in terms of (5.62). This way, we generalize the computation in Section
5.1. For the sake of clarity, we shall denote by X™ (respectively X ™) the vec-
tor (xg, X1, ..., X,—1)7 (respectively (xo, X1, ..., Xun—1)" ). First of all, arguing
as in the derivation of (5.2), we deduce that the n entries of the column matrix
A, (0)X™ may be computed by means of at most

Tin)=n+m—Dn+n—2=2n"—-2=0u (5.63)
operations.

Proposition 5.5.2 Suppose we have an algorithm that computes A,(0)X"™ (w
an n-th root of 1) by means of at most T (n) operations. Then we can compute
Apn(@)X ™ (w an nm-th root of 1) by means of at most

T(nm) <nT(m)+mT(n)+ (m—1)n—1)

operations.
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Proof. Indeed, if we use (5.62), we need to compute

m—1
E " Xppyy forO0<r<m-—1land0<s <n-—1
r=0

and these may be seen as n DFT’s with A,,(«"), namely,

Ap(@MHX™
with
Xs(rm) = (Xy, X' s X2+« + s XDyt )
and s =0, 1,...,n— 1. Then we must multiply these results by the numbers

®*" (note that, in general, only (n — 1)(m — 1) of them are different from 1).
Finally, we need to compute the external sum in (5.62) for 0 < s <n — 1 and
0 < r <m — 1, which, as before, may be seen as m DFTs with A, (0™). O

For instance, from Proposition 5.5.2 and using (5.63), we get

Tnm)<m-2m> — 1) +n-2m* — 1)+ (n—1)(m—1)
=2nmn+m)+nm—3(n+m)+ 1.

This is a great improvement: if n = m then T} (n?) ~ 2n* while T (n?) ~ 4.

Theorem 5.5.3 Let M be a positive integer and let M = mymy, - - - my. be a non-
trivial factorization. Suppose that T (m;) operation are needed to compute
the DFT with A,,,. Then one can compute the DFT with Ay by means of at
most

TM) < MXk: ! [Tmj)+mj—1]1; —M+1
= — m; J J

operations. Moreover, T(M) does not depend on the order of the factors used

in the factorization.

Proof. We deduce this from the General Radix Identity as in Proposition
5.5.2 by using induction on k. For k = 2 the theorem reduces to Proposition
5.5.2. Assume the result for 2 < h < k — 1 and let us set m = mym, - - - my and
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n=meyy---my forsome?2 < ¢ <k —2. Then M = nm and
T(M) =T (nm)
(by Proposition 5.5.2) <anT(m)+mT(n)+ (mn—n—m+1)
¢

1
(by inductive hypothesis) <n | m Z ;[T(mj) +mj—11—-m+1
=1
G
+m|n Z E[T(m_,ﬂ)jumj —1]—-n+1
j=t+1
+mn—n—m+1

k

=M Z%[T(mj)+mj—l] ~-M+1.

j=1 J

Some special cases of Theorem 5.5.3 are worth examining.

Corollary 5.5.4

k
T(M)<MY (Q2mj+1)—M+1.
j=1
Proof. This follows from Theorem 5.5.3 by using (5.63) and the elementary
inequality W <2m+1. O
Ifm =my=---=my = m,thatis, M = m~
ization of Theorem 5.1.3.

, we get the following general-

Corollary 5.5.5
T(m" < @m+ Dm*k —m* + 1.
In particular, for m fixed and k — +00, one gets
T(m") = O(km"),
equivalently, T(M) = O(M log M).
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Finite fields and their characters
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6
Finite fields

This chapter is a self-contained introduction to the basic algebraic theory of
finite fields. This includes a complete study of the automorphisms, norms,
traces, and quadratic extensions of finite fields. Our treatment is inspired by
a course given by Giuseppe Tallini in 1991 at the Istituto Nazionale di Alta
Matematica “Francesco Severi” (INAAM) in Rome (cf. [141]). An alternative
approach is in the monograph by Lidl and Niederreiter [96]. We also refer to the
impressive volumes by Knapp [87, 88] for a very complete treatment at both a
basic and an advanced level.

6.1 Preliminaries on ring theory

We start by recalling some basic notions and results in ring theory. Most of
the proofs are elementary and left as exercises: we refer to the monographs
by Herstein [71] and Lang [93] for more details. We also assume the most
elementary facts on polynomials over a field: a good reference is the book by
Kurosh [89].

Let A be a commutative unital ring. We denote by 0 the zero and by 1 the
(multiplicative) identity element of A.

A is said to be an integral domain if it contains no zero divisors, that is, if
a,b e Asatisfyab=0thena=0orb = 0.

An ideal of A is a subring Z C A such thatai € Z foralla € Aandi € Z.
Viewing Z as a subgroup of the additive group A, we can form the quo-
tient group A/Z = {(a+ Z) : a € A} and then equip it with the multiplication
defined by (¢ +Z)(b+Z) = (ab+ I) for all a, b € A. It is easy to check that
this multiplication is well defined and that A/Z is a commutative unital ring,
called the quotient ring: its zero is (0 + Z) = Z and its unit element is (1 + Z).

167
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168 Finite fields

An element u € A is called invertible, or a unit, provided there exists an
element v € A, necessarily unique, called the inverse of u, such that uo = 1.

A field is a commutative unital ring such that every nonzero element is invert-
ible. In the sequel, we shall denote a field by the letters [F and [E.

Exercise 6.1.1 Show that every finite integral domain is a field.
Hint. Use the pigeon-hole principle.

We denote by .A[x] the commutative unital ring consisting of all polynomials
p(xX) = apX" + ap X+ aix 4 ag 6.1)

with coefficients ay, ay, . . ., a, in A in the indeterminate x. In (6.1) we implic-
itly assume that a,, # 0 and then denote by deg p = n the degree of the polyno-
mial p(x). If a, = 1 one says that the polynomial p(x) is monic.

Clearly, if A is an integral domain, so is A[x].

An ideal Z in A is called principal provided there exists a € A such that
Z = aA = {ab: b € A} and one then says that 7 is generated by a. A principal
ideal domain is an integral domain in which every ideal is principal.

Exercise 6.1.2 Let .A be an integral domain and let a, b € A. Suppose that the
ideal Z = {xa + yb : x, y € A} is principal. Show that every generator of Z is a
gcd(a, b) (the definition of a ged in A is the same as in Theorem 1.1.1).

Exercise 6.1.3 Show that in a principal ideal domain any nondecreasing chain
ofideals 7, €1, C --- C 7, C --- must stabilize, that is, there exists np € N
such that I, = I, for all n > ny.

Example 6.1.4 The ring Z of integers is a principal ideal domain. Let us show
that if Z C Z is an ideal, then the minimal primitive element a = min{i € L :
i > 0} generates Z. Indeed, given m € Z, by Euclidean division we can find
(unique) g € Z andr € Z suchthat0 < r <aandm = aq + r. Since r = m —
aq € 7, by minimality of a we deduce that » = 0, showing that m = aq. Thus
7 =aA.

Exercise 6.1.5 Show that the integral domain Z[x] is not a principal ideal
domain.

Hint. Show that the ideal generated by 2 and x cannot be generated by a single
polynomial.

We recall that in the ring F[x] of all polynomials over a field F an analogue
of (1.1) holds. This is the Euclidean division of polynomials: for p, s € F[x]
there exist unique g, r € F[x] such that p(x) = g(x)s(x) + r(x)and 0 < degr <
degs.
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Exercise 6.1.6 Let I be a field. Show that [F[x] is a principal ideal domain.
Hint. Use Euclidean division of polynomials.

Suppose that A is an integral domain. A nonzero noninvertible element p €
A is said to be irreducible if it cannot be expressed as a product p = ab with
a, b € A noninvertible.

Exercise 6.1.7 Let A be a principal ideal domain and let a, b, p € A. Show that
if p is irreducible and p|ab, then pla or p|b.
Hint. Use Exercise 6.1.2.

Example 6.1.8

(1) In the ring of integers, an element p € Z is irreducible if and only if its
absolute value |p| € N is a prime number.

(2) IfF is a field, then a polynomial p(x) € F[x] is irreducible if and only
if it is irreducible over F (in the usual sense of elementary algebra).

One then says that an integral domain A is a unique factorization domain
(briefly, UFD) provided that every nonzero non-unit ¢ € A can be writ-
ten as a product a = upp, - - - py of a unit u € A and irreducible elements
D1, P2, - - -, Pr € A, and this factorization is unique in the following sense: if
a =vqiqz - - - q; is another factorization, with v a unit and g1, q», . . ., g irre-
ducible, then & = k and, up to reordering the factors, g; = w;p;, with w; a unit,
forall j=1,2,...,k (and therefore v = u(wws - - - wr) ™).

Exercise 6.1.9 Show that every principal ideal domain is UFD.

Hint. For the existence of a factorization, consider the set B of all ideals of A,
whose generators do not admit factorization and use Exercise 6.1.3. For the
uniqueness use Exercise 6.1.7.

Example 6.1.10

(1) Zis a UFD: every n € Z can be written (uniquely) as a product

n= 81771[7‘;2 .. .pzk
where ¢ € {1, —1} and py, p», ..., pr € N are distinct prime numbers
(the positive integers «;’s are the corresponding multiplicities).
(2) IfFis afield, then F[x] is a UFD: every polynomial p(x) € F[x] can be
written (uniquely) as a product

px) = upi ()™ pr(x)* - - - pr(x)™

where # € F and p;(x), p2(x), ..., pr(x) € F[x] are distinct, monic,
irreducible polynomials (the positive integers «;’s are the corresponding
multiplicities).
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A properideal Z C A is maximal if the following holds: whenever Z C 7 C
A, where J is also an ideal, we necessarily have either Z = J or J = A.

Proposition 6.1.11 Let A be a unital ring and T C A an ideal. Then the quo-
tient ring A/Z is a field if and only if T is maximal.

Proof. Suppose that Z is maximal. Let a € A \ Z and let us show that the non-
zero element (a + Z) of A/Z is a unit. Denote by H C A/Z the ideal generated
by (@ + Z). Then if we denote by 7 : A — A/Z the canonical quotient homo-
morphism, we have that 7 = 7w ~!(#) is an ideal in A, which contains Z and
a, so that Z C 7. By maximality of Z we have 7' (H) = J = A. Since H is
generated by (a + Z), we can find b € Asuchthat (1 +7Z) = (a+Z)(b+ 1)
in ‘H. Thus (b + 7) is the inverse of (a + Z) in A/Z. This shows that A/Z is a
field.

Conversely, suppose that A/Z is a field. Let 7 be an ideal of A such thatZ C
J C A. Let us show that 7 = A. Let b € J \ Z. Then (b + Z) is a nonzero
element in A/Z and therefore we can find a € A such that (¢ + Z)(b+Z) =
(1 + I). It follows that

le@+ID)<Cad+T =J,

so that J = A. This shows that Z is maximal. O

Proposition 6.1.12 Let A be a principal ideal domain. If a € A is a nonzero
element, then the (principal) ideal a A generated by a is maximal if and only if
a is irreducible.

Proof. Suppose that a is not irreducible. Then we can find noninvertible ele-
ments b, ¢ € A such that a = be. Let us show that aA C bA C A. Indeed, if
we had bA = A we could find an element &' € A such that bb' = 1, contradict-
ing the fact that b is not invertible. On the other hand, if aA = bA then b € aA
and we would find d € A such that b = ad. As a consequence, a = bc = adc
yielding a(1 — dc) = 0. Since A is an integral domain and a # 0, we neces-
sarily have 1 — dc = 0, equivalently dc = 1, contradicting the fact that c is not
invertible. This shows that the proper ideal a.A is not maximal.

Conversely, suppose that a is irreducible and let us show that a.4 is a maximal
ideal. Thus suppose that 7 is an ideal such that a4 C J C A. Since A is a
principal ideal domain, we can find b € A such that 7 = bA. Since a € bA
we can then find ¢ € A such that a = bc. By irreducibility of a, one of the
two elements b, ¢ € A must be invertible. If b is invertible then 1 € J so that
J = A.Ifcisinvertible, then b = ac~! € aAsothat 7 = bA = aA. It follows
that a.4 is a maximal ideal. O
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Corollary 6.1.13 Let n € N. Then the quotient ring 7./nZ is a field if and only
if n is a prime number.

Recall that, for p € N a prime number, we denote by F, the field Z/pZ (see
Notation 1.1.17).

Corollary 6.1.14 Let F be a field and p(x) € F[x]. Then the quotient ring
Flx]/p(x)F[x] is a field if and only if p(x)is irreducible (over ).

Let F be a field. Consider the cyclic additive subgroup C generated by the
identity element 1 € F. The characteristic of F, denoted char(IF), is defined to
be 0 if C is infinite (and therefore isomorphic to Z) and equal to the cardinality
of C otherwise. Let us show that in this last case char(F) is a prime number.
Consider the map ®: Z — [ defined by

d(En) =1 +1+---+1) (6.2)

n terms

for all n € N. Then it is straightforward to see that ® is a unital ring homo-
morphism, so that Z/Ker(®) = &(Z) = C. If Ker(P) = {0} then char(IF) = 0.
Otherwise, ®(Z) C I, being a finite integral domain is a field (cf. Exercise
6.1.1) and therefore, by Corollary 6.1.13, Ker(®) = pZ for some prime num-
ber p, so that char(F) = p.

6.2 Finite algebraic extensions

We now give a basic introduction to field extensions. More complete treatments
can be found in the aforementioned monographs by Herstein [71], Lang [93],
and Knapp [87, 88].

Let F and EE be two fields and suppose that F C [E. We say that F is a subfield
of E or, equivalently, that E is an extension of F.

Exercise 6.2.1 Show that [E is a vector space over F.

We denote by [E : F] the corresponding dimension dimy[E (the cardinality of
one (=any) vector basis of [E over [F): it is called the degree of the extension. We
say that [E is a finite (resp. infinite) extension of F provided that [E : F] < oo
(resp. [E : F] is infinite).

An element o € [ is called algebraic over I (or F-algebraic) if there exists
p(x) € F[x] such that p(a) = 0.

Let « € E be an [F-algebraic element. Then it is straightforward to check
that the set Z, = {p € F[x] : p(a) = 0} is an ideal in F[x]. It follows from
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Exercise 6.1.6 that there exists a monic polynomial g € F[x] such that Z, is
generated by ¢, i.e. Z, = g(x)F[x].

Exercise 6.2.2 Show that the monic polynomial g € F[x] is unique and
irreducible.

The polynomial q is called the minimal polynomial of o (over IF). It follows
from Corollary 6.1.14 that F[x]/q(x)F[x] is a field. On the other hand, consider
the map

o: Flx] > E
p = p@).

We clearly have Ker(®)= 7, = g(x)F[x] and therefore F[x]/q(x)F[x] =
F[x]/Ker(®) is isomorphic to the image Im(®), which is a subfield of E con-
taining «, denoted F[«]. We say that F[a] is the subfield of E obtained by
adjoining o to .

Exercise 6.2.3 Show that F[«] is the subfield of E generated by [F and « (that
is, F[ae] is the intersection of all subfields of [E containing F and «).

Proposition 6.2.4 Let E be an extension of F. Suppose [E : F] < co. Then
every a € E is algebraic over F.

Proof. Let « € E and set n = [E : F] = dimgE. Then the n+ 1 elements
l,a,a?,...,a" are linearly dependent over F. It follows that there exists
ap, ai, ..., a, € IF such that (ag, ay, ..., a,) #(0,0,...,0) and ap + a1 +
-+ 4+ a,a™ =0. Then the polynomial g(x) = a,x" + - - -+ a;x 4+ ap € F[x]
satisfies g(a) = 0. This shows that « is algebraic over F. 0

Proposition 6.2.5 Let E be an extension of F and a € E. Suppose that « is
algebraic over F and denote by q(x) € F[x] its minimal polynomial. Then set-
ting n = deg(q) the following holds:

i) {1,a,a?, ..., a" 'Y is a basis of Fla] over F;
(i) dimpF[o] = n;
(iii) Fla] = Flx]/g(x)F[x].

Moreover, let B € E and suppose that g(8) = 0. Then the following holds:

(iv) B is algebraic over F and q(x) is the minimal polynomial of B;
(v) dimgF[B] = n;

(vi) Fla] =F[B];

(vil) if B € Fla] then Fla] = F[B].
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Proof. Let g(x) = x" + Ay X1+ -+ a;x+ ap and observe that ag #0
by irreducibility (cf. Exercise 6.2.2). Since g(«a) = 0, we deduce that o" =
—(ap_1a" "+ -+ aja + ag). After multiplying both sides by a” " we
deduce that, more generally,

o™ = —(an_lotmfl R +alam7n+1 +a()otm7”) (63)

for all m > n. Similarly, after multiplying the equation g(a) =0 by a~',

we deduce that o~ ! = —al—o(oc”’1 +ap10" 2+ -+ aa +a;) and, more
generally,

1
a—m — __(an—m +an,1a"_m_l 4+ +a20[2—m +a1al—m) (64)
ao

for all m > 1. This shows that the n elements 1, o, &%, ..., a""' span Fla]

(recall Exercise (6.2.3)). Since n = deg(g) and ¢ is the minimal polynomial
of «, the above elements are also linearly independent and therefore constitute
a basis for F[«] over F. This shows (i), and (ii) follows immediately there-
after. (iii) was observed when defining F[«]. (iv) follows from the obvious
fact that every irreducible polynomial is the minimal polynomial of any of its
roots. From this we deduce that the same relations (6.3) and (6.4) hold with «
replaced by B, thus proving (v), while (vi) follows from (iii). Finally, suppose
that 8 € Fla]. Then F[8] = {p(B) : p € F[x]} is a subfield of F[«] and, from
(i) and (v), we immediately deduce (vii). U

Remark 6.2.6 With the above notation, one can also say that [F[«] is obtained
from I by adjoining a root of (the irreducible polynomial) g. In a more abstract
fashion, if g is any irreducible polynomial in F[x], then the field F[x]/q(x)F[x]
contains a subfield isomorphic to F (that we shall still denote by ), namely
the set of all elements of the form ay + g(x)F[x], where ay € F is viewed as a
polynomial of degree 0. Then the element o = x + g(x)F[x] € F[x]/q(x)F[x]
is algebraic over F: indeed, g() = g (x + g(x)F[x]) = q(x) + ¢(x)F[x] = 0+
q(x)F[x] = 0. As a consequence, F[x]/q(x)F[x] is the algebraic extension of F
by means of the (irreducible) polynomial g(x).
When deg(g) = 2 we call it a quadratic extension.

Example 6.2.7 The field C = {a +ib : a, b € R} of complex numbers is a
quadratic extension of the field R of real numbers. The corresponding irre-
ducible polynomial is g(x) = x> + 1.

Definition 6.2.8 Let p(x) € F[x], say of degree deg(p) = n. Then the smallest
(= of minimal degree) field extension E of F containing elements oy, 7, . . ., oy
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such that p(x) = (x — o1)(x — an) - - - (x — &) 1s called a splitting field for the
polynomial p(x) over F.

Exercise 6.2.9 (Existence and uniqueness of splitting fields)

(1) Prove that, in the above definition, the field E exists and is unique up to
isomorphism.
Hinr: existence is obtained by a repeated application of the construc-
tions that have led to Proposition 6.2.5. Uniqueness is more difficult
(we refer to the aforementioned references).

(2) Prove that, if p is irreducible (over [F), then [E : F] divides n!, where

n = deg(p).

Remark 6.2.10 Let F C G C E be fields and let p(x) € F[x] (so that p(x) €
G[x]). Then E is the splitting field of p(x) over FF if and only if it is the splitting
field of p(x) over G.

Definition 6.2.11 Let E be an extension of F. The Galois group E over F,
denoted Gal(E/T), is the group of all automorphisms of E that fix F pointwise,
in symbols:

Gal(E/F) = {¢ € Aut(E) : £(a) = o forall o € F}.

If we consider E as a vector space over [F, then every automorphism & €
Gal(E/F) is F-linear:

E(a1Br +az2B2) = a1&(B1) + 26 (B2)
for all «y, oy € F and By, B, € E.

Proposition 6.2.12 Gal(E/F) is F-linearly independent (as a subset of
Endr(E), the algebra of all F-linear maps T: E — E).

Proof. Suppose, by contradiction, that there exist &, &, ..., &, € Gal(E/F),
all distinct, and (aq, aa, ..., a,) #£ (0,0, ..., 0) in F” such that

181+ by + - gy = 0. (6.5)

Up to reducing n if necessary, we may suppose that the length n > 2 of the non-
trivial linear combination in the left hand side of (6.5) is minimal (in particular,
o #O0foralli=1,2,...,n).

Choose B € E such that £;(8) # & (B8). Then from (6.5) we deduce that

Y ad(Bay) =Y ad(By) =0
k=1 k=1


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.007
https://www.cambridge.org/core

6.2 Finite algebraic extensions 175

for all y € E. It follows that

ai&1(Bs1 +a2ba(B)er + - - - + 0,6, (B)E, =0 (6.6)

is another vanishing nontrivial linear combination of length n. But then, multi-
plying (6.5) by &,(8) and subtracting (6.6), we obtain

o G1(B) —&B)N&E +a3 (Ei(B) —&(B)NE + -
+op (gl (ﬁ) - sn(ﬂ))én =0,

where the left hand side is nontrivial (because o, (§1(8) — &(B)) # 0) and of
length at most n — 1, contradicting the minimality of n. This shows that the
elements in Gal(E/T) are F-linearly independent. U

Theorem 6.2.13 Let E be a finite extension of F. Then |Gal(E/TF)| < [E : F].

Proof. Letus setn = [E : F] and let 81, B2, ..., B, € E constitute a basis of E
as a vector space over [F. Suppose that &, &, ..., &, are distinct elements in
Gal(E/TF). Consider the homogeneous linear system of n equations

a1 (Br) +a6a(Br) + - -+ b (B1) =0
ai§1(B2) + a262(B2) + - - - + aén(B2) =0

in the m variables oy, ay, ..., o,. It is a standard fact of linear algebra (over
any arbitrary field) that if m > n (i.e. the number of variables is greater
than the number of equations) the above system has a nontrivial solution
(ay, @y, ..., a,) € E™. Since the &;s are F-linear and 84, B, ..., B, constitute
a basis for [E, we deduce that

a1&1(B) + b (B) + - + @& (B) =0

for every B € E, that is, | +a&, + - - - + @&, = 0, contradicting Proposi-
tion 6.2.12. This shows that m < n and therefore |Gal(E/F)| < [E : F]. O

Let f(x) e Flx], say f(x)=ax"+a,_1x" ' +---a;x+ay. Then the
derivative of f(x) is the polynomial f'(x) € F[x] defined by setting

@) = na X" '+ (n— Da,_ 1 X" >+ - 2ax +ay.

Exercise 6.2.14 Show that the map D: F[x] — F[x] given by D(f) = f' is
F-linear.

Note that if char(IF) = p > 0, then Dxkr = kpx’””1 =O0forallk > 1.
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6.3 The structure of finite fields
Theorem 6.3.1 Let F be a finite field. Then the following holds:

(i) There exists a prime number p € N such that char(F) = p;

(ii) [ contains a subfield isomorphic to I ,;
(iii) the additive group (I, +) is isomorphic to ®!_|IF, for some n > 1;
(iv) there exists n > 1 such that |F| = p".

Proof. Consider the unital homomorphism ®: Z — [ defined by (6.2). As we
already observed at the end of Section 6.1, we have Ker(®) = pZ with p a
prime number. Moreover, Im(®) = Z/Ker(®) = Z/pZ = I, and this proves
(1) and (ii). Let n = [F : Im(®)]; then F is a vector space of dimension n over
Im(®) = F, and (iii) follows. Taking cardinalities, from (iii) we immediately
deduce (iv). O

In the sequel, with the notation from the above theorem, we shall denote by
g = p" the cardinality of IF and denote this field by [F,.

Corollary 6.3.2 Let I, be a finite field of order q = p" and let F, C I, be a

subfield. Then there exists a divisor h of n such that r = p".

Proof. Since 1 € F,, we clearly have char(F,) = char(FF,) = p. Thus there
exists an integer 1 > 1 such that r = p". Setting s = [IF, : F,], by Exercise 6.2.1
we have p" = g = r* = (p")* = p/, so that n = hs. O

In analogy with the particular case g = p (cf. Theorem 1.1.21) we have the
following:

Theorem 6.3.3 The (multiplicative) group F of invertible elements in Fy is
cyclic of order g — 1.

Proof. The proof is identical to that of Theorem 1.1.21. O

Definition 6.3.4 A generator of the cyclic group Iy is called a primitive element
of IF,.

Corollary 6.3.5 I, is the splitting field of the polynomial x? — x over F,, and
consists exactly of the roots of this polynomial.

Proof. First observe that x? — x € F,[x]. By Theorem 6.3.3, the multiplicative
group Iy is cyclic of order g — 1. Therefore, every g € I} satisfies the equation
x1~1 =1, i.e.itis aroot of the polynomial x¢ — x. Since, clearly, O is also a root
of this polynomial, it follows that I, consists exactly of all the g roots of x4 — x.
This shows that IF, is the splitting field of x — x over F,. O
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Recalling that ¢ denotes Euler’s totient function (cf. Definition 1.1.18), we have:

Corollary 6.3.6 Let r be a divisor of g — 1. Then T}, contains ¢(r) elements of
order r. In particular, there are ¢(q — 1) primitive elements of I, O

6.4 The Frobenius automorphism
Let IF, be a finite field, where ¢ = p". Then the map o : F, — F, defined by
o(a)=af

for all @ € Fy, is an automorphism. Indeed, for o, 8 € IF, we have
o(a+p)=(a+p)

- (P) k gp—k
= (}(,3[)_

2 (i
=O{p+ﬁp
=o(a)+a(p),

because the integer (7) = p@=22=20-—t+D j5 3 multiple of p (since p is

prime), and therefore (£) = 0 mod p, forall 1 <k < p — 1, and
o(ap) = (aB) = (@)’(B) =o(a)o(B).
One calls o the Frobenius automorphism of IF,.
Recall (cf. Theorem 6.3.1) that for ¢ = p” the field I, contains the subfield
F,, and that [IF, : F,] = n.
Theorem 6.4.1 Let g = p". Then the following hold:

(i) Gal(IF,/IF)) is a cyclic group of order n;
(ii) Gal(IF,/IF,) is generated by the Frobenius automorphism o;
(iii)) Gal(IF,/F,) = Aut(F,).

Proof. Let us first show that o has order n. Clearly, o (o) = o foralla € F,
and k > 1. Since (in any field) the equation x" — x = 0 has at most pk solutions,
there exists no 1 < k < n such that o%(a) = o = foralla e IF,.

On the other hand, it follows from Corollary 6.3.5 that 0" (o) = o? = «, for
all @ € F,. In other words, 0" = iqu. This shows that the Frobenius automor-
phism o has order n. Moreover, applying Corollary 6.3.5 to ¥, we deduce that
o(a) = a? =« forall o € F,,. This shows that o fixes pointwise all elements
ina € F), thatis, o € Gal(F,/IF,). Since, by Theorem 6.2.13, |Gal(F,/F,)| <
[IF, : F,] = n, we deduce (i) and (ii).

Finally, let & € Aut(IF,). Then we have £(0)=0, §(1)=1, §2)=
El4+1D)=E0)+&(1)=1+1=2, and recursively, &(k) =k for all
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k=2,3,...,p—1 (but £(p) = p£(1) = 0). Thus £ fixes F, ={0,1,2,...,
p — 1} pointwise. This shows (iii). U

Corollary 6.4.2 Every o € F, has exactly one pr-th root in F, for k=
1,2,...,n O

Corollary 6.4.3 The field ¥, admits an involutory automorphism if and only if
n is even. If this is the case, then it is given by c"/>. O

A nontrivial square in a field F is an element o € F* such that « # 1 and
o = B for some B € F.

Proposition 6.4.4 If p = 2 then every element in F is a square. If p > 2 then

q-1 ; *
there are 5= squares in I,

Proof. The result for p = 2 follows immediately from Corollary 6.4.2 (with
k = 1). Suppose p > 2 and denote by ¢: F; — F7 the square map defined by
d(B) = p*forall B e [F;. Note that for B, B, € I, one has ¢(B1) = ¢(B>) if
and only if 8; = £p,. This shows that ¢ is two-to-one. As a consequence, the
number of squares in IE‘; equals |¢(]F;)| = |IF‘Z|/2 =(g—1)/2. ]

6.5 Existence and uniqueness of Galois fields

Definition 6.5.1 Let f(x) € F,[x] be an irreducible polynomial of degree n and
denote by f(x)F,[x] the ideal generated by f(x). Then the field

Fplx]l/ f(O)Fp[x]
is called a Galois field of order p”* (cf. Proposition 6.2.5 and Remark 6.2.6).

We shall not introduce a specific notation for Galois fields since for every
prime number p and integer n > 1 all Galois fields of order g = p" are isomor-
phic (cf. Theorem 6.5.6), and we shall use the notation IF,. In this section, we
prove their existence and uniqueness. As usual, we denote by o € Aut(F,) the
Frobenius automorphism.

Proposition 6.5.2 Let f(x) = ap + aix + - - - + a,x" € F,[x] be anirreducible
polynomial of degree n and let F, = F,[x]/ f (x)IF ,[x] be the associated Galois
field. Let also o € I, be aroot of f (cf. Remark 6.2.6). Then the elements o =
oX(@), k=0,1,...,n— 1, are all distinct and are the roots of f. In particular,
I, is the splitting field of f(x) over I, (cf. Definition 6.2.8) and

f) = apx —a)x —aP)x—al ) (x—a’ ).
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Proof. Since o* is an automorphism that fixes F, pointwise, we have that

fo*(@)) = o*(f(a)) = 0(0) = 0, that is, o*(«) is a root of f, for all k =
0,1,...,n— 1. Let us show that these elements are all distinct. Suppose
that o¥(a) = o/ (a), that is, «” = a” forsome 1 <k < j<n—1.Set B =
o*(@) = a” and r = j — k € N. We have

o'(B)y=p" =p" =@y =’ =o" = 8. 6.7)
Since f(B) = 0, from Proposition 6.2.5 we deduce that the elements

LB, g% ..., g !

constitute a vector space basis of I, over IF,. As a consequence, forevery 6 € IF,
there exist 1, 12, ..., n, € F), such that

S=m+mB+-+np"".
Since (n;)? = n; fori=1,2,...,nand, by (6.7), 87 = B, we get

8 =0 " (m+mB+-+n.p"")
=+ mB” + (B + -+ (B!
= +mB+-+n.p"!
= .

Since § was arbitrary, this contradicts Theorem 6.3.3, because » < n. O
Proposition 6.5.3 Let f(x) € F,[x] be an irreducible polynomial of degree m,
and let k > 1. Then f(x) divides X —x if and only if m divides k.

Proof. By Proposition 6.2.5 and Theorem 6.3.1, F,[x]/f(x)F,[x] has g™ ele-
ments so that

a? =a foralla € F [x]/f(x)F,[x] (6.8)
(cf. Corollary 6.3.5). Taking o = x + f(x)IF,[x], this yields
X7 —x € f(OF,[x]. (6.9)
Let us show that for s = 0, 1, 2, ... we have

Sm

X —x e f(OF,[x]. (6.10)


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.007
https://www.cambridge.org/core

180 Finite fields

We proceed by induction. For s = 0, this is trivial and for s = 1 equation (6.10)
reduces to (6.9). Let us prove the inductive step:

(s+1)m smy g™
x0T —x= (1) —x

(by (6.10)) € (x + FCOF,[x])” —x
Cx? —x+ f)F,[x]
(by (6.9)) = FOOF,[x].

In particular, if m divides k then f(x) divides X — x.

Let us prove the converse implication. Suppose that f(x) divides X —x.
Applying the Euclidean algorithm, we can find two non-negative integers s, r,
with 0 < r <m — 1, such that k = sm + r. We need to show that r = 0. By
virtue of (6.9) we have

X" e x+ fOF,[x]
and therefore
=" = (W) e 4 FOF, . 6.11)

Since f(x) divides x? — x, from (6.11) we deduce x? —x € f (x)F,[x], equiva-
lently, f(x) also divides x4 — x. As a consequence, in the field F,[x]1/ fOF[x]
every element « satisfies the identity

a? =«
that contradicts (6.8), since r < m, unless r = 0. This shows that m divides
k. O

Proposition 6.5.4 Let p and m be two primes and q = p" for some integer h >
1. Then in F,[x] there exist exactly

m

9 —4q

m

>0

distinct irreducible monic polynomials of degree m.

Proof. From the identity ¢ = « in F,, we deduce that af =al =a and, sim-
ilarly, 0 = a,...,a?" =, foralla € FF,. Therefore the polynomial x" — x
is divisible by x — « for every @ € F, and therefore may be factorized as fol-
lows

M —x=0)AE - £ [[er— ) (6.12)

aelF,
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where fi, f>, ..., fr € Fy[x] are monic and irreducible. We claim that in the
factorization (6.12) there cannot be two equal factors (it is square free), that is,
one cannot have

1 —x = f(x)*g(x),

where f € IF,[x] has degree > 1. Otherwise, by taking the derivative of both
sides we would have that ¢"x?" ~! — 1 = —1 should equal 2f(x)f’(x)g(x) +

f(x)*g (x), that is,
—1 = f(0) 2f (0gx) + f(0)g (x))

which is impossible since deg(f) > 1. This proves our claim. In particular, in
(6.12) for j =1, 2, ..., r we must have deg(f;) > 2 and therefore, by Propo-
sition 6.5.3 and primality of m, deg(f;) = m.

In conclusion, fi, f3, ..., f, are distinct irreducible polynomials of degree
m. Moreover, again by virtue of Proposition 6.5.3, they constitute the complete
list of all irreducible monic polynomials of degree m. It follows that the degree
of the right hand side of (6.12) is mr 4 g and must equal ¢™. This yields

974
m

completing the proof. U

Remark 6.5.5 The fact that the number % is an integer is a particular case
of Fermat’s little theorem (cf. Exercise 1.1.22).

We are now in position to state and prove the main theorem of the theory of
finite fields.

Theorem 6.5.6 (Main theorem: existence and uniqueness of Galois fields)
For every prime number p and integer h > 1 there exists a unique (up to iso-
morphism) finite field ¥, of order g = pl. 1t is the Galois field

F,[x]/€(0)F, [x],

where £(x) = (x —a)(x — aP)(x — 05”2) e (x— a’” ) and « is any generator
of the cyclic group F;.

Proof. First of all, let us prove that a field with ¢ = p" elements exists. Let
h=mmy---m, (6.13)

be a factorization of 4 into primes (repetitions are allowed). By Proposition
6.5.4, there exists an irreducible polynomial f; € IF,[x] of degree m,. Con-
sider the field Fm = IF,[x]/fi(x)F,[x] and recall that it has p™' elements.
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Now, again by Proposition 6.5.4, in [ [x] there exists an irreducible poly-
nomial f, of degree my, and so on. Eventually, we obtain a field F, with
(prmeme = pmmaeme — ph — g elements.

By Theorem 6.3.3, the group I is cyclic of order ¢ — 1, and let « be a gen-
erator of ). Then « is algebraic over I, since it is a root of the polynomial
x4~ — 1, and, clearly,

F, =F,la].

Then, by Proposition 6.2.5, IF, is isomorphic to I, [x]/£(x)F ,[x], where £(x) €
IF,[x] is the minimal polynomial of c. It follows that IF, is a Galois field. More-
over, by Proposition 6.5.2, we have
() =Gx—a)x—a’)(x—a)---(x—a” )
and
x1—x = L(x)g(x) (6.14)

with g(x) € F,[x], because « is a root of x? — x, and £(x) is its minimal poly-
nomial, and the principal ideal Z, = {f € F,[x] : f(«) = 0} is generated by
£(x).

Suppose now that K, is another field with g elements. Let o € K, be a
generator of the cyclic group K7. From the arguments above, we have that
F,la] = K,. Finally, it is straightforward that the map IF, = IF,[a] — F,[a] =
K,, given by f(a) — f(a) forall f € F,[x], is an isomorphism. U

We now present, as an exercise, an elementary proof of Gauss law of
quadratic reciprocity from [5]. This proof uses some facts on finite fields that
we have already established. Let p and g be distinct odd primes and consider the
field IF»-1 and the cyclic group F;p,l. By Fermat’s little theorem (see Exercise

1.1.22), pdivides g~ ' — 1 = ”FZ”" |, so that, by Corollary 1.2.9, FZ,H contains
an element ¢ of order p. We consider the Gauss sum

G = pX_E <§>§k,

k=1 \P
kY . ...
where | — | is the Legendre symbol (cf. Definition 4.4.7). Clearly, G, € F 1.
p

Exercise 6.5.7

(1) Prove that

Gl = (g)G;. (6.15)
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Hint: Use the identities (a + b)? = a? + b in F -1 and

G)-(5)-G)G)

where the last equality follows from Proposition 4.4.8.(iii).
(2) Suppose that p 1 i and show that

p—1
Z ;jh -1
j=1

5 (5)--(7)

(Hint: use Corollary 4.4.9), and deduce that

p—2 <ﬁ) gf(H_h)j — <__1)
—\p) p

J=1

(3) Show that

(4) From (2) and (3) deduce that

—1
G = (—)p
¢ p

(Hint: first prove that G} = ( )Z” [ £+Wi) 5o that, by
Proposition 4.4.8.(iv),

G; = p(—1)P~ V2, (6.16)

(5) From (6.15) and (6.16) deduce the Gauss law of quadratic reciprocity
(Theorem 4.4.18).
Hinz: start with the elementary identity G} = G, (G7)“~"/?; use Propo-
sition 4.4.8.(ii).

6.6 Subfields and irreducible polynomials

Proposition 6.6.1 Let g = p". Then, for every divisor m of h there exists a
unique subfield of ¥, isomorphic to ¥ ,». Moreover all subfields are of this kind.

Proof. Let K be a subfield of F,. Then IF,, is a vector space over K and there-
fore the cardinality of K divides the cardinality of IF,. By the uniqueness of
Galois fields (Theorem 6.5.6), it follows that there exists an integer m < h such
that K = F» = F,,/€(x)F,[x], where £ € IF,[x] is an irreducible polynomial of
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degree m. Since the equation x?' — x = 0is satisfied by all elementsin F, O K
we deduce that £(x) divides ¥ —xinF »[x] (compare with (6.14)). Therefore,
by virtue of Proposition 6.5.3, we have m = deg(¢) must divide % (cf. Corollary
6.3.2).

In order to show that, conversely, if m divides A, then F, = ]th contains
a subfield isomorphic to F,», we use the recursive construction of I, in the
proof of Theorem 6.5.6. Indeed, if we arrange the primes in the decomposition
(6.13) of h in such a way that m = m;my - - -m; for some 1 <i <r, then F»
appears, in the construction we alluded to above, as one of the intermediate
fields between ), and F,» = IF,. Uniqueness of the subfield I ,» follows from
the fact that its elements are precisely the roots of the polynomial x”" — x €
Fplx]. ]

Exercise 6.6.2 Show that the lattice of all subfields of IF, is isomorphic to the
lattice of all divisors of m.

In the following, o € Aut(IF,;) denotes the Frobenius automorphism (cf. Section
6.4).

Proposition 6.6.3 Let p be a prime number, h > 1 an integer, and g = p". Let
alsol <r<h—1. Then

K={BeF,:0"(B)=5} (6.17)

coincides with the subfield of ¥, isomorphic to I ,n, where m = ged(h, r).
On the other hand, if m divides h then

Gal(F,/Fn) = (£ € Aut(F,) : £(B) = B forall B € Fpn} = (0™).

Proof. First of all we observe that K is a subfield of I,. Therefore, by Propo-

sition 6.6.1, there exists an integer m that divides 4 such that K = IF .
Letusseto = o IF,» € Aut(Fpn). This is the Frobenius automorphism of

so that, by Theorem 6.4.1, Aut(F,») = (). Now, for an integer n > 0 one has

o"(B) = (i.e. 3"(B) = B)VB € Fpn < mln. (6.18)

We deduce that m divides r and therefore also divides gcd(k, r). On the other
hand, setting m’ = ged(h, r)and o = o hpﬂn, € Aut(Fﬂnr ), arguing as above, we
have 6"(B') = B’ (i.e. a"(B') = p’) for all B’ € F, if and only if m’ divides
n. Thus, taking n = r we have 0" (B’) = p’ forall B’ € F . Since K = F» C
[, this shows that m = m' = ged(h, r).

Finally, Gal(FF,/F ), being a subgroup of the cyclic group Gal(F,/F), is
itself cyclic (cf. Proposition 1.2.12). By the above arguments, we have o™ €
Gal(F,/F ) and, by (6.18), we indeed have Gal(F,/F,») = (™). O
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The following is a generalization of Proposition 6.5.2.

Corollary 6.6.4 Let f € F [x] be an irreducible polynomial of degree n. Then
F . is the splitting field of f over F,. Moreover, if a € Fy is a root of f then
o, al, ..., a?”" are the roots of f and they are also distinct.

Proof. Let IF denote the splitting field of f over IF,. Then we can find a positive
integer h > n such that F = .. indeed, denoting by a1, @z, ..., a, € F the
roots of f, by Proposition 6.2.5 and Theorem 6.6.1 we have F = F,[a] C
Fylar, az, ..., 0] =F =Fp.

Let o be the generator of Gal(IF,., F;) given by o(B) = B4 for all 8 €
F . Observe that o is not the Frobenius automorphism, although we use the
same symbol. Arguing as in the proof of Proposition 6.5.2, we deduce that
a,af, ..., " are distinct roots of f and therefore exhaust all the roots of f.
Then F,» contains all the roots of f, and therefore n = h,i.e. F = F,. O

Corollary 6.6.5 With the notation from the previous corollary, if o is a root of
finFy, then f is a scalar multiple of the minimal polynomial of a over T,
and Fp = Fylal.

Notation 6.6.6 Let F be a finite field. We denote by F™"[x] (resp. F™""[x])
the set of monic (resp. monic irreducible) polynomials in F[x] and by F™"*[x]
(resp. FrimK[x]) the set of monic (resp. monic irreducible) polynomials in F[x]
of degree k.

In the proof of the following proposition, we need the most elementary facts
on group actions (see the beginning of Section 10.4).

Proposition 6.6.7 Let f € F;""[x] and h > 1. Choose fNG IF’;Z"""’[x] that
divides [ and set d = d(f) =min{l <{<h: o[(f) = f}, where o (x) = x4
forall x € F . Then d divides h and

d—1
f=[le"® (6.19)

=0

is the (unique up to reordering the factors) factorization of f into F -
irreducible monic polynomials. Moreover, all factors are distinct, deg o *(f) =

dejf,forallﬁ =0,1,...,d -1, and

d = d(f) = ged(h, deg f). (6.20)
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Fqn F h

Figure 6.1. The inclusions of the fields Fy, t = n, h, £, hs.

As a consequence we have, for all k > 1,

mon,irr, k s s d—1,7
Frertd =11 I Foe@.....e ()
d|h feFZmn,irr,dk [x]:
gcd(h/d k)=1

on,irr,k

In other words, given fe ]F;,, [x] there exists a unique f € IFZ"””’”[x] such
that ¥ divides f (clearly, deg f = d(f)deg f).

Proof. Every al(f), for£ =0,1,...,h—1,is an F-irreducible monic poly-
nomial and divides f, since o(f) = f. In other words, the Galois group
Gal(IFq/,N/ IF,) acts on the space of monic F-irreducible divisors of f. We have
that d(f) divides i because Gal(FF,: /F,) is cyclic OE order i and generated
by o (cf. Proposition 6.6.3), and the stabilizer of f coincides with the set
{c%:k=0,1,..., g}. Thus, the polynomial

fo(f)---a?7'(), 6.21)

a product of distinct IF.-irreducible monic divisors of f, divides f. But (6.21)
is also o -invariant and monic, so that it belongs to F,;[x] and therefore must be
equal to f (since f is irreducible over IF,;). This proves that the action described
above is transitive. Moreover, since Fpu = {a € Fy : o?(a) = a} (by virtue of
Proposition 6.6.3), we have f € Flx].

Sets = deg fand n = deg f. It follows from Corollary 6.6.4 that the splitting
field of fover I is F . Similarly, the splitting field of f over I, is Fy, so
that, in particular, f, and therefore its factor fv, split into linear factors over [F .
Observe that, since d|h, say h = ad, and n = sd (this follows from the fact that
the polynomial in (6.21) coincides with f), we have hs = ads = an, so that
nlhs.

Setting £ = lcm(h, n), we have the inclusion diagram as in Figure 6.1.
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Since Fyn C Fye, it follows that f splits into linear factors over [F,:. Thus,
sincie Fp CFye C Fois, we deduce that F e = s, this being the splitting field
of f over . In particular, hs = lcm(h, n).

Setting r = gcd(h, n), we have

hn hsd
ged(n) — r
and (6.20) follows. U

hs =lem(n, h) = =d=r,

Corollary 6.6.8 Let f € F,[x] be irreducible and let h > 2. Then f is irre-
ducible over ¥y if and only if gcd(deg f, h) = 1.

6.7 Hilbert Satz 90

We now specialize, to the case of finite fields, the theory of the norm and the
trace for extensions of fields. A more general treatment may be found in [93].
Fix a prime number p, two integersn > 1 and 2 > 1, and set g = p". Let E =
Fy = Fym be the field with q" elements and F = F, the unique subfield of E
with g elements (cf. Proposition 6.6.1). By Proposition 6.6.3, the Galois group
Gal(E/TF) is a cyclic group of order 4: we denote by o a generator of Gal(E/TF).
We remark that here the notation is different from that in Proposition 6.6.3: for
instance, o is not the Frobenius automorphism of [E but it can be chosen as
its n-th power so that o (o) = o = forall @ € E (see Corollary 6.6.4 and
Proposition 6.6.7 ). We define the trace and the norm as the maps Trg/p: E — F
and Ng/r: E — IF given by

h
Tre/p(e) = »_of(@) (6.22)
k=1
and
h
Ngs(e) = [Jo*(@) (6.23)
k=1

for all @ € E. Note that Trg,r(a) (resp. Ng,r(a)) is indeed in IF:

h h+1
o (Treg/e(@)) = Yo" (@) =D oX(@) = Trg/m(a) (6.24)
k=1 k=2

(resp. o (N]E/F(oc)) = Ng/r(«)) because o has order 4. Moreover, it is clear
that Trg/r(a) (resp. Ng/r(o)) is independent of the choice of the generator o
in (6.22) (resp. (6.23)).
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Proposition 6.7.1 (Transitivity of the trace and the norm) Ler E,F, G be
finite fields such that F C E C G. Then

(1) TI"G/[F = TI”[E/]F ©) TI"(G,/[E
(i) Ng;r = Ngr 0 Ng/E.

Proof. By virtue of Theorem 6.5.6 and Proposition 6.6.1, there exists z, m € N
such that F = F, £ = F» and G = IF . For every o € G we have:

h—1

k
[Trg/r o Trg/el(a) = [Tre/m(a )]q
k=0
h=1 [m-1 ¢
k=0 | j=0
h—1 m—1 )
(the map B — B7 belongs to Aut(G)) = Z Z a?™
k=0 j=0
hm—1
(settingr = hj+ k) = Z af
r=0
= Trg/r(@).
Analogously,
h=1 (m—1 ¢
jh
[Ng/e o Ne/ele) = [T []«”
k=0 \ j=0
h=lm=1
_ l—[ l—[ aq,h+k
k=0 j=0
hm—1
(setting r = hj + k) = ]_[ af
r=0
= Ng/r(a). O

Theorem 6.7.2 (Hilbert Satz 90)
(1) Trg/r is a surjective F-linear map from E onto F and

KerTrgr = {a — o (o) : @ € E}.
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Proof.
@

(i)
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Ng/r yields (by restriction) a surjective homomorphism from the multi-
plicative group E* of E into the multiplicative group F* of F and

KerNgr = {oza(oz)_l ca € E}L

The map Trgr is IF-linear since
h
Trgp(on i + @afa) = ) o (c1p1 + @ap)
k=1
h
(since 0¥ € Gal(E/F)) = Zalak(ﬁl) + a0 k(Bo)
k=1

= o1 Trg/r(B1) + 2 Tre/r(B2)

forall; € Fand B; € E, i = 1, 2. As a consequence, ImTrg/r is an [F-
vector subspace of I and therefore (being I a field) it is either equal
to {0} or to the whole F. But the first possibility implies that Trgf is
identically zero, which leads to a contradiction since it is the sum of
F-linearly independent F-linear transformations of E (cf. Proposition
6.2.12). This shows that Trg,r is surjective. As a consequence,

Bl

@ =49

Moreover, every element of the form o — o («), with « € E, clearly
belongs to KerTrg/r. Also, for  and 8 in E we have o — o () =
B —ao(B) if and only if « — B = o(a — B), equivalently « — B € F.
We deduce that the set

| KerTr]E /F | =

{d —o(a): a e E},
which consists of exactly ¢"! elements, coincides with KerTrg JF-
As for (i), it is easy to check that Ng,r is a group homomorphism
between E* and F*: we leave the details to the reader. Moreover, we
have
h
Ni/p(er) = H"k(o‘) —olaq? ... q? @ = g X0 d — o@D/

k=1
for all @ € E. In particular, if « is a generator of [E*, so that it has order
g" — 1, then Ng sr(ct) has order g — 1 and therefore generates IF*. It fol-
lows that N, is surjective. As a consequence,

IE*| 4" —1
B g—1"

|KerNg/r| = (6.25)
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Moreover, every element of the form oo (o)), with o € E, clearly
belongs to KerNg,r. Also, for o and 8 in E* we have ao (o)™ =
Bo(B)~!if and only if ¢! = o(aB™"), equivalently «f~! € F*. We
deduce that the set {«o ()™! : & € E*} has (¢" — 1)/(g — 1) elements
and therefore (cf.(6.25)) equals KerNg/r. B

Proposition 6.7.3 Let F C E be finite fields. Let o € E and suppose that
E = Fla]. Then, denoting by f(x) =x" + ap_1x" ' 4+ --- + a1x + ap € Flx]
the minimal polynomial of o, we have

h
—apy = Z ok (a) = Trg/p(a) (6.26)
k=1
and
h
(—1'ag = [ [ o* (@) = Ngje(a). (6.27)
k=1
Proof. By virtue of Corollary 6.6.4 and Corollary 6.6.5 it follows that f is fac-
torizable over [E and its roots are precisely the elements of@), k=1,2,...,h.
That is, f(x) = (x —a)(x — o (a)) - - - (x — o' 1(@)), so that (6.26) and (6.27)
follow. O

Since, by definition, f(a) = 0, we have f(c*(a)) = o*(f(a)) = 0 for all
k=1,2,..., h;moreoverthe elements c%(«) € E,k = 1,2, ..., haredistinct.

Theorem 6.7.4 Let F C E be finite fields and let « € E. Consider the F-linear
transformation M(a): E — E defined by setting

Ma)p =ap
forall B € E. Then we have
Tri(a) = Trgp(or)
and
det A() = Ng,p(c).

Proof. Seth = [E : F].
We first prove the statement under the hypothesis that E = F[«]. In this case
(see Proposition 6.2.4), we have that the elements

La,a?, ... ot (6.28)
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constitute a basis for the vector space E over [F and the minimal polynomial
f € F[x] of « has degree h. We denote it by

f) ="+ a7+ ax+a. (6.29)

Since f(A(x)) = A(f(«)), we have that f is the minimal polynomial of L(«) €
Endr(E). Since the characteristic polynomial

Pi(a)(x) = det(x] — A(a))

of L(«) also has degree &, from the Cayley-Hamilton theorem, we deduce that,
in fact, f = p(w)-

Keeping in mind (6.29), we have that the matrix M, ) representing A(«) in
the basis (6.28) is the so-called companion matrix of f, namely

000 000 —a
100 000 —a
010000 —a

M) = . . (6.30)
000 - 010 —a
000 “ 00 1 —a

From this we deduce that
Tri(e) = TrtMj (o) = —ap—1 and det (o) = det M, ) = (=1 ay.  (6.31)

Comparing (6.26) and (6.27) with (6.31), the statement follows in the case
Fla] = E.

Suppose now that F[«] is a proper subfield of E. Then m = [[F[«] : F] divides
h (cf. Proposition 6.6.1). Let {u; : j =1, 2, ..., h/m} be a vector space basis of
E over F[a]. Moreover, as before, the elements o, k = 1, 2, ..., m, constitute
a basis of F[«] over IF. As a consequence of these facts,

@fu;  k=1,2,....m; j=1,2,...,h/m)

is a vector space basis of E over F. Thus, setting U; = spangp{au; : k =
1,2,...m}for j=1,2,..., h/m, we have the direct sum decomposition

h/m

F=@u,
j=1
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into A(a)-invariant subspaces. Moreover, A(a)|y; is represented by an m x m
matrix M. r@ly, (in fact, independent of j) with coefficients in [F as in (6.30)

000 --- 000 =-—a
100 --- 000 -—ag
o100 --- 000 -
My, = ;
000 --- 010 —au
000 - 00 1 —au

namely the companion matrix of the minimal polynomial f(x) =x" +
A1 X"V + - 4+ a1x + ag € F[x] of «. Then, on the one hand, we have

h/m h/m

Tr@) = Y Tr (Me)ly) = Y Tr My, ) = %(—am_l)
=1 =1

and
h/m h/m
det (@) = [ [ det (A(@)ly,) = [ ] det (Mx(a)h,f) = ((=1)"ap)""".
j=1 j=1
On the other hand,

h m

h h h

Tre/m(a) = Y o¥@) =, -~ > ofa) = —Tira)/r(@) = —(=an-1)
k=1 k=1

where the last equality follows from (6.26), and

h m h/m
h/m m m
Nep(a) = [ Jo*(e) =. (1_[ a"(a)) = (Nipap(@)"" = (= 1)"ap)"
k=1 k=1

where the last equality follows from (6.27), and =, both follow from the equal-
ity Gal(E, Fla]) = (0™) (cf. Proposition 6.6.3). Thus, the general case follows
as well. O

6.8 Quadratic extensions

We now concentrate on the case of quadratic extensions. We split the analysis
according to the parity of the characteristic p of the fields. Our purpose is to pro-
duce matrix representations of quadratic extensions similar to the well known

. . —b
matrix representation of the complex numbers z = a + ib — <Z ), for all
a

a, b € R. We begin with some general considerations.
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Let p be a prime number, & a positive integer, and set g = p. Then
Gal(F./FF,) is a cyclic group of order two. More precisely, it is generated
by the automorphism o defined by o («) = «? for all @ € Fp, which clearly
fixes every element o € I, and is involutory (cf. Corollary 6.4.3 and Propo-
sition 6.6.3). By virtue of Proposition 6.5.4, the polynomial ring IF,[x] con-
tains (¢*> — ¢)/2 irreducible monic polynomials of degree 2 and F, may be
obtained, abstractly, by adjoining one of the roots of any of these. Moreover, if
Xt+ax+be F,[x]is irreducible over F, and «, B are its roots, then o (@) = B
(and 0 (B) = a). Indeed, since o fixes I, pointwise, we have

0(052 + ax + b) = (7(01)2 +ao(x)+b

so that o () is still a root. But o fixes exactly the elements in I, so that, since
a ¢ IF,, we necessarily have o («) # o and therefore o (o) = B.
We first examine the case when p is odd.

Theorem 6.8.1 Suppose p is odd. Let n be a generator of the cyclic group I
(cf. Theorem 6.3.3) and denote by *i the square roots of . Then i ¢ F, and
{1, i} is a vector space basis for B over F . Moreover, ¥ is isomorphic (as
an F4-algebra) to the algebra M, (F,, n) € Ma(F,) consisting of all matrices

of the form
a np
B «

with o, B € Fy. The isomorphism is provided by the map MM,(Fy, n) — Fp
given by

("‘ ”ﬂ> > o+ i (6.32)
B«

foralla, B € F,. Moreover
ola+if)=o—ip
foralla, B € R,

Proof. First observe that, under our assumptions on the parity of p, the order
g — 1 of the cyclic group Iy is even. If we had i € F, then we would have
T =) =6 =1
which is impossible (since 1 has order g — 1).
Alternatively, 1 cannot be a square in [y since, otherwise, every other ele-
ment in I would also be a square, contradicting Proposition 6.4.4.
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As aconsequence, the polynomial x> — 1 € F,[x]is irreducible and therefore
]qu = F,[i] so that, by Proposition 6.2.5, {1, i} is a vector space basis of IE"qz over
IF,. We thus have

Fp={a+if:a, BelF,
with addition given by
(a1 +if1) + (2 +if2) = (a1 + a2) +i(B1 + B2)
and multiplication given by
(a1 +ip1)(ea +iB2) = (1o + nP1B2) + i(a1fa + a2 1)
for all , a2, B1, B2 € F,;. Moreover, since o (i) = —i we also have
ola+if)=oa—iff
for all , B € IF,. Finally, as

(‘11 Uﬁl) (052 Uﬂ2>2(01a2+ﬂﬂ1ﬂ2 77(0!1/32+062ﬂ1))
B a B aifr+apfi oo +npipe

we deduce that the map (6.32) is indeed an isomorphism. ]

Corollary 6.8.2 Suppose p is odd. Then the (q* — q)/2 irreducible monic
quadratic polynomials in F,[x] (cf. Proposition 6.5.4) are exactly the
polynomials

Pap(x) = x> — 2ax + (¢ — B*n)
where o € Fy and p € F.

Proof. Any irreducible monic quadratic polynomial over [, is necessarily of
the form [x — (¢ +iB)] [x — o(a +iB)], with a, 8 € F, and B # 0. Since
o(a +if) = a — if, the statement follows. (Note that p, _g = pu. g.) O

We now examine the case p = 2. Recall (cf. Proposition 6.4.4) that, in this
case, all elements in [F,: are squares.

Theorem 6.8.3 There exists j € Fyn \ Fon and w € Fy such that
P+ j+w=0 (equivalently, j*= j+ w)
and

Fom = Fu[J].
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Moreover, the polynomial x> 4+ x + w € Fy[x] is irreducible and the map
o wp .
= a4+ 6.33
(/3 o+ ﬂ) i (639

vields an (Fon-algebra) isomorphism of the algebra My(Fy, @) S My(Fon)
consisting of all the matrices of the form

(a wpB )

B at+p

where a, B € Fai, onto the field Fyn. Finally,
ol@+jp)=(+p)+jB

forall o, B € Fon.

Proof. Since F,2 is a quadratic extension of F,s, there exists an irreducible
polynomial f(x) = x> 4+ ax + B € Fy[x] such that Fys = Fa[ ], where j €
Fyu \ Foi is a root of f. Note that o # 0: otherwise, the polynomial f(x) =
x* + B would be reducible since every element in Fy is a square.

Thus, setting y = xa~! and w = Ba=2 € Fou, the equation x> + ax + 8 =0
becomes a?y*> + o’y + B = 0, equivalently, y* +y + o = 0.

Let then j, j/ € Fpu be the roots of x> + x 4+ w, so that (x — j)(x — j)) =
x4+ x4+ o, yielding j+j =1 and jj/=w. Thus j/ =1+ j=w;"' and
j?> = w+ j. As a consequence, in the basis {1, j} of Fyu over F,i, addition
and multiplication are given by

(a1 + jB1) + (a2 + jB2) = (a1 +a1) + j(B1 + B2)
and

(ay + jBi) o + jB2) = (1ax + wBi1B2) + jlafo + cafy + B1B2)  (6.34)

1

for all oy, &, B1, B2 € Foi. Clearly, o(j) = j = 14 j = wj~' and therefore

ola+jp)=(+p)+jB

for all &, B € F»i. Finally, we have

(051 wpi ) <(¥2 wPa >
Bi o+ By Br ar+ B
_ ( aar + wpPi o w(o B+ + B1B2) )
aify +a2f1 + BB iz +wPifr + a1 By +az2B1 + P18

for all &y, ez, B1, B2 € Foi. From (6.34) we deduce that the map (6.33) yields
the desired isomorphism. O
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Corollary 6.8.4 The 2*'=' — 2"=1 jrreducible monic quadratic polynomials in
o [x] (cf. Proposition 6.5.4) are exactly the polynomials

Gup(¥) = X* + x+ (@ +af + fro)
where B € 3, and a € Fy.

Proof. Any irreducible monic quadratic polynomial over Fy: is necessarily
of the form (x + (a + jB)) (x +o(a + jB)) witha, B € F, and B # 0. Since
o(a+ jB) = (e + B) + jB, the statement follows. (Note that g, g = g g if
and only if 8/ = B and o’ € {&, @ + B}). O

In view of the next chapters, we set
od=o(a)

and call it the conjugate of o € F 2. Explicit expressions are given in Theorem
6.8.1 and Theorem 6.8.3. Note also that

Nr,/r, (@) = aa
and
Trqu/]Fq(a) =ua+o

for all o € . Moreover, @ = @ if and only if & € I, (see also [86]).
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7
Character theory of finite fields

In this chapter we give an introduction to the character theory of finite fields.
Our exposition is mainly based on the books by Ireland and Rosen [79], Winnie
Li [95], and by Lidl and Niederreiter [96]. Actually, one of the main goals is to
present the generalized Kloosterman sums from Piatetski-Shapiro’s monograph
[123], which will play a fundamental role in Chapter 14 on the representation
theory of GL(2, F;). We also introduce the reader to the study of the number of
solutions of equations over finite fields. This is quite a vast and difficult subject,
which culminates with very deep results such as the Weil conjecture, proved by
Deligne (see [95]). Finally, Section 7.8, devoted to the FFT over finite fields, is
based on the book by Tolimieri, An, and Lu [160].

7.1 Generalities on additive and multiplicative characters

Let p be a prime number, 7 a positive integer, and consider IF,;, the finite field
of order ¢ = p". An additive character of I, is a character of the finite Abelian
group (IF,, +) (cf. Definition 2.3.1), that is, a map

x:F,—T

such that x (x +y) = x(x)x (y) for all x,y € F, (here, as usual, T = {z € C:
|z| = 1} is the (multiplicative) circle group). We observe (cf. Definition 2.3.1)
that the additive characters constitute a (multiplicative) Abelian group, denoted
by IE/‘\q, called the dual group of IF,. Clearly, if x is an additive character,
then

X0 = x() " = x(=x) = x (%)

197
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for all x € IF,. Moreover, for x,§ € ]ﬁ‘:,, the orthogonality relations (cf. Propo-
sition 2.3.5) are:

— Jq ifx=%§
(x.8)= X (@& x) = . (7.1)
)%F:q 0 ify #¢&.
In particular, taking £ = 1, we have
Z x(x) = —1forall x # 1, (7.2)

*
xely

since er]F,, x(x) =0and x(0) = 1.
The principal (or canonical) additive character of IF, is defined by setting,
forallx € IF,,

Xprinc(x) = exp[27iTr(x)/p], (1.3)

where Tr = Try,_/r, denotes the trace (cf. (6.22)) and, as usual, we identify F,
with {0, 1, ..., p — 1} to compute the exponential. Since Tr is a surjective [F -
linear map from IF,; onto I, (so that, in particular, Tr(x + y) = Tr(x) + Tr(y) for
allx, y € F,) by Hilbert Satz 90 (cf. Theorem 6.7.2), X princ is indeed a nontrivial
additive character.

In the following we present another explicit isomorphism between (F,, +)
and its dual group I@ (cf. Corollary 2.3.4).

Proposition 7.1.1 Let x be a nontrivial additive character of F,. For eachy e
F, define x,: F, — T by setting

Xy (x) = x (xy)
forall x e F,. Then x, is also an additive character of Fy, and the map

v IE}—)IETI
y = Xy

is a group isomorphism.

Proof. The fact that ¥, is an additive character and that W is a group homomor-
phism follow immediately from the distributivity law in IF,. Indeed,

X1 +x2) = x((xr +x2)) = x x1 + yx2) = x (x1) x Ox2) = xy(x1) xy(x2)
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and

Xyz(X) = x (v + 2)x) = x (yx + z2x) = x (yx) x (2x) = xy(x) ¥ (x)

for all x, x1, x2, y, and z in IF,.

Suppose now that y # 0. Since x is nontrivial, we can find X € F, such that
x(X) # 1. Let x = y~'x, then Xy(x) = x(yx) = x(X) # 1. Thus y ¢ Ker(W).
This shows that W is injective. Since |]I:’:,| = |IF,| = g (cf. Corollary 2.3.4), we
deduce that W is also surjective. U

Exercise 7.1.2 Show that ]1:“:2[ = {xs: : 5.t € Fy}, where
X5t (X5 ¥) = Xprinc(sX + 1Y) (7.4)
forall s, ¢, x,y, € F,.

Corollary 7.1.3 Let x € fF; be a nontrivial additive character. Then for all 7 €
F, we have

g—1 ifz=0
D x) = ,
bt -1 ifz#0.

Proof. It is an immediate consequence of Proposition 7.1.1 and (7.2). O

If we choose x = Xprinc, We get the canonical isomorphism between Iy and IF;:

Xy(x) = exp[2miTr(xy)/pl; (7.5)

in particular, x; = X = Xprinc, Where 1 is the (multiplicative) identity element
in the field F, and xo = 1, the trivial character.

A multiplicative character of I, is a character of the finite cyclic group
(F*, -) (cf. Theorem 6.3.3 and Definition 2.3.1), that is, a map

w:]FZ—>T

such that ¢ (xy) = Y (x)¥ (y) forallx,y € IE‘;. We observe (cf. Definition 2.3.1)
that the set Iﬁ; of all multiplicative characters is a (multiplicative) cyclic (cf.
Remark 2.3.2) group, called the dual group of I;.
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We can extend a multiplicative character ¢ € I@; to a map F, — T U {0}
(still denoted by /), by setting

0(0) = 0 if ¢ is nontrivial 7.6)
| ity =1. '

Clearly, if ¢ is a multiplicative character, then

YO =y =y =y (%)

forall x € ]F/q*\

Let ¢ € IF;. In the following, we shall often encounter the quantity ¥ (—1):
since ¥ (—1)? = ¥[(—=1)’] = ¥ (1) = 1, we necessarily have ¥ (—1) = %1.
The order of ¥ is the smallest positive integer m such that ™ = 1: clearly, m
divides g — 1, since ¥ (x)?~" = ¢ (x?~!) = (1) = 1 (alternatively, this is an
immediate consequence of Lagrange’s theorem; see Proposition 1.2.12). We
recall (cf. Definition 6.3.4), that x € IFZ is called a primitive element of F, if it
generates ).

Lemma 7.1.4 Let  be a nontrivial multiplicative character of F, and denote
by m its order. Then y(—1) = —1 if and only if m is even and (’m;l is odd.

Proof: Since ¢ (x)" = ¢"(x) = 1 for all x € Iy, all the values of ¢ are m-th
roots of unity. Let also x be a primitive element of IF,. Then v (x) is a primitive
m-th root of 1, so that 1//(x)h #*1forl<h<m-—1.

If m is odd, then —1 is not an m-th root of unity and therefore ¥ (—1) is
necessary equal to 1.

Suppose now that m is even. Then ¥ (x)* = —1ifand only if h = 5 mod m.
Moreover (note that ¢ — 1 is even, because it is divisible by m), x5 =1
—1
(since ¥4~! = 1 but x*= # 1). It follows that

(=) = Yp('T) = Y(x)T

so that

N .
Y(-H=-1& 5
q—1

m

mod m

1 mod?2

is odd.
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Exercise 7.1.5 Fill in the details of the above equivalence % =% modm &
1 =1 mod 2.

Lety, ¢ € I@]. The orthogonality relations are (cf. Proposition 2.3.5):

— Jg—-1 ify=9¢
(V. 0) =) V(o) = . (7.7)
XEZF% 0 ity £ ¢.
As a consequence, if ¥ is nontrivial (taking ¢ the trivial character) we have
> Y =—y(-1) (7.8)
xeF:\(~1)

so that, keeping in mind (7.6),

>y =0. (7.9)

xelF,

The dual orthogonal relations (cf. (2.13)) are

Y Y@y () = {q_l fx=y (7.10)
yef: 0 if x # y.

Let x be a primitive element of IF,. The principal multiplicative character of
[F* associated with x is the multiplicative character ¥,;,. defined by setting

q
Vprine(¥) = exp (;Tﬁ) (7.11)

forallk=1,2,...,qg— 1.

Exercise 7.1.6 Show that v, is a generator of ]ﬁ;.

7.2 Decomposable characters

We fix ¢ = p" and consider the field IF, together with its quadratic extension
Ez. We use the notation at the end of Section 6.8. In particular, if ¢ € F3 then
its conjugate is the element @ = o () € IE:]’Z and we have aa = N]E,z /F, (@) and
o+oa= Tl"[pqz/]yq(a) € Fq.

Definition 7.2.1 Let v be a character of IE‘;;.
One says that v is decomposable if there exists a character ¥ of ) such that

v(a) = ¥ (aeX) (7.12)

forall ¢ € IE;";. If this is not the case, v is called indecomposable.
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Moreover, the conjugate of v is the character v defined by
V() = v(@) (7.13)

forall o € IE‘qZ‘

Proposition 7.2.2 A character v € IE:/;“ is decomposable if and only if v = V.

Proof. Suppose first that v is decomposable. Then, by virtue of (7.12), we have,
foralla € IE‘qif,

V() = v(@) = Y (@) = Y(ad@) = v(a).

This shows that v = V.
Conversely, if v = 7, we may set

Y (@) = v(a) (7.14)

for all o € IF‘q;k Note that this is well defined since, by virtue of Hilbert
satz 90 (Theorem 6.7.2), the map N]qu JF," Iﬁ‘q’zk — F7 is surjective with ker-
nel KerNE,z/IFq =f{aa!:ae Fq;‘}. Indeed, if o, B € IF‘; and ca = B, then
Nﬂi,z /F, (@) = N]E,z /F,(B), that is, afle KerNIqu /F, since the norm is a group
homomorphism. Then there exists y € IF; such that ¢~ = y7 ! so that
v(ep™ = v(y?") =v(y)v(¥) ' =1 (recall that v =7), showing that
v(a) =v(B).

We leave it to the reader to check that  is indeed a character of Fy. By
construction, (7.12) follows from (7.14). O

Proposition 7.2.3 Let v € I@‘ and suppose that it is not decomposable. Then

Z v(B) =0 (7.15)

ﬂE]F‘?;:
BB=a

forall a € Fy.

Proof. Firstof all, we show that there exists y € [, suchthat yy = 1 for which
v(y) # 1. Indeed, otherwise, if a, € ¥ satisfy a@ = B, then aflap !l =
1 and therefore v(ef~") = 1 so that v(a) = v(8). We may then define a char-
acter y of FZ as in (7.14) and this would contradict our assumptions on the
indecomposability of v.
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Thus, for all « € IF:;

DBy = Y vyB) =) Y v(B),
BEFs: BEs: ﬁeﬂf;:
Bh=a BB=a BB=a

where the first equality follows from the fact that y = 1. Since v(y) # 1,
(7.15) follows. U

7.3 Generalized Kloosterman sums

In this section we introduce and study a family of generalized Kloosterman
sums, that we shall use (cf. Section 14.6), following Piatetski-Shapiro [123], to
describe the cuspidal representations of GL(2, IF;) and their associated Bessel
functions, a finite analogue of the classical Bessel functions.

Let g = p" and consider the quadratic extension [, of the field IF,.

Let also x be a nontrivial character of IF, and v an indecomposable character
of IFq;"

We use the notation in Section 6.8 and Section 7.2.

The generalized Kloosterman sum associated with the pair (x, v) is the map
J = Jyv: F; — Cdefined by setting

1
i = > x(w+ dw(w) (7.16)
we]qu*:

wiv=x

forall x € Fy.
We need a few technical formulas involving these sums: we begin with two
results on additive characters.

Lemma 7.3.1 Let z € F¥ and x € F,. Then

_ 21 ify istrivial and/or 7 =0
Zx[tz+t2]= ql fx

e otherwise.

7
Proof. We first observe that the map  : F, — C defined by
X (@) = xltz+12] (7.17)

forallr e E]z, is a character of Elz.
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Now, if x is trivial and/or z = 0, then ¥ is the trivial character and therefore,

Yoxliz+iz =) =) 1=[El=¢—1.

telf; telf telf;
q q

?

Suppose now that x is nontrivial and z # 0. We claim thatthe mapF ,» > ¢ —
tz +tz € F, is surjective. Indeed, the map ¢ + ¢z is a bijection of F. and the
maps > s+ 3§ = Tr[Fq ,/F,(s) is surjective by Hilbert Satz 90 (Theorem 6.7.2). It
follows that the character (7.17) is nontrivial and, by the orthogonality relations
of characters (cf. (7.1)),

doxltz+iEl=) X)) =(X.1)=0.

tEEIZ IE]I*;Z
Since
Xtz +tZ)i—0 = x(0) =1,

the result follows. O

Lemma 7.3.2 Let x € ]15‘:, be a nontrivial character. Let also 7 € Fq;‘ andy € Fy.
Then

Dbt +y+aEFyFol=—g— xb G+ 0+ 2]

ze]F{F*

Proof. We have

> a7ty + ot FyFol= Y x(67'sS)
telf% self,:
& q
SEY+Z

D x0T + 1= Xy v+ D0+ D)

sel3

?
(by (6.25) and setting r = s5) = (¢ + 1) Z x(7'r)
re]F;
+1—xb '+ +2)]
by (7.1) =—(@+D+1—xly' G +20+2)]
=—q—xb 'O+ Do+ -

Proposition 7.3.3 For every x € I, we have

J) = v(=x)j(x).
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Proof. Letx € IFZ Then, by definition of the Kloosterman sum j (cf. (7.16)),

— 1
J@ == x(=y—yw0e
q cF3:
IR
yy=x

_ 1 B |
= = > xlx + 7 (="
qte_Iqu*:
tt=x

— 1
= V(=0)= D Xt +Dv()
teIE‘qz*:

ti=x

= U(_x)j(x)’

where equality =, follows by settingt = —xy~! (sothatt7 = xandy = —xt~"),

and equality =, follows from x(t=! +771) = x =1 + 7.

Proposition 7.3.4 For all x, y € F we have

3 jGw)jw(w ™y w) = —x(=x — y)(=1)j).

*
we]Fq

Proof. We have

> jGaw)jw)v )y (w)

wel}
= i2 Z Z Z Xt +T+s+5+wwisw)

q ¥ rete sclt-
we]Fq teIqu. se]qu.

tI=xw S§=yw
Let us set z = yt(5) . First note that from s§ = yw we get
tsw ! = yt(f)_1 =z

From tf = xw we then deduce

1

2z = yt(3) lyis ™! = yiry(s5) ! = yxwyw 'y = yx.

Moreover,

Y's+y+GFy+=0""s+1+y"'DGE+y+2)

=y 'ss+s+y 'sz+5+y
+Z+y71z§+z+y7122

=w+s+I+5+y+7+1+z+x

=w+s+5+i+i+y+z+2+x

0

(7.18)

(7.19)
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and

Y0+ +D =0+ +y'2)
=y+z+z7+y 'z (7.20)
=y+z+z+ux

Then the calculation (7.18) continues as follows:

1 N
=5 > Y. D xb T cHy+aGFy T —x—y—z—Zv(@)
4 weky; se]F[;: ze]qu*:
SS=Yyw zZ=Xy

1 _ — -
=(ii) = Z Z XD s+y+GFy+ta) —x—y—z—2v()
xe]qu* zthz*:

2Z=xy

1 —
=7 doxlx—y—z—2@ Y xb ' s+y+ G FyFal
ze]Fq;: se]F;

2Z=xy

1
=iy = P x[—x—y—z—2v@{—q— xb ' G+ 20 +21}
zeF{;:

Z=xy

1
== Z x[—x—y—z—-27]v(2)
qze]qu*:

Z=xy

1
-7 Y xl—x—y—z—i+y ' 0+ DG+DIE)

z_e]F;:
2Z=xy
1 _ 1
=) ==X (=x = y(=1) D xG@+ @) — = Y v(@)
q zelFs: 4 zelF%:
2 2
Z=xy Z=Xxy

=) =X (=x = y)v(=1)jxy)

where =;) follows from (7.19), =(;;, follows from Hilbert Satz 90, =;;;) follows
from Lemma 7.3.2, =(;,) is obtained by changing z to —z and because —x —y —
z—2+y 'y + 2 +32) =0, by (7.20), and =, follows from Proposition
7.2.3 and the definition of j (cf. (7.16)). ]

Proposition 7.3.5 (Orthogonality relations) ) .. j(xw)j(yw) = 8¢, for
allx,y € ]FZ
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Proof. By definition of j, we have

Zj(xw)j(yw)— Z Z Z Xt+1f—s—5v(s™ l)

weIFj; weF* te]F; seIFq;

ti=xw s§=yw

(settingz =1s"") = p Z Z Z x(zs+25— 5 —Hv(z)

weFy; se]F* ze]F*

S5 ywzz—xy 1

1
(by (625) = DD o x(@=Ds+E-19) | v).

ZEF;: xqu;f
27=xy”!

If x # y, then z # 1 and, by virtue of Lemma 7.3.1, ZseF; x((z—1Ds+(z—
1)§) = —1, so that

1
p LS [ Sx-ns+a-19 @ =-5 Y v@=0

* % .
ZE]F SG]P;’Z ze]lzz_
2Z=xy”! 2Z=xy”!

where the last equality follows from Proposition 7.2.3.
If x =y, then z = 1 is admissible and, again by virtue of Lemma 7.3.1,

1
=Y D x@=Ds+GE—DH|ve) = —[(q —D= Y v

zeF;: se]lf; ze]F*\{l
27=xy~! 7z—1
Lo s
= ?[(q — D= (=1)]
=1,
where the last but one equality follows from Proposition 7.2.3. U

Corollary 7.3.6 For every x € F we have

-1 ifx =1
S jomioweh =1 I
= 0 ifx 1.
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Proof. Let x € IF;. Then

D iiowe =Y jenimv=y =1

yelF} veFy;
(by Proposition 7.33) = | Y j(x»)j() | v(=1)
yE]F;
(by Proposition 7.3.5) = 4, jv(—1). ]
In the following (see also Section 14.6), in order to emphasize the depen-

dance of the map j from v, we shall write j, (clearly j also depends on ).
Note that, from (7.16) it follows immediately that

Jo = Jvs (7.21)
where ¥ is the conjugate character of v (cf. (7.13)).

Theorem 7.3.7 Let i and v be two indecomposable characters of IE‘q’Q. Suppose
that j, = j, and

plrs = vl (7.22)
Then = v or = V.

Proof. Our first assumption yields

D xGHIRO) = i) = giv®) = Y X+ IG)
yeF,: yeF,:
w=x W=x
for all x € F. Moreover, for y € IF;‘Z and § € Fy, we set z = 5y (e y=262)

andr = zz = 8’2)& so that, taking into account (7.22), from the above formula
we deduce

D B+ = Y x[BGE+DIv() (7.23)
zelF*,: ZEIFZ;Z:

forall7 € Fj and § € T, (the case § = 0 follows from Proposition 7.2.3).

Fix t € Fy. Then the solutions of the equation zz = ¢ may be partitioned into
sets of the form {z, z}. Choose a complete system C; of representatives for such
sets, that is,

{z e ]FZ2 =t} = ]_[{z, z}.

zeC,
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Note (recall Proposition 6.4.4) that if ¢ is a square in F,, say t = u?, u € F*,
then also the singletons {«} and {—u} must be considered (and they coincide if
q is even). We may then write (7.23) in the form

Y x84+ DNRE) + @) — v@) — vE)]

z€C\F,

+ Y xBGE+DIuE —v@I=0, (7.24)

zeCNF,

where C; N IF,, is empty if # is not a square. In any case, the second sum in the
left hand side vanishes by virtue of (7.22).
We now set C, = {z+7Z:z€(}. Since z+7 = Trg, /5, (z) e Fyforall z e

[F2, we have C, C F,. Moreover, every x € C, corresponds to a unique set {z, 7}
(poss1bly Z2=3) because the system

is equivalent to the equation z> — xz + ¢ = 0. In other words, x € C~, determines
{z, z} and the map

¢ — C~z
>4z

is a bijection. Then we may define a function f; : C~, — C by setting

Fx) = n@ +pu@ —v@—vE@ ifz=tz+7=x andz#Z
T nw@ —v(iE@)=0 ifzzzt,zqu, and 2z = x.

Therefore (7.24) may be written in the form
> x@x)fi(x) =0 (7.25)
xeC;

forall 7 € I and é € ;. By Proposition 7.1.1, the functions v/, € L(Fy), x €
CNt, defined by ¥,(§) = x(8x) for all § € I, are distinct characters of I, and
the left hand side of (7.25) may be considered as a linear combination of distinct
characters. Since the characters are linearly independent, it follows that f; = 0
forallr € IF:;, that is,

w(@) + u@ =vi +vQE (7.26)


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.008
https://www.cambridge.org/core

210 Character theory of finite fields

for all z € qu \ IF,. Moreover, since p and v are multiplicative, and zZ =
Nqu /F,(2) € F, for all z € Fp, keeping in mind (7.22), we have

(@) (z) = v(z)v(2). (7.27)

From (7.26) and (7.27) we deduce that the sets {u(z), ©(2)} and {v(z), v(z)}
solve the same quadratic equation, namely,

A2 — [(2) + @A + () = 0.

It follows that {1t(z), 1(z)} = {v(2), v(2)}, that is, u(z) = v(z) or u(z) = v(z),
for each z € F 2 \F,.

Let zp be a generator of the cyclic group ]FZ2 (cf. Theorem 6.3.3). Then
w(zo) = v(z9) yields u = v, while ©(zo) = v(zg) yields u = v. ]

The (ordinary) Kloosterman sums are defined by

K(x;a,b)= Zx(ac—i—bc_l),

N
CE]Fq

where x is a nontrivial element of F, and a, b € F,. For more on these sums
we refer to [96] and the references therein. We limit ourselves to a couple of
elementary identities.

Exercise 7.3.8 Leta, b € IF,.

(a) Show that K(x; a, b) = K(x; b, a);
(b) show thatifa € FZ‘I then K(x; a, b) = K(x; 1, ab).

7.4 Gauss sums

Definition 7.4.1 Let x € I@ and ¥ € ]ﬁ;. We define the Gauss sum of the mul-
tiplicative character ¢ and the additive character x as the complex number
g, x) =Y Yx. (7.28)
xelfy
Note that, by virtue of (4.18) and (4.22), the Gauss sum G(n, p) = t(p, n)
coincides with g(£,, x,), where £, and Y, are the multiplicative and additive
characters defined in Section 4.4, respectively.

Proposition 7.4.2 Denote by xo =1 the trivial character of F, (so that, by
(7.6), it is also the trivial multiplicative character). Then for all x € F, and
¥ € F} we have:

® glxo, x0)=qg—1;
(i) g(xo, x) = —1if x # xo;
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(iii) g(¥, x0) = 0if ¥ # xo;
(IV) g(I/f’ X) = er]Fq I/f(x)x (x) = (W, Y)L(]F,,) lflﬂ 7& X0

Proof. These are all elementary consequences of the orthogonality relations for
the additive and multiplicative characters (in particular (7.2), (7.6), and (7.9)).
We thus leave it to the reader to fill in the details of the proof. U

Note that (iv) shows that for ¢ # o, the Gauss sum g(y, x) equals the
Fourier coefficient (2.15), both of ¥ with respect to x as well as of x |F2 with
respect to . We now present the basic properties of Gaussian sums.

Theorem 7.4.3 Let x, be the additive character as in (1.5), x € I'F\q and €
IF;; Then we have:

(i) g, x,) = Vg, x1) ify # 0;
(i) (¥, ) = ¥ (=g, x);
(i) g, x) =¥ (=g(¥, x);

(iv)
1 1 _
Y== > g X = 8. x1) Y VYK
1 )(E]F/‘\ 1 yeFy
x#xz
if Y # Xo;

W) xlzy = 57 Cyer 80 OV
VD) g(W, 8. ) = Y (=Dg if Y. x # xo:
i) g, Ol = /a i ¥, x # xo;
(viii) g(¥”, xy) = g, Xoy))» Where o (y) =y is the Frobenius automor-
phism.

Proof.

(i) Suppose y # 0. Then

g, ) =Y v &y)

XGF:;

(setting t = xy) = Z Yty Dxi )

N
tefy

=Y Yo O @)
te]F;

=¥ egl¥, x1).
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(ii)) We have:

g0 =Y Yx@)

xe]F:;

=) Y@x(—x)

xelFy

(setting y = —x) = Z Y(=»x»)

yely
= > YDy exo)
yeIF;;

=Y (=g, x).

(iii) By (ii) and recalling that ¥ (—1) = %1 (cf. Lemma 7.1.4), we have:

g, x) =v (=g, %)
=y (—Dg¥, x).

(iv) and (v) are immediate consequences of Proposition 7.4.2 (iii) and (iv),
the Fourier inversion formula (cf. (2.16)), and (i). We leave it to the
reader to fill in the details.

(vi) We have:

g, e, x) = [Z wmm} : {Z YOx (y)}

xelfy yeFy

> vy HxG+y)

x,yEIF;
(settingr = xy~!) = Z w(t) Z xD@+1)]
te]F;; ye]F;
(by Corollary 7.1.3) = (g — Dy (—=1) — Z ¥(t)
teFa\(—1)
(by (7.8)) = (g — DY (=1) = [=¥(=1)]
=qy(—1).

(vii) Recalling, once more, that ¥r(—1) = %1, we have:

le(Wr, )1 = g, x)e(Wr, x)
(by (i) = ¥ (=g, x)g(r, x)
(by (vi)) =gq.
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(viii) We have:
8P, xy) = ) P xy(x)

"
xqu

=D YE)xH)

erF:;

(setting z = x”, and by bijectivity of 0) = Z w(z))(y[U’1 ()]

- *
@e]Fq

(by definition of x,) = > ¥ (@)1 (o' [o(y)z])

zeFy

= Y ¥v@uloo)yl

*
ze]Fq

=gV, Xo))>

where =, follows from Tro o ~! = Tr (cf. (7.3), (6.22), and (6.24)).
U
Even if its module is given by Theorem 7.4.3.(vii), the exact evaluation of a
Gauss sum g(y, x ) is a very difficult problem and only a few special values are
known. See Gauss’ original results in Theorem 4.4.15 for an important exam-
ple. Other cases are in the books by Lidl and Niederreiter [96] and by Berndt,
Evans, and Williams [20].

7.5 The Hasse-Davenport identity

In this section we reproduce Weil’s proof [165] of the Hasse-Davenport identity
[48], which relates the Gauss sums over a finite field and those over a finite
extension. We split it into several preliminary results.

Let us fix ¢ € Jﬁ; and x € ]B:q, with ¢ nontrivial. Moreover, for every
monic polynomial f(x) = x" + a,_1x"~' 4+ -+ + ay € Fy[x], define the com-
plex number A(f) = Ay, (f) by setting, keeping in mind (7.6),

A(S) = Y (ao) x (@n—1). (7.29)

Notice thatif n = 1 then a,_; = ag and therefore A(f) = ¥ (aop) x (ap). Since ¥
is not trivial, we have |A(f)| = 1 if ay # 0, while L(f) = 0if ay = 0. Moreover,
if g(x) = X" + by X' + .- + by € F,[x] then

FO)gx) = X" + (an—t + b )X+ -+ aghy
so that

A(f - 8) = Y(aobo) x (an—1 + bm—1) = A(fIA(Q),


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.008
https://www.cambridge.org/core

214 Character theory of finite fields

that is, the map A: Fj}"“[x] — C is multiplicative (see Notation 6.6.6).
We define the formal power series £(z) = £y, (z) by setting

= Y apzer=>"1 Y apld 130
feFpon(x] k=0 fe]F';""’k [x]

Proposition 7.5.1 The series £(z) converges for all z € C and its sum is given
by
2) =1+gW, x)z.
Proof. Clearly, IF‘;““’O[x] = {1}. Moreover, F;‘“"'l[x] ={x+ap:a0€F,} so
that (recalling Proposition 7.4.2.(iv))
Yo=Y Ylaox(ao) =g, x)-

fEIF;mn'l [x] aop E]Fq

Let k > 2. For every ag, ay— € I, there are exactly ¢~ monic polynomials
of the form x* + a,_1x*~! + ... + ay. Then we have

Yo MH=4¢"7 ) vax(@-) =0,
FEFTFx] 1,40
since, being 1 nontrivial, Zao F, Y (ap) = 0 (cf. (7.9)). O
We have the following formal product development:
1
L(z) = —_—, 7.31
@= Il 1= (7.31)
JCGFZIOH,HT [x]
where the right hand side must be seen as the product
[e.¢]
[ (S
feFgoriTx] \r=0

In other words, the coefficient of z* in £(z) is given by

D A M)A (7.32)

where the (finite) sum runs over all (distinct) fi, fo,..., fs € ]F’;]‘"“*‘"[x] and
ri, 12, ...,y € Nsuchthat rydeg f1 + rodeg fo + - - - + rydeg fy = k.
Indeed, (7.31) then amounts to saying that FEEI™[x] A(f) equals the sum
(7.32). But this simply follows from the fact that f may be written uniquely (up
to reordering the factors) in the form f = f" f;*--- fI* with fi, fo, ..., fs €
]F;“’“"“[x], ry, ra, ..., rs € N, and, since A is multiplicative, k(f{‘ 2’2 cee fI) =

A" A(f2) - A(fo)".
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Let now i > 1 and consider the field extension F: of IF,. We set
V= W o N]th/]pq and X = X© TI']th/]Fq (733)

and observe that ¥ € Iﬁ:;\,, is nontrivial and X € @1.
Also, in analogy with (7.29), we define A = Ay x: F™"[x] — C by setting

(/h

A(F) = W(Ap)X(As-1)
for every monic polynomial F(x) = x* + A X 4+ Ax+ A € IF g lx].

Lemma 7.5.2 Let f(x) =x" 4+ a,_1X""' +--- +aix+ ay be an irreducible
polynomial in Fylx]. Let also h > 1 and set d = gcd(h, n). Then, if F(x) €
I x[x] is an irreducible and monic polynomial that divides f, we have

A(F) = A(f)d.

Proof. We start by observing that, by (6.20), s = 4 equals deg F'. Write F'(x) =
XA+ Ax+ A Let o e Fs be a root of f (see Corollary
6.6.4). Clearly, f is the minimal polynomial of & over I, (see Corollary 6.6.5).
Moreover, by virtue of (6.19), we may suppose that « is also a root of F (if
necessary, we may replace o by o ~¢(«) for some £ > 1). Since hs = g
so that F s 2 [F;n, we conclude that F' is the minimal polynomial of a € I
over [, (again by Corollary 6.6.5). By Proposition 6.7.3 (and the elementary

fact that 0 (—1) = —1), we have

nz=n,

Ao = (=1)'Ng , k(@) = Ng , F , (—) (7.34)
At = ~Trg, 5, (@) = Trs,, 5, (—a0) (7.35)
ao = N, /5, (—a) (7.36)

an—1 = Trp,, /5, (—). (7.37)

It follows that
A(F) = W(A)X(As—1)
(by (7.34) and (7.35)) = WINg, /F , (=)l - X[Trg , /F , (—a)]
(by (7.33)) = ¥[Ng,, 5, o Ni, /s, (—)]-
- x[Tre , /r, © Trg , r , (—00)]
(by Proposition 6.7.1) = W[Nths /Fq(—a)] . X[Tr]gqm_ /mq(—a)]
(again by Proposition 6.7.1) = VINF,./r, © NFW [Fp (=]

- x[Trg . e, © Trg /5, (=)
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. h
(since o € Fyp) = ¥[Ng,,/x,(—a)"/] - x [ET”R'" /m,(—a)]

= (Y [Np,. 5, (—0)1} 4 - {x[Trg, 5, (—)]}i
(by (7.36) and (7.37)) = [ (ap)x (@s—1)]7
= A(f)d. 0

Theorem 7.5.3 (Hasse-Davenport identity) With the above notation (in par-
ticular, (7.33)) we have

gV, X) = (=1 "[g(y, 01",
Proof. Asin (7.30), with ¥ and y replaced by W and X, respectively, we set

L(Z) = Z A(F)Z%ser

FeF™on[x]
q

Then, Proposition 7.5.1 and (7.31) become

1

L@)y=1+gw.x)z= [] T Az

FeFI™[x]

.. —1
(by Proposition 6.6.7) = | | | | 1 — A(F)ZdeeF
feFmon IIT[ ] FG]FHIOI] lrr

Flf

1
B 1_[ [1 — A(f)/dzdee 14}
SR [x]
(setting 7 = Zh) = 1—[ [1 _ )\.(f)h/dzdeg(f)'h/d]_d
fe]Fgmn,in'[X]
h/d—1

[T IT [ -aegtater]™

fEF:'nImn,in [x] =0

h—1
sk 1_[ 1_[ [1 - )‘(f)(ng)degf]71
FEFyT[x] J=0
h—1
(by (7.31) and Proposition 7.5.1) = ]‘[[1 + g(yr, X))’z
j=0
okkok 1—- [—g(lﬁ, X)]hzh
=1—[—g(y. I"Z
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where:

=, follows by Lemma 7.5.2 and recalling that d = gcd(deg f, h);
=, follows by observing that, forn > 1,7" — 1 = ]_[’z;(l)(z —exp(2¢mi/n))
which yields (after dividing by 7" and setting w =z7!) 1 — w" =
]_[Z;'(l —exp(2¢mi/n)w) so that, setting ¢ = exp(2wi/h) and n =
h/d, 1 —w* = [TLAT (1 = ¢ w);
=, the numbers

cldeefj=0,1,...,h—1, (7.38)

are the same as g“‘”, £=0,1,...,h/d, with each number in (7.38)
repeated d times. Indeed, d = gcd(deg f, k) implies that the period of
¢/ is h/d, and if deg f = md then ¢/9¢/ = ¢™id (and ged(m, h) =
1);

=.sss finally follows from the equality 1 — w" = ]_[3’.;5(1 —w) (cf. =).

Then the Hasse-Davenport identity follows from simplifying

L+ gV, X)Z =1—[-g, OI'Z 0

7.6 Jacobi sums

Definition 7.6.1 For a € F, and ¥, ¥, ..., ¥, € IE:*:’;, the associated Jacobi
sum is the complex number

Jo@ri Y ) = Y Y)Yy - Ya(by),

b1,b2,...,bnEFqi
bi+by+--+by=a

with the usual convention as in (7.6).

Note that this sum effectively depends only on n — 1 terms: we can choose
by, by, ..., b, arbitrarily and then b, is uniquely determined. Recall that 1
denotes the trivial character in IFZ.

Proposition 7.6.2 Let a € F, and i, Y, ..., ¥ € IF'E;. Then the following
holds.

i J,1,....1)=qg"";
——

ntimes
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(i) ifa#0
oW1, V2, - ) = Yi(@¥a(a) - - - Y (@1 (Y1, Y2, - Y

(iii) if some but not all of the characters Yy, V2, ..., V¥, are trivial, then

Ja(wlv w21 ) Wn) = O;

@iv) if y, is nontrivial then

Jo(Wi, ¥, Yn)
0 iy Yn#1
Un(=D(g — DLW, Yo, oo s Y) if oY =1
Proof

(1) This is obvious: each term in the sum is equal to 1.
(ii) Setting c; = bja’l, for j=1,2,...,n, fromb; +by+---+b,=a
we deduce that ¢; + ¢ + - - - + ¢, = 1 and therefore

Jo@ o, = Y Y(ac)yalacs) - - y(acy)

€1,€2,...,cn€F:
citcert++e,=1

=Yi@Y2@) - Yul@) Y Yi(e)Pa(cd) - Yalen)

c1,€2,...,cn€F:
crtertte=1

= Yi(@ya(a) - (@i (Y1, Yo, ..., V).

(iii) Up to reordering the characters, we may suppose that ¥, ¥, ..., ¥y
are nontrivial and Yy, Yia2, ..., ¥, are trivial for some 1 <k <
n— 1. Since for all by, by, ..., by € F, there exist ¢"*~! choices of
(bxs1, bkaay - .., by)suchthatby y +byio+ - +b,=a— by — by —
.-+ — by, we have

TV, o) = Y YibOvab) - Yulbe)

bl,bz,...,bnéﬂrqi
bi+by+-++by=a

=¢"" N Y@ || Do v |- | Y v

b] G]Fq bz E]Fq bkEFq

(by (7.9)) =0.
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(iv) First note that we may assume n > 2 because, for n = 1 and v # 1,
the statement immediately follows from (7.6). Then

Jo(ri, o, - Y) = ) Yo b)Yy Y1 (ba )@

aqu b],bz,.“,h,l,| E]Fqi
bi+by+-Aby=—a

(Ya(0)=0) = Z Un(@) a1, Yo, oo Y1)

aeIFj;
(by (i) =/ (W1, Y. ... V)
Y@y (—a)ya(—a) - Y1 (—a)

*
aclfy

= N1 Y. YDV (= DYa(= D) - Y (—1)
D W Y)(@).

M
ae]Fq

Now, if ¥ - - - ¥, is nontrivial, the statement follows from (7.9).

19 Y = Tthen 3 (Y1 - Y)(@) = ¢ — 1 and
Y= DYa(=D Yt (=1) = Y= D) = Y= 1)

(recall that ¥,,(—1) = *1; see Lemma 7.1.4). O
Corollary 7.6.3 Suppose that Vi, V¥, ..., ¥, € ]F"\Z are nontrivial as well as
their product. Then, setting Wo = (Y1 Y - - - ¥,) "', one has

Yo(—1)
S, Yo, Y) = 71 JoWo, Vi, -, Yn)
and
1

J—l(wlv 1//21'~~’w11)= Jo(llfo, wlv'~~’wll)'

qg—1
Proof. Applying Proposition 7.6.2.(iv) with v, replaced by ¥, we get
Jo(Wo, Y1, . ) = (g — DYo(=DJ1 (Y1, Y2, - ).

For the second identity, use 7.6.2.(ii). O

Actually, the term “Jacobi sum” is attributed to J; in [79] and [96], and to
J_1 in [95].
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Proposition 7.6.4 Suppose that ¥, Yo, ..., ¥, € IF'E; are nontrivial as well as
their product. Then, for every nontrivial x € IF,, we have:

_ g, x)g(Wra, x) -+ - (W, x)
gWny - Yy x) ’

Proof. Indeed, by Definition 7.4.1 and (7.6), we have

Ji(, Y, oY)

g, x)e(Wr2, x) -+ - g, X)

x| D vat)x ) || D Yaa)x ()

xi1€F, x€lF, x,€F,

= Z Y ()P (x2) -+ Y () x (1 +x2 + -+ - + x,)

X1,X2,.0, X, €EFy

=Y x@ D> YY) Y

acl, X1,X2,.., X, €F g
XX+ 4x,=a

=D x@Ju(1 ¥, )

acl,

= 1(Y1, Y2, ... ) Z(lﬂllﬂz ~Ym)@)x (a)

"
aeIE‘q

= Jl(wl» I/IZ’ RN I//n)g(wlw2 e 1//m X)s

where =, follows from Proposition 7.6.2.(ii) and (iv). By Theorem 7.4.3.(vii),
g1 - - - Yy, x) # 0, and this observation ends the proof. O

Proposition 7.6.5 Suppose that Yy, V¥, ..., ¥, € IE‘\Z are nontrivial while their
product Y1y - - - Yy, is trivial. Then

Yu(=1)

I, Y, oY) = g1, x)g(W2, x) -+ - Wy X)s

for all nontrivial x € IE’:;. Moreover,
(Y1, Yos e ) = = (DN (1, Y2, e W)
Proof. Since ¥, ' = Y11¥2 - - - Y1, by Theorem 7.4.3.(vi) we have

g(WIIpZ t 1,l/n—lv X)g(l/fm X) = wn(_l)q
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and therefore, by Proposition 7.6.4 (recall also that y,,(—1) = £1; see Lemma
7.1.4),

81, x)8(Wr2s X))+ - (W1, X)
g - Vet X)

L(—1
= Le (q )g(lln,x)g(l//z,x)mg(lﬂn,x)

JiW, Y, ) =

and the first identity is proved.
Note now that the triviality of {1y, - - - ¥, and Proposition 7.6.2.(ii) yield

Ja('(pl’ w27 LR ] 1//11) =J1(1//la w27 ey ‘pn)
forall a € IE‘;. Then

JO(wls 1//27 RN} I//n)'i_(q_ 1)Jl(w1» 1//2’ RN} Ipn)

= ZJa(l/fls MIZ’ cee ‘ﬂ[/n)

ael,

(by Definition 7.6.1) = > > y1(b)¥a(b) - - Yulby)

a€lF, by,by,....b,eF,:
bi+by+-+by=a

= Z Yi(c)ya(ca) - - - Ynlcn)

c1,62,...,cn€F,

ST | Y vated) | D2 vatew

c1€f, c€F, c,€Fy

(by (7.9)) = 0.

Therefore

1
Jl(l/flv 1/’2» R wn) = 1 _qJO(I/fla 1//2’ LR wn)

(by Proposition 7.6.2.(iv)) = —v,,(—=DJ1(¥1, Y2, .oy Yn1). U

Corollary 7.6.6 Suppose that Yy, Vo, ..., ¥, € IF/‘\Z are nontrivial. If their
product Y1\ - - -, is nontrivial then

i1, Yo, )l = "2, (7.39)
while, if Y1y - - - W, is trivial then

i, Y2, -, )| = g2, (7.40)
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and

oW1, Y2, - .o, )l = (g — Dg" 2/, (7.41)

Proof. (7.39) follows from Theorem 7.4.3.(vii) and Proposition 7.6.4. Also,
(7.40) follows from 7.4.3.(vii) and Proposition 7.6.5. Finally, (7.41) follows

from Proposition 7.6.2.(iv) and (7.39). ]
Exercise 7.6.7 Let Y, V2, ..., Yy € IFAZ and suppose that they are not all triv-
ial. Denote by W, W,, ..., ¥; € Ith their corresponding extensions as in

(7.33). Prove that

S, Wy, W) = (= DPVED T (g, Y, ).

Hint. Use Proposition 7.6.2.(iii) if some character is trivial, then apply Propo-
sition 7.6.4, Proposition 7.6.5, and Theorem 7.5.3.

For more on Jacobi sums we refer to the aforementioned book by Berndt,
Evans, and Williams [20].

7.7 On the number of solutions of equations

This section is based on the original paper by Weil [165] and the monographs
by Ireland and Rosen [79], Lidl and Niederreiter [96], and Winnie Li [95]. It
contains very important results that led Weil (ibidem) to the statement of his
celebrated conjecture, solved by Deligne [52] (see also [95]).

Let r € N and f(xo, X1, ..., %) € Fy[xo, x1, ..., x,]. We denote by Ny the
number of solutions of the equation f = 0, that is,

Np = [{(xo, x1, -, x) € By fxo, x1, 0, 20) = 0},

where ]F;*l is the (r + 1)-dimensional vector space over F,. Moreover, if u €
F, and n € N, we denote by N,(u) the number of solutions of the equation
x" = u, that is,

Ny(u) = {x e F, : x" = u}|.
Lemma 7.7.1
(1) Ifd = gcd(n, g — 1) then
1 ifu=0

N,(u) = {d ifuisad-th powerin FZ‘I

0 otherwise.
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(i) If f(xo,x1,..., %) = aoxy +aix|' +---+ax} with a; € F; and
integersn; > 0, fori=1,2,...,r, then

Ne= D0 Na(o)Na, () N, ().
Ug,U ..., ur€fy:
i aiu=0

Proof.

(i) The case u = 0 is obvious; the remaining is just Remark 1.2.14.
(i) Put xf’ =u; fori=0,1,...,r, and count the number of solutions of
these equations. U

Lemma 7.7.2 With the same notation as in Lemma 7.7.1.(i) we have

No(u) = Y yr(w).
WEFA;;:
vi=1

£ J— d *
Proof. Suppose first that u € F} is a d-th power, say u = v, for some v € Fy.

Then
Do =) v
WEIFAj;z x//e@:
yi=1 yi=1
= > ol
1//6@,;:
yi=1
=y eF;:yd =1}
=d,

where the last equality follows from Proposition 1.2.12 applied to the cyclic
group IE/‘E; (recall also Corollary 2.3.4 and Exercise 7.1.6).

Suppose now that u is not a d-th power and let o be a generator of ;. Then
we can find k, » € N with 0 < r < d such that u = ", Thus, if ¢ = 1, we
have

Y(u) =y (a’)
and we may think of ¥ as a character of the quotient group Iy /H, where
-1
H={@' 0 eF;}z{akd:kzo,l,...,qT}.

Since I /H is cyclic of order ¢ — 1/((qg — 1)/d) = d, we conclude that {y €
I@; : ¢ = 1} may be identified with Iﬁ/\l-l, so that, using the dual orthogonal
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relations (7.10), we deduce that

oY= Y v(Hy)=0.

veF;: yeFy/H
yi=1
To conclude, in both cases, we may invoke Lemma 7.7.1.(1). O

In the following we use the notation
E={Wo, ¥, ¥ € ET iy ALY =1,i=0,1,....r)
and
E1 ={(Wo, ¥1,.... V) € E: Yoy -+ Y, =1},

Theorem 7.7.3 (Hua-Vandiver [77], Weil [165]: the homogeneous case)
Let f be as in Lemma 7.7.1.(ii) and set d; = gcd(n;, g — 1), fori =0,1,...,r.
Then

Ne=q'+ Y WolagYnlar") - vola; Voo Y. ... W)

o, 1., ¥ )EES
(7.42)
and
r=1
INt —q'| <(g—1g > M, (7.43)
where M = | E4].
Proof. From Lemma 7.7.1 and Lemma 7.7.2 we deduce that
Ne= ) Do Yol () Y uy)
o, UL Uy €F T o 1//,-6]1}\;:
Licoaiti=0 ydi_y i 01,
= > Yolag Walar) - Yla )
Yo, Ve I/Iréﬂjfji
Yli=1, i=0,1,..r
> wolaouo)i(aruy) -+ Yo(aruy)
ug,uy,....,ur €Fy:
Yizo aiui=0
= > Yolag Walarh) - Yela; Wo(Yo, Y, -, W),
Yo, 1. €

Then (7.42) follows from Proposition 7.6.2.(1), (iii), (iv). Moreover, we deduce
(7.43) from (7.42) and (7.41). O
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We now consider the equation

apxy +axy' +---+ax) =b, (7.44)
where ng, ny, ..., n, are positive integers and b € FZ We set
fxo,x1, ..., %) =aoxy’ +arx|' +---+ax —b

and
Ny = {0 x1.....5) € FH s f(xo.xp, ..., x,) = 0}).
Theorem 7.7.4 (Hua-Vandiver, Weil: the non-homogeneous case) With the

notation above, and setting againd; = gcd(n;,q — 1),i =0, 1, ..., r, we have:

Ne=q'+ Y oy ¥)0b)
Yo, ¥1,....¥r)EE

“Yolag i) - Yola; DI o Y- W) (7.45)
and
INf —¢'| < Mq'T + Mg (7.46)
where, as before, M = |E|, and M' = |E \ E,|.
Proof. Arguing as in the proof of Theorem 7.7.3 we get

Ne= ) S ooV ) ()

o, Ut Uy €F T o 1//,6]1?[’;:
r

Yoo aiui=b ,/,If’izl, i=0,1,...,r

= X Yol b 'b) - vila;'b)
Yo, V¥iseens 11/,.5113;;
yii=1, i=0,1,...,r

Z Yo (b~ aguo) ¥ (b~ ayuy) - - - Y, (b~ a,u,)

ug,up,....u €Fy:
Z,f:ob’la,'u,zl
= ) Govn v Golay Wilarh) - ila; Wi (Wo, Y. )

and (7.45) follows again from Proposition 7.6.2.(i),(iii), while the estimate
(7.46) follows easily from (7.39) and (7.40). U

Corollary 7.7.5 With the same notation as in Theorem 7.7.4 we have

INf — ¢'| < (do — 1)(dy — 1)---(d, — 1)q?.
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Proof. Just note that M + M’ = |&| = (dy — 1)(dy — 1)+ (d, — 1). O

Remark 7.7.6 Note that, both in Theorem 7.7.3 and in Theorem 7.7.4, if d; = 1
for some i, then Ny = ¢". This is obvious: for instance, suppose that ny = 1.
Then, for any choice of xi, x,, ..., x, € Fy, setting

1
X0 = —a—[alxrl“ +axy? + - +ax)" — bl
0

yields a solution of (7.44). Moreover, since the exact formulas and the estimates
depend only on the numbers dy, dj, . . ., d,, one may assume that ng, ny, ..., n,
are divisors of g — 1.

Corollary 7.7.7 Let p be a prime number, ngy, ny, ..., n, positive integers,
and ag, ay, ..., a,, b € Z. Then the number N(p) of (non-congruent) solutions
(x0, X1, - .., %) € Z'H! of the congruence

apxy +aix;' +---+ax =b mod p
satisfies the condition
IN(p) = p'I < (ng — Dy = 1) -+~ (n, — Dp'"™.
In particular,

lim N(p) = +o0.
p—>+00:

p prime
Proof. This follows immediately from Corollary 7.7.5 after observing that n; >
diforalli=0,1,...,r. OJ
We conclude this section with an exercise.

Exercise 7.7.8

(1) Prove that for every integer k > 0

S 0 ifk=0or(g—1)Jk
“|-1 ifk>0and(g— Dk

xelF,

(here we assume 0° = 1).
Hint: For k > 0 use a generator o of Fy.
(2) Show thatif f € Fy[xi, x2, ..., x,] and deg(f) < n(qg — 1) then

Z flay, a0, ..., a,)=0.

ap,o,...,a,€F,

Hint: from (1) deduce the statement for a monomial.
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(3) Show thatif f € Fy[xi,x2,...,x,Jand FF =1 — f77! then

Nf= Z F(al,(XZ,--"an)r

ay,0,...,a,€F,

where Ny is seen as an element of IF,.

(4) (Warning’s Theorem [164]) Prove that if f € F,[x1, x2, ..., x,] and
deg(f) < n, then Ny is divisible by p.
Hint: from (2) and (3) it follows that Ny = 0 mod p.

(5) (Chevalley’s Theorem [39]) Show that if f € F,[x(, xo, ..., x,] sat-
isfies £(0,0,...,0) =0 and deg(f) < n, then Ny > 2. In particular,
f = 0 has a nontrivial solution.

Remark 7.7.9 Chevalley’s theorem was conjectured by E. Artin in 1935 and
immediately proved by Chevalley and generalized by Warning. The proof
sketched in the above exercise is due to Ax [16]. Warning, actually, proved
that Ny > g4 see the monograph by Lidl and Niederreiter [96], where
these results are proved also for systems of polynomials.

7.8 The FFT over a finite field

In this section, following again [160], we describe the matrix form of sev-
eral algorithms for the additive Fourier transform over I, with g = ph, p=>3
prime, and &4 > 1. We generalize Rader’s algorithm discussed at the end of Sec-
tion 5.4. The original sources are [2] and [14].

The Fourier Transform over I, is defined as in (2.15) by setting

60 =) fox (7.47)

xelF,

forall f € L(F;)and x € IE":]. However, to keep notation similar to that in Sec-
tion 5.4, we avoid conjugation for x when describing the matrix representing
(7.47). By means of Theorem 6.3.3, we fix a generator « of the cyclic group [y
and we introduce the following ordering for the elements of IF,:

0,0 =1,a,0% ...,a772. (7.48)

Then, using the representation (7.5), we define the Fourier Matrix Ay, of I, by
setting

Ap, = , (7.49)
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where

q—2

Cp1 = (exp[ZTL’ iTI’(OlkJrj)/p])k,j:O

(7.50)

is the associated core matrix. C,_; has the following property: its (k, j)-entry
depends only upon k + j mod g — 1. A matrix with this property is called
skew circulant mod g — 1. In particular, C,_; is Hankel and therefore sym-
metric. Note also that in [51] it is given a different definition of skew-circulant
matrices, but we follow the terminology in [160]. Clearly, (7.49) represents the
matrix form of Rader’s algorithm over IF,,. Now we describe three block decom-
positions of the core matrix C,_;. First of all, we assume that 4 > 2 so that
g — 1 = p" —1is not a prime number (for instance, it is divisible by p — 1).
We begin with a description of an analogue of the Cooley-Tukey algorithm
due to Agarwal and Tukey. Suppose that ¢ — 1 = mn is a nontrivial (arbitrary)
factorization of ¢ — 1. Denote by

B = (a™ (7.51)

the subgroup generated by «”. Clearly, B is cyclic of order n and we have the
coset decomposition

m—1
% k
IFq = ]_[ o"B.
k=0
Now we choose a different ordering for I, (in place of (7.48)): we first order
B by setting
La™ o™, .. o (7.52)
and then we order IF,:
0,B,aB,...,a" 'B. (7.53)

The core matrix corresponding to this ordering has the form

C(0,0) Cc,1) CO,m—1)
C(1,0) C(,1) C(l,m—1)
. . ) . (7.54)
Cm—1,0) Cm—1,1) ... Com—1,m—1)
where C(r, ), with 0 < r, ¥ < m — 1, is the n x n matrix
, , n—1
Clr, ¥y = (exp[ZniTr(oz’“HS“ >m)/p]) L (7.55)

Note that C(r, ') is skew-circulant mod n. It follows that (7.54) is a Hankel
(actually skew-circulant mod nm) matrix whose blocks are Hankel (actually
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skew-circulant mod n) matrices. A further property is presented in the following
proposition.

Proposition 7.8.1 Set

010 0
0 01 0
Sp=1: ¢ R I (7.56)
000 1
1 00 0
Ifr+71 =r +r, mod mand
m=r+r —r —r (7.57)

for some positive £, then
C(r,¥) = SLC(r1, 1))
Proof. From (7.57) we deduce that
r+r+ G+ m=r+r+U+s+s)m
so that

[C(r, sy = [COri, I ses = [SsC (1, FD]suy s
where s + £ must be considered mod #. O

Remark 7.8.2 Clearly, the matrices (7.50) and (7.54) are similar and the sim-
ilarity is realized by means of a permutation matrix (recall Corollary 5.3.2).
More precisely, by means of the permutation of F that transforms the ordered
sequence (7.48) into the ordered sequence (7.53). The easy details are left to
the reader and the same remark holds true for the block decomposition (7.59).

Now we give an analogue of the Good formula (Corollary 5.4.13).
Suppose, as before, that g — 1 = nm. We now also require that gcd(n, m) =
1. By Proposition 1.2.5 we have

Lywn = Ly @ Zy,. (7.58)

More precisely, the generator of Z,, is n and the generator of Z, is m (for
instance, take a = 1 in the proof of Proposition 1.2.5, or use Bezout’s identity
(12): 1=um+on=m=1 modn and n =1 mod m). Setting A = («")
and recalling that B = (o) (cf. (7.51)), (7.58) yields the multiplicative decom-
position

* A
q:AXB
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with A (respectively B) multiplicative cyclic of order m (respectively n). Then,
we may replace the ordering (7.53) by

0,B,a"B,a™B, ...,a" "B,

where B is ordered again as in (7.52). With this new ordering, the core matrix
has the form

C(0,0) co.n ... COm—1)
C(1,0) ca, 1y ... C,m—1)

. . _ (7.59)
a(m—ll,O) G(m—.l,l) 5(m—1.,m—1)

where C(r, '), with 0 < r, ¥ < m — 1, is the n x n matrix

Ci r,r) = (exp[ZniTr(ot(““’J)”HSH/)’”) / p])

n—1

s,5'=0 ’

The Cs have the same properties of the Cs in (7.54). Moreover,
Crr'y=Clri. 1)

ifr+ v = r; 4+ r; mod m. Setting T (r) = 5(r, 0), matrix (7.59) takes the form:

TO) T({) --- Tm—=1)
T(1) TQ2) --- T(0)
T(m.—l) T(.O) T(m.—Z)

This matrix is block skew-circulant mod m and each block is skew-circulant
mod 7.
h_
We consider now a particular case of (7.54). We take m = ”pfll and n =

p — 1. The matrix S,_; is as in (7.56). Set also w = e2™i/7 and ¢ = ™. Note
thatnow B = Zj and ¢ € I, is a generator of this group (recall Corollary 6.3.5).

Theorem 7.8.3 (Auslander, Feigh, and Winograd) Define
v:{0,1,...,9—1}—>{0,1,..., p—2} U {—o00}
by means of the relation

Tr(a”) = &' if Tr(a") # 0
v(r) = —o0 if Tr(@") =0
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forr=0,1,...,9— 1. Set also
-1 -1 .-+ —=1
-1 -1 --- -1
11
Then the matrix (7.54) may be factorized as
[Ln ® C(P)IS,

where we use the notation in (5.27) and

—v(0) —v(1) —v(m—1)
S i) Spfl . Spfl
S—v(l) S—v(2) . S—v(m)
S — -1 p—1 p—1
—v(m—1) —v(m) —v(2m-2)
Sp—l Sp—l Sp—l

and
p—2

cp) = (o)

Proof. First of all, recall that the trace is IF ,-linear by Hilbert Satz 90 (cf. The-
orem 6.7.2). Therefore, since ¢ = a™ € ), in (7.55) we have

k,j=0

Tr(a/ ™ ™) = Tr(a™ ™) = & Tr(e™"). (7.60)
‘We consider two cases.

First case: Tr(a’*") # 0. Then Tr(a’ ") = "0+ so that (7.55) becomes

oSt vt

[C(rv r/)]s,s’ =w
On the other hand, since S;f] = (Si—e, j)f ;‘jo’ we have
p—1

— r s+t
[C(P)S _U(H_ )]s,s’ = Za)(E 8z—v(r+r’),s' =w

st i)
p—1 ’
t=0

Second case: Tr(e”*") = 0. Then, by means of (7.60), equation (7.55) becomes

C(r,r) =
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Moreover, since ), .p @ =Y = 0, we have
p—2
[C(P)S, 2115 ngm _ Z o = 1.
t=0 xelfy,
It follows that
11 1
11 - 1
Cps,s=|. . . .|=Ccur.
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8
Graphs and their products

This chapter is an introduction to (finite) graph theory with an emphasis on
spectral analysis of k-regular graphs. In Section 8.2 we study strongly regu-
lar graphs with a description of the celebrated Petersen graph and the Clebsch
graph: the latter, in particular, is also described in terms of number theory over
the Galois field F¢. In the subsequent sections, we describe bipartite graphs
as well as three basic examples (the complete graph, the hypercube, and the
discrete circle) based on the theories developed in Chapter 4. Other explicit
examples can be found in Section 8.8, where we give a detailed exposition of
various notions of graph products, culminating with the study of the lamplighter
graph, of the replacement product, and of the zig-zag product, in Section 8.11,
Section 8.12, and Section 8.13, respectively. See also our first monograph [29].
In Chapter 9 we shall focus on more advanced topics such as the Alon-Milman-
Dodziuk theorem, the Alon-Boppana-Serre theorem, and explicit constructions
of expanders.

8.1 Graphs and their adjacency matrix

An undirected graph is a triple G = (X, E, r), where X is a nonempty set of
vertices, E is a set of edges, and r: E — P(X) is a map from the edge set into
the power set of X such that0 < |r(e)| < 2 (asusual, | - | denotes cardinality). If
e € E satisfies r(e) = {x}, then we say that e is a loop based at x. We denote by
Ey={e € E : |r(e)| = 1} the set of all loops of G and denote by E; = E \ Ey =
{e € E : |r(e)| = 2} the set of remaining edges. Moreover, if there exist distinct
edges e, ¢’ € E such that r(e) = r(e), equivalently, if the map r is not injective,
we say that the graph G has multiple edges. On the other hand, if the map r is
injective, that is, G has no multiple edges, one says that the graph is simple.

235
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Thus, a simple (undirected) graph without loops can be regarded just as a pair
G = (X, E), where X is the set of vertices and any edge ¢ € E is a two-subset
{x, y} of (distinct) elements of X (we identify e with r(e)).

A directed graphis atriple G = (X, E, 7'), where X is a set of vertices, E is a
set of (oriented) edges, and ¥: E — X x X, called an orientation of G, is a map
from the edge set into the Cartesian square of X. Writing r(e) = (e_, ey ), we
say that e_ (respectively e, ) is the initial (respectively terminal) vertex of the
oriented edge e € E. Note that a directed graph G = (X, E, 1) can be viewed as
an undirected graph G = (X, E, r) by setting

r(e) ={e_,ei} 8.1

forall e € E. Clearly, e € E is aloop if and only if e_ = e,.. Conversely, given
an undirected graph G = (X, E, r), for every e € E; we may arbitrarily choose
a labeling of the two elements in r(e) and write r(e) = {e_, e }. This defines
an orientation 7: E — X x X by setting

o) (x,x) if e € Ey and r(e) = {x}
A P e;) ifeeE andr(e) = {e_, es).
Note that there are exactly 2!¥1! different orientations on G. Moreover, the
undirected graph associated (via (8.1)) with the newly defined directed graph
G = (X, E, V) is the original undirected graph G = (X, E, r).
From now on, unless otherwise specified, all graphs will be undirected.
Let G = (X, E, r) be an (undirected) graph.
Two vertices x and y are called neighbors or adjacent, and we write x ~ y,
provided there exists e € E such that r(e) = {x, y}. We then say that the edge ¢
Jjoins the vertices x and y. Given a vertex x € X, we denote by

Noy={peX:y~x}cX

the neighborhood of x, by E, = {e € E : r(e) > x} the set of edges incident to
x, and by deg x = |E,|, the number of edges incident to x, called the degree of
x. Note that a vertex x € V belongs to A/(x) if and only if there exists a loop
e € E based at x (that is, r(e) = {x}). When deg(-) = k is constant, we say that
the graph is regular of degree k, or k-regular. Note that if G is simple then
NG| = |E,| = deg x.

If X and E are both finite we say that G is finite. Note that a simple graph
G = (X, E) without loops is finite if (and only if) X is finite.

Let F = (¥, F, s) be another (undirected) graph.

F is called a subgraph of G provided Y C X, F C E, and r|p = s.
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F is said to be isomorphic to G if there exists a pair ® = (¢, ¢) of bijections
¢: X — Y and ¢: E — F such that

s(p(e)) = ¢(r(e))

for all e € E. One then writes ®: G — F and calls it an isomorphism of the
graphs G and F. Moreover, if G and F are both directed, then ® = (¢, ¢) is a
(directed graphs) isomorphism of G and F if

(@(e-), p(e1)) = (ple)-, ple)1)

foralle € E.

A (finite) path in G is a sequence p = (xg, €1, X1, €2, X2 . . . , €m, Xpy), With
X0, X1, ..., %y € X and ey, es, ..., e, € E such that r(e;) = {x;_1, x;} for all
i=1,...,m. The vertices xo and x,, are called the initial and terminal ver-

tices of p, respectively, and one says that p connects them. The nonnega-
tive number |p| = m is called the length of the path p. When m = 0 one
calls p = (xo) the trivial path based at xy. If xy = x,, one says that the
path is closed and p is also called a cycle. The inverse of a path p =

(X0, €1, X1, €2, X2 . .., €, Xy) is the path p~' = (X, €y X1, - - -, X1, €1, X0);
note that [p~!| = |p|. Given two paths p = (xo, €1, X1, €2, X2 ..., €y, X;y) and
P =(xye,x),¢5,%,...,¢,x),) with x,, = x;, we define their composition
asthepathp - p’ = (xo, €1, X1, €2, X2 .. ., €, Xy = X(, €], X}, €5, %) .., €, X),);

note that [p - p'| = |p| + [P/

For x, y € X we write x & y if there exists a path connecting them: clearly, ~
is an equivalence relation on the set X of vertices of G. The equivalence classes
are called the connected components of G. One says that G is connected if there
exists a unique connected component, in other words, if any two vertices in X
are connected by a path. If this is the case, the geodesic distance of two vertices
x,y € X, denoted d(x, y), is the minimal length of a path connecting them.

The diameter of a finite connected graph G, denoted D(G), is the maximal
distance of two vertices in G, in formule,

D(G) = max{d(x,y) : x,y € X}.

Proposition 8.1.1 Let G = (X, E, r) be a finite connected k-regular graph.
Then

D(G) = logi[(k — DIX| + 1] — 1.

Proof. Fix a base vertex xo € X and set X; = {x € X : d(x, xo) = j} for j =
0,1,2,...,D = D(G) (note that we may have X;, = @ for some 0 < jy, < D;
then X; = @ for all jo < j < D). We have |Xo| = |{xo}| = 1 and, since G is
k-regular, |X;| < k and, recursively, |X;| < |X;_i|(k — 1) < k(k — 1)/7! < &/,
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for j > 2.Indeed, each y € X; is joined with at least one vertex x € X;_; and, in
turn, each such x € X;_; is joined with at most k — 1 vertices in X;. It follows
that

kD+J -1

X|=1XouXiUXoU---UXp| <l +k+k+---+k° = T
We deduce that kP! > (k— 1)|X| + 1 and, finally, D > log,[(k — 1)|X| +
1]1—-1. O

Corollary 8.1.2 Let (G, = (X,,, E,, r1))nen be a family of finite connected k-
regular graphs such that |X,,| — oo. Then also D(X,,) — o0. ]

Let G = (X, E, r) be a finite graph. The adjacency matrix associated with G
is the X x X-matrix A = (A(x, ¥))x,yex defined by setting

Ax,y) = I ({x, )

for all x, y € X. In other words, if x  y we have A(x, y) = |Ex N E,| equals the
number (possibly 0) of edges incident to both x and y, and A(x, x) is the number
(possibly 0) of loops based at x. Note that A is symmetric (A(x, y) = A(y, x) for
all x, y € X), that A(x, y) # 0 if and only if x ~ y, and degx = ZyGXA(x, ).
Thus, G is simple (respectively without loops) if and only if A(x, y) € {0, 1} for
allx, y € X (respectively A(x, x) = O for all x € X). Often, we shall identify the
matrix A with the corresponding linear operator A: L(X) — L(X), called the
adjacency operator associated with G, defined by setting

[Af1X) =) A®NFO) =Y AG,0)f),
yeY yeY

for all f € L(X) and x € X. Note that A§, = Z‘,NXA(x, ¥)dy, forall x € X.

Moreover, as A is symmetric, it is diagonalizable and its spectrum o (A) =
{u € C: A — ulisnot invertible} (that is, the set of its eigenvalues) is real
(0(A) € R), and there exists an orthogonal basis of L(X) made up of real-
valued eigenfunctions (see [91]). One refers to o (A) as to the spectrum of the
graph G.

Remark 8.1.3 Warning that if G = (X, E,7) is directed, in this book we
define its adjacency matrix as the adjacency matrix A of the associated undi-
rected graph G = (X, E, r) (cf. (8.1)). In other contexts, one sets A(x,y) =
|(7)~'(x, y)| for all x, y € X and therefore, in general, A is not symmetric. On
the contrary, in our setting, A is always symmetric!

We recall (cf. Proposition 2.1.1) that Wy < L(X) is the space of constant func-
tions on X and Wy = {f € L(X) : ). f(x) = 0}, so that L(X) = Wy W,
(cf. (2.4)).
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Proposition 8.1.4 Let G = (X, E, r) be a finite graph, with adjacency matrix A.
If G is k-regular, then the decomposition L(X) = Wy & W, is A-invariant and
Wo is the eigenspace corresponding to the eigenvalue k. Conversely, if Wy is
an eigenspace of A, then the graph is regular and the degree is given by the
corresponding eigenvalue.

Proof. Suppose first that G is k-regular and let us show that W, and W; are A-
invariant. Let fy € W and x € X. Then

[Afol(x) = D AG, Do) =Y Al y)folx) = degxfox),  (8.2)

yeX yeX

showing that A fy = kfy. Similarly, if f; € W; we have

YTIAAI) =D A NAG)

xeX xeX yeX
=> > AxNAG)
yeX xeX
(since Y .y A(x,y) =degy=k) =k) fi(y) =0,
yeX

showing that Af; € Wj.

Conversely, assume that a nontrivial constant function fy = c is an eigen-
vector of A, with eigenvalue «. Then, as in (8.2), [A fo](x) = (degx)c, and as
Afy = afy = ac we deduce that degx = « for all x € X. O

Proposition 8.1.5 Let G = (X, E, r) be a finite k-regular graph. Let [y >
Wi = - > pyxj—1 be the eigenvalues of the adjacency matrix A of G. Then

(1) k is an eigenvalue and its multiplicity equals the number of connected
components of G; in particular, G is connected if and only if the multi-
plicity of k is equal to 1;

(i) |uil <kfori=0,1,...,|X|—1, sothat uo = k.

Proof.

(1) It follows from (8.2) that if f € L(X) is constant on each connected
component of G, then Af = kf. This shows that & is an eigenvalue of
A and that its multiplicity is, at least, the number of connected compo-
nents of G (the characteristic functions of these connected components
are, clearly, linearly independent). Conversely, suppose that Af = kf
with f € L(X) non-identically zero and real-valued. Let Xo C X be a
connected component of G and suppose that | f|, restricted to Xj, attains
its maximum at the point xg € Xp, i.e. |f(xo)| > | f(x)| forallx € X,. We
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may suppose, up to passing to — f, that f(xog) > 0 so that f(xo) > f(x)
for all x € Xy. Then

> Ao, 0)f(x0) — F] = Y Alxo, )f(x0) — Y Alxo, X)f(x)

xeXo xeXo xeXp
= kf(xo) — kf(xo) = 0.

Since A(xp, x) > 0 and f(x9) — f(x) > 0 for all x € X, we deduce that
f(x) = f(xp) forall x ~ xy. By induction on the geodesic distance from
X0, we deduce that f(x) = f(xp) for all x € Xj, that is, f is constant on
Xo. This shows that f is constant on the connected components of X.
In particular, the multiplicity of k is at most, and therefore equal to, the
number of connected components of G.

(i) Let u be an eigenvalue and denote by f € L(X) a corresponding (non-
trivial) real-valued eigenfunction. Suppose that | f| attains its maximum
at the point xy € X, i.e. |f(xg)| > |f(x)| for all x € X. As before, up to
passing to —f, we may assume that f(xp) > 0 so that f(xg) > |f(x)|
for all x € X. Then we have

|l f o) = Iif (o)l = | Y Axo, X)f ()]

xeX

<Y Ao, 0)|f ()]

xeX

< (ZA(xo,x>> fxo),

xeX
= kf(xo),
so that || < k. O
Proposition 8.1.6 Let G = (X, E, r) be a finite graph and denote by A =
(A(x, ¥))yyex the associated adjacency matrix. Then, denoting by Al =

(A“)(x, y))x e ¢ € N, the £-th power of A (with the convention that A° = I,
the identity matrix; cf. Section 2.1), we have

AO(x, y) = the number of paths of length £ in G connecting x and y
forallx,y € X.

Proof. Let x,y € X. If £ = O the statement follows from the fact that there is
exactly one (respectively, no) path of length O, the trivial path at x, connecting
x and y for x = y (respectively, x # y). Now, every path

p(x,y) = (Xo =X, e1,X1,€2,X2, ..., €, X¢ =2, €pq1, X1 =)
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of length £ + 1 in G connecting x to y is the composition of the path p(x, z) =
(xo = x, e1, X1, €2, X2, ..., €, Xg = z) of length £ connecting x to z, a neighbor
of y, and the edge e,y = (z, e;+1, y). By induction, the number of such paths
p(x, 2) equals A)(x, z), and the number of edges e = (z, e, y) equals, by defini-
tion, A(z, y). As a consequence, the number of paths of length £ + 1 connecting
X toyis given by

Y AV =) AYK DAGy) =A(x, y).

E: eX
r(ee)i[z,yl < g

8.2 Strongly regular graphs

This section contains a series of exercises on a remarkable family of regular
graphs.

Definition 8.2.1 A finite simple graph G = (X, E) without loops is called
strongly regular of parameters (v, k, A, ) if

(1) itis regular of degree k and |X| = v;
(i) for all {x, y} € E there exist exactly A vertices adjacent to both x and y;
(iii) for all x, y € X with x # y and {x, y} ¢ E there exist exactly u vertices
adjacent to both x and y.

Note that, in the above definition, ) < A <k — 1 and 0 < u < k. Moreover,
if & > 0 then G is connected.

Exercise 8.2.2 Let G = (X, E) be a finite simple graph without loops and set
||

|X| = v. Denote by A its adjacency matrix and set J = | : | (the

1 .-+ 1
v x v matrix with all 1s). Show that G is strongly regular with parameters
(v, k, A, ) if and only if A satisfies the equations:

Al =kJ (8.3)
and
AT (= WA+ (n =0T = . (8.4)
Hint: (8.3) is equivalent to k-regularity; (8.4) may be written in the form
A =kl +)A+ pu(J —1—A)

and one may use Proposition 8.1.6.
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Exercise 8.2.3 Let G be a connected, strongly regular graph with parameters
0, k, A, ).

e))

2

Show that the adjacency matrix A of G has exactly three eigenvalues,
namely:
o k with multiplicity 1,
e 0 = A—u+VA

== \/K’

A—p—

e
where A = (A — u)? + 4(k — ).
Hint: use Proposition 8.1.6; apply (8.4) and use the fact that nonconstant
eigenvectors f of A satisfy Jf = 0.

Show that the multiplicities of 6 and 7 are
1 ( 1 2k+ (@ — DA —p)
my = = -1 -
"ol VA
1 2k+ (-1 —p)
= — —1 .
o= [om e B

Hint: mg + m; =v —1and 0 = Tr(A) = Omy + tm, + k.

Exercise 8.2.4 Let m >4 and denote by X the set of all 2-subsets of

{1,2,.

.., m}. The triangular graph T (m) is the finite graph with vertex set

X and such that two distinct vertices are adjacent if they are not disjoint.
Show that T (m) is strongly regular with parameters o = (), k = 2(m — 2),
A=m—2,and u = 4.

Exercise 8.2.5 Let G = (X, E) be a finite simple graph without loops. The com-
plement of G is the graph G with vertex set X and edge set E = {{x, y} : x,y €

X, x#y {x,y} ¢ E}.

ey

@)

3

Show that if G is strongly regular with parameters (v, k, A, i), then G
(which is not necessarily connected!) is strongly regular with parame-
ters (0,0 —k—1,0 —2k4+pu—2,0 —2k+X1).

From (1) deduce that the parameters of a strongly regular graph satisfy
the inequality o — 2k + pu —2 > 0.

Suppose that G is strongly regular. Show that G and G are both con-
nected if and only if 0 < u < k < v — 1. If this is the case, one says
that G is primitive.

Hint: show that u = 0 implies A = k — 1 and write & < k in the form
0—2k+pu—-2<@-k—1)—1.
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The complement of the triangle graph 7'(5) (see Exercise 8.2.4) is the cele-
brated Petersen graph (see Figure 8.1). The monograph [73] is entirely devoted
to this graph, which turned out to serve as a counterexample to several impor-
tant conjectures.

{12}

(3.4} A {3.5}

{1.5} {24}

Figure 8.1. The Petersen graph.

Exercise 8.2.6 The Clebsch graph (see Figure 8.2) is defined as follows. The
vertex set X consists of all subsets of even cardinality of {1, 2, 3, 4, 5}. More-
over, two vertices A, B € X are adjacent if |A A B| =4 (here A denotes the
symmetric difference of two sets). Show that itis a (16, 5, 0, 2) strongly regu-
lar graph.

In the following, we shall present another description of the Clebsch graph
by using methods of number theory. An edge coloring of a graph G = (X, E)
isamap c: E — C, where C is a set of colors. A monochromatic triangle in
G is a set of three vertices x, y, z such that {x, v}, {y, z}, {z, x} € E and have the
same color. In the following exercise, we construct a very important coloring
of the complete graph K4, due to Greenwood and Gleason [68].

Exercise 8.2.7 Let IFi¢[x] denote the ring of polynomials in one indeterminate
over the field F .

(1) Show that
P 1= (x4 +x+ 1)(x11 + 3+ + 0+ 3+t 1).

(2) Show that the polynomial p(x) = x* + x + lisirreducible over F,. Let
a € ¢ be aroot of p. Show that « is a generator of '}, and deduce from
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Figure 8.2. The Clebsch graph: for 1 <i < j < h < k < 5 the string ij (respectively
ijhk) indicates the subset {i, j} (respectively {i, j, &, k, }). See also Figure 8.3.

3)

“4)

Proposition 6.2.5 that every element of IF 4 may be uniquely represented
in the form

g0+ e + e20% + e30, (8.5
where g; € {0, 1} for 0 < i < 3.
Let o be as in (2). Represent each element ok, k=0,1,...,14,1in the
form (8.5) and show that the five cubes in [Fj coincide with the elements

1, (x3, ot3+(x2, oe3+a, and o’ + o +a + 1.

Also show that the sum of two cubes in IFj, is not a cube.

Hint: for instance, 1 + o® = o'* in F,.

Consider the elements of IF ¢ as the vertices of K¢ (the complete graph
on 16 vertices (see Section 8.4)). Color the edges of Kj¢ in the following
way: ifa, b € Fig,a # band a — b = o™, then

e if m =0 mod 3 (i.e. a — b is a cube) the color of {a, b} is red,

e if m =1 mod 3 the color of {a, b} is blue;

e if m =2 mod 3 the color of {a, b} is green.
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Figure 8.3. The Clebsch graph (cf. Figure 8.2): now the vertices are identified with
the elements of IFj¢. Moreover, Fis = {0, 1, x, x2, x°, ..., x'4}, where x is a generator
of the cyclic group F7j¢.

Show that, with this coloring, Kj¢ does not contain a monochromatic
triangle.
Hint: show that if it contains a monochromatic triangle then it contains
a red monochromatic triangle and then apply (3).

(5) Show that the graph (IF4, E), where E is the set of all red edges in (4),
is isomorphic to the Clebsch graph (cf. Exercise 8.2.6).

Another important example of a strongly regular graph, namely the Paley
graph, will be discussed in Exercise 9.4.5. For more on strongly regular graphs
we refer to the monographs by van Lint and Wilson [97] and Godsil and Royle
[65].

8.3 Bipartite graphs

Definition 8.3.1 A graph G = (X, E, r) is called bipartite if there exists a non-
trivial partition X = Xo | [ X; of the set of vertices such that every edge e € E
joins a (unique) vertex in Xy with a (unique) vertex in X; (that is, |r(e) N Xy| =
1 = |r(e) N X;| for all e € E). The sets Xy and X; are called partite sets (cf.
Figure 8.4).
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Note that if a bipartite graph is connected, then the (nontrivial) partition of
the set of vertices is unique. Moreover, any bipartite graph has necessarily no
loops.

(%

Figure 8.4. The bipartite graph G = (X, E) with vertex set X = X, [ [ X, where
Xo = {x,y} and X = {u, v, 7}, and edge set E = {{x, u}, {x, v}, {y, v}, {, 2}}.

Exercise 8.3.2 Let G = (X, E, r) be a graph. Show that the following condi-
tions are equivalent:

(a) G is bipartite;
(b) G is bicolorable, i.e. there exists amap ¢: X — {0, 1} such thatx ~ y
infers ¢ (x) # ¢(y);

(c) G does not contain cycles of odd length.

Exercise 8.3.3 Let G = (X, E, r) be a finite bipartite graph with X = X, [ [ X;
its partite sets partition. Consider the decomposition L(X) = L(Xy) & L(X;).
Show that if A denotes the adjacency matrix of G then we have:

(1) A[L(Xo)] € L(X;) (respectively A [L(X1)] € L(Xo));
(2) define : L(X) — L(X) (respectively 7: L(X) — L(X)) by setting
[ef1(x) = {{ (;zx) iii 2 i(: (respectively, T f = —¢f)
for all f € L(X) and x € X. Show that (i) Ae = A, (ii) &2 = 1> =1,
and (iii) te = et = —1.

The following provides another example of a structural (geometrical) prop-
erty that reflects on the spectral theory of the graph.

Proposition 8.3.4 Let G = (X, E, r) be a finite connected k-regular graph and
denote by A the corresponding adjacency matrix. Then the following conditions
are equivalent:
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(a) G is bipartite;
(b) the spectrum of A is symmetric with respect to 0;
(c) —kis an eigenvalue of A.

Proof. Suppose that G is bipartite and let X = X, [ [ X; be the corresponding
partite sets partition. Let A € 0(A) and denote by f € L(X) a corresponding
eigenfunction, so that, Af = Af. Consider the function g =¢f € L(X) (cf.
Exercise 8.3.3). Then we have (cf. Exercise 8.3.3):

Ag=Asf =T1Af =A1f = —hef = —Ag.

It follows that —A is an eigenvalue (with eigenfunction g). This shows that o (A)
is symmetric with respect to 0, proving the implication (a) = (b).

(b) = (c) follows immediately from Proposition 8.1.5.(i).

(c) = (a): suppose that Af = —kf with f € L(X) nontrivial and real-valued.
Denote by xp € X a maximum point for |f[; then, up to switching f to —f,
we may suppose that f(xg) > 0. Then the equality —kf(xg) = [Af](xg) =
ZyeX A(xo, y)f(y) may be rewritten Z),:),NXO A(xo, Y)Lf(x0) + f(»)] = 0. Since
f(xo) + f(y) = 0, we deduce f(y) = —f(xo) for all y ~xp. Set X; ={y e
X : f(y) = (—1) f(xo)} for j =0, 1. Arguing as in the proof of Proposition
8.1.5.(i), and using induction on the geodesic distance from xp, we deduce
that indeed X = Xo [ [ X; is a partite set decomposition, showing that X is
bipartite. U

Exercise 8.3.5 The complete bipartite graph K, ,, = Xym, Epm) o0 n+m
vertices, n, m > 1, is the (finite, simple, and without loops) graph whose vertex
set X, ,» = X UY is the disjoint union of a set X of cardinality n, and another
set Y of cardinality m, and edge set E,, ,, = {{x, y} : x € X, y € Y'}. Show that
the adjacency matrix of K,, ,, has the following eigenvalues:

o 0 with multiplicity n +m — 2
o /nm with multiplicity 1
o —./nm with multiplicity 1.

8.4 The complete graph

Definition 8.4.1 The complete graph on n vertices, n > 1, is the (finite, simple,
and without loops) graph K,, = (X,,, E,,) with vertex set X;, = {1, 2, ..., n} and
edge set E, = {{x, y} : x,y € X,,, x # y}, that is, two vertices are connected if
and only if they are distinct (cf. Figure 8.5).
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Figure 8.5. The complete graphs K5, K3, K4, and K.

Note that K,, is regular: indeed, each vertex has degree n — 1.
The adjacency matrix A of K, is given by

1 ifx#y

Alx,y) =
Y 0 ifx=y

The graph K, is always connected and it is bipartite if and only if n = 2.
Moreover (cf. Proposition 8.1.4), setting Wy = {f € L(X,) : f is constant} and
Wi ={f € L(X,) : ZyEXn f(y) = 0}, we have, for f € W,

[Af100) = ) A )fO) = (n = Df(x)

YEX,

and, for f € Wy,

[Af1) = Y A NG =D fo) = | D_fO) | — fx) = —f(x)
YEX, YeX, YEX,
Y#X
for all x € X,,.
We deduce that (cf. Proposition 8.1.4):

e Wy is an eigenspace for A corresponding to the eigenvalue (n — 1), whose
multiplicity is equal to dimW, = 1;

o W, is an eigenspace for A corresponding to the eigenvalue —1, whose multi-
plicity is equal to dimW, =n — 1.

8.5 The hypercube

Definition 8.5.1 The n-dimensional hypercube, n € N, is the (finite, simple,
and without loops) graph Q,, = (X,,, E,,) with vertex set X, = {0, 1}" and edge
set £, = {{x,y} : d(x,y) = 1}, where

dx,y)=Wi:x; £y, 1 <i<n}

is the Hamming distance of x=(x, x2,...,x,) and y=(y1, y2, ..., V) € Xy
(cf. Figure 8.6).
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011 111

010 110

001 101

000 100

Figure 8.6. The 3-dimensional hypercube Q3.

It is clear from the definition that the adjacency matrix A = (A(x, ¥))x yex, of
0, is given by

1 ifdx,y)=1

Aley) = {0 otherwise,
for all x, y € X,,.

We observe that X,,, equipped with the addition operation (that is, (x + y); =
Xx;i +y;mod 2, forallx,y € X;, and 1 <i < n), is an Abelian group, with iden-
tity element 0 = (0, 0, ..., 0), isomorphic to Zj. The characters (cf. Defini-
tion 2.3.1) of such a group are given by (cf. Proposition 2.3.3) the functions
Xx € L(X,), x € X,,, defined by setting

() = (=1 (8.6)
forall y € X,,, where x - y = Y ", x;yi.

Exercise 8.5.2 Show that A € End(L(X,)) satisfies the equivalent conditions in
Theorem 2.4.10 (warning: the notation has changed), namely: A is Z}-invariant
and it is the convolution operator with kernel & € L(X,,) defined by

1 ifdx,0)=1
h(x) = . 8.7)
0 otherwise,

for all x € X,,, so that its eigenfunctions are exactly the characters x., x € Zj.

For x = (x1, x2, ..., x,) € X,, we define w(x) = |{j : x; = 1}| the weight of
x. Note that d(x, y) = w(x — y) for all x, y € X,,.
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Keeping in mind Corollary 2.4.11, the following provides a complete list of
the eigenvalues of A.

Proposition 8.5.3 The Fourier transform of the function h € L(X,,) in (8.7) is
given by

(x) = n — 2w(x) (8.8)
forall x € X,,.
Proof. Let x € X,,. Then we have

h(x) = (h, )
(by 8.6)) =Y h(y)(—1)"

YEX,

(by 8.7) =) (=1)"
j=1

=D D7+ Y (=Y

jin:l j:Xj=O
= —w(x) + (n — w(x))
=n—2w). 0

Note that, according to Proposition 8.3.4, the spectrum of A is symmetric
with respect to 0, as Q, is bipartite: its partite set partition is X, = {x € X}, :
w(x) is odd} [ [{x € X, : w(x) is even}.

We now determine the multiplicities of the eigenvalues (8.8) of A. It is clear
that, for 0 < k < n, the eigenspace associated with the eigenvalue n — 2k is the
subspace

Vi = (Xx : ll)(X) = k) = L(Xn)

Moreover, its dimension is given by dim(V;) = |{x € X, : w(x) = k}| = (}).

8.6 The discrete circle
Definition 8.6.1 The discrete circle (or cycle graph) on n > 3 vertices, is the
(finite, simple, and without loops) graph C, = (X,, E,), where X,, = Z, and
x,y € X, are adjacent if x — y = *£1 (cf. Figure 8.7).
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n—1 0

3 2

Figure 8.7. The discrete circle C,,.

Note that C, is 2-regular and it is bipartite if and only if # is even. The asso-
ciated adjacency matrix is circulant (see Exercise 2.4.16) and is given by

0100 .- 001

1ro10..- 000

o101..- 000
A=

000O0-- 101

1000 - 010

Exercise 8.6.2 Show that A € End(L(X,,)) satisfies the equivalent conditions in
Theorem 2.4.10 (warning: the notation has changed), namely: A is Z,-invariant
and it is the convolution operator with kernel 7 = §; + 6_; € L(X,), so that its
eigenfunctions are exactly the characters y,, x € Z,.

Recall (cf. Definition 2.2.1) that the characters of Z,, are the functions .,
x € Z,, defined by

Xx(y) =w"

forall y € Z,, where w = exp(%). Moreover (cf. Exercise 2.4.4), the Fourier
transform of a Dirac 8y, x € Zj, is given by 6,(y) = 8:(xy) = xy(x) forally €
Z,. By linearity we have, for all y € Z,,

hY) =80)+51() = 00) + TTW)

2myi 2ryi
= exp(—=— =) + exp(— =)

2
= 2COS(ﬂ).
n
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We remark that/i;(y) = /ﬁ(y’), v,y € Zy, if and only if y = +y’. From Corol-
lary 2.4.11 and the above remark, we deduce that the eigenvalues of A are
exactly the numbers

21y n
2c08(=2), y_O,l,...,[E]. (8.9)

We now determine their multiplicities, arguing separately on the parity of n.
If n is even, then the eigenvalues (8.9) correspondingtoy = Oandy = [g] =
5 (these are 2 and —2, respectively) have multiplicity one, and all others have
multiplicity two. Note that, according to Proposition 8.3.4, the spectrum of A
is symmetric with respect to O as, in this case, C, is bipartite.
If n is odd, then the eigenvalue (8.9) corresponding to y = 0 (namely, 2) has
multiplicity one, and all others have multiplicity two. Moreover, in this case,

C, is not bipartite.

Exercise 8.6.3 (The 2-regular segment) For n>2 let G, = (X,, E,, r,)
denote the simple graph (with loops!) where: X, ={0,1,2,...,n— 1},
E,=U"Hi,i+ 1}u{0}u{n—1}, and r,: E, — P(X,) is the restriction to
E, of the identity map on P(X,,). This is called the 2-regular segment onn > 1
vertices (cf. Figure 8.8).

0 1 2 n—2 n-—1

Figure 8.8. The 2-regular segment G,,.

Show that the eigenvalues of G, are

km
2cos—, k=0,1,...,n—1. (8.10)
n

Hint: see [29, Exercise A1.0.15] as well as the books by Feller [61] and Karlin
and Taylor [84].

8.7 Tensor products

In this section we introduce some notation and preliminary results that we shall
use both in the present chapter as well as in other parts of the book. For a similar
approach see also the beginning of [124, Chapter 5]. This section is in the same
spirit of Section 2.1 and contains some complements to that section. It is also
connected with Section 5.3, where the Kroncecker products of matrices are
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introduced, and it will be generalized in Section 5.3, where we study tensor
products of representations.

Let X and Y be two finite sets. The tensor product of two functions f € L(X)
and g € L(Y) is the function f ® g € L(X x Y) defined by setting

(f®&)(x,y) = f(x)g(y) (8.11)

forall (x, y) € X x Y. This way, we have the natural identification §(, ;) = 6, ®
3y, so that the standard basis of L(X x Y) may be written in the form

(6, ®6,:xeX,yeY}
It is also easy to check that, for f, /' € L(X) and g, ¢ € L(Y), we have:

(feg & xxr) = frx) - (8 &) (8.12)

If V is a subspace of L(X) and W a subspace of L(Y) then their tensor product
V ® W is the subspace of L(X x Y) generated by all products f ® gwith f € V
andge W.

Now suppose that A € End(L(X)) and B € End(L(Y)) are linear operators.
We define their tensor product A @ B € End(L(X x Y)) by setting

A®B)(f®g =Af®Bg (8.13)

for all f € L(X) and g € L(Y) (and then extending by linearity). It is easy to
check that this definition is well posed. Indeed, we now derive the matrix rep-
resenting A ® B. Suppose that (a(x, x')),vex (respectively, (b(y, y'))y.yer) is
the matrix representing A (respectively, B) with respect to the standard basis of
L(X) (respectively, of L(Y)), see (2.2). Then, forall x,x’ € X and y,y €Y,

{[A® B (5: ®8,)} (x,y) = {(A8:) ® (BS,)} (x,y)  (by (8.13))
= (Ady)(x) - (BSy)(y) (by (8.11))
= a(x, x)b(y, ) (by (2.1)).

This shows that the matrix representing A ® B with respect to the standard basis
of L(X xY)is

(a(x, x)b(y, y’)) (6,3, (¥ ¥ )EX XY.

It is easy to see that this is a coordinate-free description of the Kro-
necker product introduced in Section 5.3: just take X = {1,2,...,n}andY =
{1,2, ..., m}. We leave it to the reader to check the details.

The Kronecker sum of A and B is the operatorA ® Iy + Ix ® B € End(L(X x
Y)); see the monograph by Lancaster and Tismenetsky [91]. Clearly, this sum
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is represented by the matrix

(a(-x7 x,)(sy(y,) + ax(x,)b(yv y/)) (x,y),(x’,y’)eX xY"

Now suppose that both A and B are symmetric, that is, a(x, x') = a(x’, x) and
b(y,y)=>b(,y)forallx,x € Xandy,y € Y.ThenalsoA @ BandA ® Iy +
Ix ® B are symmetric. Recall that symmetric matrices are diagonalizable and
have real eigenvalues. Let us denote by

o A5 ALy ... Axj—1 (respectively, wo, i1, ..., iy)—1) the eigenvalues of A
(respectively, of B);
o {fo, fi, ..., fixj—1} (respectively, {go, g1, ..., gy|-1}) an orthonormal basis

of (real-valued) eigenvectors for A (respectively, for B)

so that

Afi = A\ifi and Bg; = pjg; (8.14)

foralli=0,1,...,|X|—1and j=0,1,...,|Y| — 1. The proof of the follow-
ing proposition is immediate.

Proposition 8.7.1 The set {fi®g;:i=0,1,...,1X|—-1,j=0,1,...,
|Y| — 1} is an orthonormal basis of (real-valued) eigenvectors for both
AQB and AQ Iy + Ix ® B. Moreover, for all i=0,1,...,|X|—1 and
j=0,1,...,]Y]|—1,

[ARBI(fi®g;) =rip;(fi ®g))
and
AQL +Ix @BI(fi®g;)) = (A +u)fi ®g));

in particular, the eigenvalues of A ® B are the A js while those of A ® Iy +
Ix ® B are the (A; + 1;)s.

More generally, if F' is a two variable complex polynomial, then the eigenval-
ues of F'(A, B) (here the powers of matrices are the usual powers, while the other
products (respectively, sums) involved are tensor products (respectively, Kro-
necker sums)) are F'(A;, ), i=0,1,...,|X|—1and j=0,1,...,]Y| -1
(this is Stephanov’s theorem [153]: see the monograph by Lancaster and Tis-
menetsky [91, Theorem 1, Section 12.2]).

Recall (cf. Proposition 2.1.1) that W is the space of constant functions on
X and W, ={f € LX) : ) x f(x) =0}. We also denote by Jy the matrix
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(GO, ¥ Dyyer With j(y,y") = 1 forally,y" € Y. This way, for f € L(Y) we have

If=|2_5o 1. (8.15)

yeYy

Proposition 8.7.2 Let A: L(X) — L(X) and B: L(Y) — L(Y) be two linear
operators and suppose that the decomposition L(Y) = Wy(Y) & W (Y) is B-
invariant. Then the decomposition

LX xY)=[LX)® W (Y)] @ [L(X) @ Wi(Y)]
is invariant for A ® Jy + Ix @ B. Moreover,
Wi(X xY) = [W(X) @ Wo(Y)] ® [L(X) ® Wi(Y)]. (8.16)

Proof. Justnote that Wy(Y) and W (Y) are Jy-invariant (Jy — Iy is the adjacency
matrix of the complete graph with vertex set Y; see Section 8.4). Also, (8.16)
follows immediately after observing that Wo(X x Y) = Wo(X) @ Wo(Y). U

Following [128] we introduce a notation for the decomposition (8.16) (see
also the generalizations in [28] and [44]).
For f € Wi (X x Y) we define f! € L(X x Y) by setting

1
fleey) = 7 > fx2)

zeY

forall (x,y) € X x Y. Clearly, f! does notdependony € ¥,and fl ¢ W;(X) ®
Wo(Y). Moreover, setting

fr=r=1
so that
F=r

we have f+ e L(X) ® Wi (Y).
Another useful notation is the following. For f € L(X x Y) and x € X we
define f, € L(Y) by setting

L) = f(x,y)

forall y € Y. Then

f=3 58f (8.17)

xeX
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Moreover, setting

1
= yplefe and fo=fem S (8.18)
we have
f1=>"s6f (8.19)
xeX
and
fr=> 80 (8.20)
xeX
Finally, following again [128], we define C: L(X x Y) — L(X) by setting
[CAIx) =) ) (8.21)
yeY

forall f € L(X x Y) and x € X. Note the similarity between f! and Cf: how-
ever, the former is a function of two variables (constant with respect to the
second variable), while the latter is a function of a single variable. Moreover,
f!is normalized. Their relationship is expressed in (iv) of the following lemma.

Lemma 8.7.3

(1) C(6,®6,) =6, forall (x,y) e X xY;

(i1) Clw,xxr) is a linear operator from W\ (X x Y) onto Wi (X);
(i) (CH® Ly =Ux ®Jy)f forall f € LX xY);
(iv) Cfl' =Cfforall f e L(X xY).

Proof.

(i) Forx,ze€ X andy € Y we have
[C(6x ® &y)1(z) = Z(& ® 8y)(z, 1) = 8x(2).
teYy

(ii) This is clear.
(iii) Using (8.17) we have, forall f € L(X x Y),

Ux @ )f =Ux ®Jy) Y (5:® f)

xeX

Yoae || D fey ]|y

xeX yeY

Y (CfI)8,) @ 1y

xeX

=(Cf)®1y.

(by (8.15))
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(iv) Itis a simple computation: for f € L(X x Y) and x € X we have

1
[cMw =" fleyn=>)" ] Y o fw =) fx,2)=IClX),
zeY

yeY yeY zeY
U
Lemma 8.7.4 Let f € Wi (X x Y). Then
1 1
= —Ix®W)f=—(CfHH®1y.
f |Y|(X® v)f |Y|( 1y
Proof. Using again (8.17) we have
Uk @I =Ux ®Jy) ) 6:® fe
xeX
= 6@ Urfy)
xeX
(by (8.18)) = (Y| 6, ® f]
xeX
(by (8.19)) = |Y|f!.
The second equality follows from Lemma 8.7.3.(iii). (|

We use the notation Y* to denote the space of all maps f: X — Y and refer
to it as to an exponential set. Clearly,

Y¥=YxY¥Yx---xY.
~— ——
|X| times
We introduce a coordinate-free description of the tensor product

LY =L)®LY)®--- @ LY).

|X| times

Given ¢, € L(Y), x € X, we define the tensor product of the family (¢, ).ex as
in (8.11) by setting:

<® qu) (f) = [ exlF ).

xeX xeX

for all f € YX. Analogously, given A, € End(L(Y)), x € X, the tensor product
of the corresponding family of operators is defined as in (8.13) by setting:

(® Ax) <® ¢x> = Q) A, (8.22)

xeX xeX xeX


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.009
https://www.cambridge.org/core

258 Graphs and their products

for all tensors (®xeX gbx) (and then extended by linearity). Finally, note that for
every f € YX we have

85 = Q)87 (8.23)

xeX

8.8 Cartesian, tensor, and lexicographic products of graphs
In this section we give a detailed definition of three basic notions of graph
products. See Remark 8.8.2 for a shorter description.
Recall that we use the symbol ~ to denote the adjacency relation of vertices
in a given graph.

Definition 8.8.1 Let G = (X, E, r) and F = (¥, F, s) be two finite graphs.

(i) The Cartesian product of G and F is the graph GOF = (X x
Y, EOF, rOs) where the edge set is

EOF=(E XxY)UX x F)
and rUs: EJF — P(X x Y) is defined by setting

[rOsl(e, y) = r(e) x {y} and [rUs](x, /) = {x} x s(f)

foralle e E,yeY,x € X, and f € F (cf. Figure 8.9).
Note that if G and F are both directed, then GLIF is also directed
after defining the orientation /105> ELJF — X x Y by setting

[ﬂ:lﬂ(ev y) = ((6*1 y)v (€+, )’)) and [ﬂ:lﬂ(x, f) = ((xv f,), (x, f+))

forallee E,yeY,xeX,and f € F.
Finally note that if G and F are both simple (respectively, without
loops), then GLIF is also simple, with edge set

EOF = [{(x, ¥, (&, Y)} € X xY:[x~xandy=yJor[x = Xand y ~ y/]}

(respectively, without loops).

(i1) Equip G and F with arbitrary orientations 7 and s, respectively: dif-
ferent orientations will produce isomorphic graph products (exercise).
Also, we denote, as usual, by Ey C E (respectively, Fy C F) the set of
all loops of G (respectively, F) and E| = E \ Ey (respectively, F; =
F\ Fy). Let also (E; x F}), and (E; x F}), be two disjoint copies of
the Cartesian product of the edge subsets £ and F; (“e” stands for even
and “o” for odd).
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4 3 4 3

Figure 8.9. An example of Cartesian product of graphs.

The tensor product of G and F is the (undirected) graph G ® F =
X xY,EQF,FQ® s) where
EQF =((Ex F)\(El x Fi))u(E] x Fi). U (E] X Fi),
= (Eo x Fo) U (Ep X F1) U(E) x Fo) U (E) X F1)e U (E; X F1),

and

r(e) x s(f) if (e, f) € (E x F)\ (E\ x F})
[F®sle. f) = {(e—, f2), (ex, f1)} i (e, f) € (E1 x F)e
{(e—, f+), (es, [0} if (e, f) € (E1 X Fi)o
for all (e, f) € E ® F (cf. Figure 8.10). Note that, if G and F have no
loops, then one has |E ® F| = 2|E| - |F]|.
The tensor product G ® F admits the natural orientation 7: E ®
F — X x Y defined by setting

((x, ¥), (x, ) if (e, f) € Eo x Fy
((e—, y), (e, ¥)) if (e, f) € E1 x Fy
(e, f) = ((x, f-), (x, f+)) if (e, f) € Ey x Fy
((e—, f2), (e4, 1)) if (e, f) € (E1 X Fy).
((e—, f1), (eq, f2)) if (e, f) € (E1 X F1),
forall (e, /) e EQF.

Moreover, if G and F are both simple (respectively, without loops),
then G ® F is also simple, with edge set

E®F={{(x,y),(x’,y’)}EXXY:xNx’and y~y/}

(respectively, without loops).
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Figure 8.10. An example of tensor product of graphs.

(iii) Equip G with an arbitrary orientation #: different orientations will pro-
duce isomorphic graph products (exercise). The lexicographic prod-
uct (or composition) of G and F is the (undirected) graph G o F =
(X xY,EoF, Fos)where

EoF=(EXxYxY)uX xF)
and
[?O S](ey y7 y/) = {(efv )’), (e+7 y/)} and [?O S](x7 f) = {x} X S(f)
foralle e E,y,y € Y,x € X, and f € F (cf. Figure 8.11).

1 2

4 3 4 3

Figure 8.11. An example of lexicographic product of graphs.

Note that if also the second graph F is directed, say with an orienta-
tion §, then G o F admits the orientation: E o F — X x Y defined by
setting

e,y y) = ((e—,y), (e4,))) and ilx, ) = ((x, f-), (x, f1))
foralle e E,y,y €Y, xeX,and f € F.
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Also, we may regard the Cartesian product GLIF as a subgraph of
G o F (viathe injection E x Y 2 (e,y) — (e,y,y) € E XY X Y).

Finally note that if G and F are both simple (respectively, without
loops), then G o F is also simple, with edge set

EoF = [{(x,y), W)X xY:[x~x]or[x=xandy ~y/]}
(respectively, without loops).

Remark 8.8.2 Summarizing, in all these products the vertex set is X x Y. In
the Cartesian product, two vertices (x, y) and (x’, y) are adjacent if and only if
one of the following two conditions is satisfied: x ~ x"and y = y’, orx = x" and
y ~ y'. In the tensor product they are adjacent if and only if x ~ x" and y ~ y'.
Finally, in the lexicographic product they are adjacent if and only if one of the
following two conditions is satisfied: x ~ x’ (edge of the first type), or x = X'
and y ~ y’ (edge of the second type). The more involved definitions given above
are necessary in order to keep into account possible multiple edges and loops,
as well as orientability.

Now denote by A (respectively, B) the adjacency matrix of G (respectively,
F) and suppose that Ag > Ay > -+ > Ax|— (respectively, uo > pg > -+ >
Wyr|—1) are the eigenvalues of A (respectively, of B). Let {fo, fi, ..., fix—1} C
L(X) (respectively, {go, &1, ..., &yj-1} C L(Y)) be an orthonormal basis of
eigenvectors, as in (8.14). Recall that Jy denotes the matrix (j(y, y'))y,yer With
jo,y)=1forally,y €Y.

Proposition 8.8.3

(1) The adjacency matrix of GOF is A® Iy + Ix ® B, and its eigenvalues

are i+, i=0,1,...,1X-1,j=0,1,...,]Y| - 1

(ii) The adjacency matrix of G @ F is A ® B, and its eigenvalues are A;ji;,
i=0,1,....1X|-1;j=0,1,...,|Y]| - 1.

(iii) The adjacency matrix of G o F is A ® Jy + Ix ® B. Moreover, if F is
k-regular, then its eigenvalues are:
e MY+ ki=0,1,...,|X|—1;
o wj, j=1,..., Y| =1, each of them with multiplicity |X|.

Proof.
(i) By definition, we have
Ang ((X, y)v (X,, y/)) = A(.X, x,)(sy.y’ + SX,X’B(yv y,)

forallx,x € X andy,y €Y, proving the statement relative to the adja-
cency matrix. For the eigenvalues we apply Proposition 8.7.1.
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(ii)) We now have

Ag@]‘- ((-xv )’)» (-x/v y/)) = A(.X, -x/)B(y1 y/)

forall x, X' € X and y, ¥y € Y, and Proposition 8.7.1 applies again.
(iii) In this final case we have

Agor ((x,y), (&, ))) = A(x, X') + 8, vB(, Y)
=AW X)Wy yY) + 8By, Y)

forallx,x € X andy,y €Y, proving the statement relative to the adja-
cency matrix. Suppose now that F is k-regular so that g =k, go €
Wo(Y),andg; € Wi(Y)forall j=1,2,...,|Y| — 1.ThenJygo = |Y|go
while Jyg; =0for j=1,2,..., Y| — 1. Therefore,

[A®Jy +Ix ® B](fi ® go) = (MilY [+ ©)(fi ® go)
fori=0,1,2...,|X|— 1, while
[A®Jy +Ix ®B](fi ®g;) = uj(fi @)
fori=0,1,2...,]X|—land j=1,2,...,]Y| — L.
O

Remark 8.8.4 In [44], in the framework of the theory of Markov chains,
the matrices A ® Iy + Iy @ Band A ® Jy + Iy ® B are called the crossed and
nested products, respectively, and are combined to get a further generalization,
called the crested product of the given Markov chains.

Corollary 8.8.5 Suppose that G is h-regular and F is k-regular. Then
(1) GOF is (h + k)-regular, G @ F is hk-regular, and G o F is (|Y|h + k)-

regular.

(i) GUF is connected if and only if G and F are both connected; G @ F is
connected if and only if both factors are connected and at least one of
them is nonbipartite; G o F is connected if and only if G is connected.

(iii) Assuming that it is connected, the graph GOF is bipartite if and only
if both G and F are bipartite. Similarly, assuming that it is connected,
the graph G @ F is bipartite if and only if at least one of the factors is
bipartite. Finally, assuming that it is connected, the graph G o F is not
bipartite.

Proof. We have Ay = h (respectively, uo = k), Afo = hfy, and fy is a nonzero
constant function (respectively, Bgy = kgo and gy is a nonzero constant
function).
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(i) The function fy ® go € L(X x Y)is constant and it is a nontrivial eigen-
vector of
e A® Iy + Ix ® B, with eigenvalue & + k;

+ A ® B, with eigenvalue hk;

e A®Jy + Ix ® B, with eigenvalue |Y|h + k.

In order to show regularity and determine the corresponding degree, we
use the last statement in Proposition 8.1.4.

(i1) By virtue of Proposition 8.1.5, the graph GLF is connected if and only
if Ao + o > A; + pjforall i, j) # (0, 0), thatisif and only if Ay > A
and po > p1, and this is equivalent to saying that G and F are both
connected.

Similarly, G ® F is connected if and only if

Moo > A forall (i, j) # (0, 0). (8.24)

If both factors are connected and at least one of them, say G, is non-
bipartite, by Proposition 8.3.4 wehave h = Ag > A1 > - - - Ajx—1 > —h
andk = o > (1 > -+ Wy|—1 = —k; an elementary case-by-case anal-
ysis shows that (8.24) is satisfied. Conversely, if one of the graphs, say
G, isnot connected then Ay = Ay = hsothat A; o = Aoumo and (8.24) is
not verified; if both graphs are connected and bipartite then Ajx|—; = —h
and Hy|—1 = —k, so that )\|X|—1/L|Y\—l = (—h)(—k) = hk = Aopo and,
again, (8.24) is not verified.
Finally, observe that the eigenvalues of G o F are

hY|+k =xlY|+po = MY [+ po >+ = Ax—1lY|
+ o = (1 = U2 = yy|—1

and G o F is connected if and only if the multiplicity of the eigenvalue
h|Y| + kis one, and this happens if and only if the multiplicity of 7 = X
is one, that is, if and only if G is connected.

(iii)) We again apply Proposition 8.3.4. The number —(k + k) is an eigen-
value of the adjacency matrix of GO if and only if Ajx—; = —h and
Hy|—1 = —k. Similarly, —hk is an eigenvalue of the adjacency matrix
of G ® F if and only if Ajx—1 = —h or uy|—1 = —k. Finally, since

Hyl—1 = —to = —k > —(hY| + k),

the number — (h|Y| + k) cannot be an eigenvalue of the adjacency
matrix of G o F. O

Exercise 8.8.6 Give a direct combinatorial (i.e. not spectral) proof of Corollary
8.8.5.
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Exercise 8.8.7 (The Hamming graph) Let n, m be two positive integers. The
Hamming graph H,, ;y+1 = (Xp.m+1, En.m+1) 18 the (finite simple without loops)
graph with vertex set

Xome1 = {0, 1, ..om}" = {(x1, 22, ..., X0) 1 X1, X0, ..., X € {0, 1, ..., m}}

and two vertices (xj, X2, ...,X,) and (y1, 2, ..., Yn) € Xpm+1 are adjacent if
there exists 1 < j < nsuchthatx; # y; and x; = y; forall i # j. The Hamming
distance between two vertices (x1, X, ..., x,) and (y1, y2, ..., y,) is given by

d(()ﬁ,xz, ~'-v-xn)v ()’17)’2» 1yn)) = |{ij #y]”

Note that #,,» (i.e. m = 1) coincides with the n-dimensional hypercube Q, (cf.
Section 8.5).

(1) Show that H, .+ is an nm-regular graph. Moreover, show that the Ham-
ming distance coincides with the geodesic distance on the graph.

(2) Show that H, .4+ is the Cartesian product of n copies of the complete
graph K,,,.+1 (with vertices {0, 1, ..., m}), that is, its adjacency matrix is

n
D b1 ® @It ®A® Lyt ® -+ ® Iy,
j=1

where I, is the (m + 1) x (m + 1) identity matrix and A (in the j-th
position) is the adjacency matrix of K4 1.

(3) Fori= (i1, i2,...,1,) € {0, 1} set w(i) = |{k : ix = 1}] (the weight of
i). Recalling the spectral decomposition (see Proposition 8.1.4 and Sec-
tion 8.4)

L(Kyi1) =Wo @& W
for 0 < £ < n, we set

Vi= P W, oW, @ @W,.
w(i)=¢
In other words, V; is the subspace spanned by all tensor products
f1I® L - f, where £ (respectively, the remaining n — £) of the
f;s belong to W, (respectively, Wy). Show that

L(Xn,m+l) = @Z:()VK

is the spectral decomposition relative to the adjacency matrix of H,, 41,
that the eigenvalue corresponding to V; is nm — £(m + 1), and that
dlng = mz (ré)
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8.9 Wreath product of finite graphs

This section is based on [45]: in particular, for simplicity, we only consider
(finite) simple graphs without loops.

Let X be a finite set and F = (Y, F) a finite simple graph without loops. We
endow the exponential set YX with a graph structure, denoted X, by declaring
that two vertices f, f' € YX are adjacent (and, as usual, we write f ~ f') if
there exists x € X such that f(z) = f/'(z) forallz € X \ {x} and f(x) ~ f'(x) in
F. Note that F¥ is simple and without loops; moreover, if |X| = 2 it coincides
with the Cartesian square FJJF. Denote by B the adjacency operator of F (that
is, BS, = Z),,Ny 8y = 1y for all y € Y) and by B the adjacency operator of
FX (that is, BS; = > g8 =Ly forall f e Y¥). Also, for all x, ¥’ € X
we define the linear operator By »: L(Y) — L(Y) by setting

B _ B ifx=x
Uy ifx £ X

We now generalize Proposition 8.8.3.(i).

Proposition 8.9.1 The adjacency operator B of FX has the expression

B=Y (X B

xeX x¥'eX
Proof. Let f € YX and let us show that

Bs; = (Z ® Bx,x/>5 I3 (8.25)

xeX x¥'eX

For x, x' € X define 1, ,» € L(Y) by setting

Ly  ifx=x
1, ={ VU@ TE=S (8.26)
8‘)"()6/) if x ?é X

Note that setting

Ni(f) = {f e Y [f () = f&') forx # ¥ and [f'(x) ~ f(x)]}
(8.27)

for all x € X, in the graph X we have the partition

N = [N (8.28)

xeX
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and the map a: N'(f(x)) — N, (f) defined by

a(y)() = ity =x (8.29)
g f( Y it '

forall y € N(f(x)) and X' € X, is a bijection. Then, on the one hand, we have

By = 1)
(by (828)) =Y L,p)
xeX

- X

xeX feN(f)

by 323) => Y Xrw)
xeX freNi(f) X eX

=2 > @ 3w | ®8pw

xex feNin | \vex

by 827) =Y ® 800y | ® 850

xeX freNi(f) L xXeX\{x

B (8.30)
= ® Sy | @ | D b
xeX | \¥eX\{x FeN(f)
= ® S | @ DD e
xeX | \weX\ix yeN(f(x))
(by (8.29)) =Y ® Sy @ Do 8
xeX | \weX\{x YeN(f(x))
=2 | & e | ® L
xeX L x'eX\{x}
(by 8.26)) =Y (X)L
xeX x'eX
Moreover,
B(Sf(x) ifx= )C/
BXX’S ) = . = lxx’a 8.31
X OIE) {Iyaf(x,) if x # ' ’ (830
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so that, on the other hand, keeping in mind (8.23), we have

(@)= | (@) (@)

(by(8.22) = [(@mx,amﬂ (8.32)
x'eX
(by 831)) =)L

x'eX

Summing up (over x € X) in (8.32), and comparing it with (8.30), we finally
deduce (8.25). O

Exercise 8.9.2 Show that the set of all eigenvalues of the adjacency operator B
of FX is given by

Dt E {0 Y] - 1}"},
xeX

where 19, (1, .. ., py—1 are the eigenvalues of 7. Deduce, as a particular case,
the set of all eigenvalues of the hypercube (cf. Section 8.5) and of the Hamming
graph (cf. Exercise 8.8.7).

Let now G = (X, E) and F = (Y, F) be two finite simple graphs without
loops.

Definition 8.9.3 The wreath product of G and F is the graph G:F =
(Y* x X, &) where the edge set is

£= [{(f,x), (f, ) SY x X : [x=xand f € Ny(f)]
or [x ~x and fzf/]},

where N,(f) € Y¥ is as in (8.28). Moreover, {(f, x), (f',x)} € & is called an
edge of the first type (respectively, edge of the second type) provided x = x’" and
f' € N.(f) (respectively, x ~ x' and f = f7).

Remark 8.9.4 Note that, modulo the map Y¥ x X 5 (f,x) — (x, f) € X x
YX, the wreath product G F can be viewed as a subgraph of the Cartesian
product GOFX, and therefore of the lexicographic product G o F*. Indeed, the
set of all edges of the first type in G ¢ F forms a subset of those edges of the
Cartesian product that are given by the less restrictive condition x = x" and
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f ~ f; the set of all edges of the second type in G ? F are defined by the anal-
ogous condition in the Cartesian product (but they form a subset of the edges
of the first type in the lexicographic product).

Theorem 8.9.5 The adjacency operator of the wreath product G F has the
expression

Zﬂf@@&w)@@Aﬁ+bm®A, (8.33)

xeX x'eX
where A, € End(L(X)) is defined by setting A,(8y) = 8,(X' )8, forall x, x' € X.
Proof. Letus show that the first summand in (8.33) takes into account all edges

of the first type. Indeed, arguing as in the proof of Proposition 8.9.1, for z € X
and f € YX, we have:

{Z K@ B) ®Ax“ Gr®8)=) K@ B) (81) Q) A(6: )]

xeX x'eX xeX x'eX

= (®Bz,x1> 7)) 8-

x'eX

(by (8.32)) = (® 1) &) 3.
xXeX
where the last expression is precisely the characteristic function of the set of all
vertices adjacent to (f, z) by an edge of the first type.
Finally, the term Iyx ® A takes into account all edges of the second type;
compare it with the expression of the adjacency matrix of the Cartesian product
in Proposition 8.8.3.(i). ]

In [45], D’ Angeli and Donno introduced and used (8.33) as a definition of
wreath product of matrices.

8.10 Lamplighter graphs and their spectral analysis

This section is based on our monograph [34] and the paper [136], but the version
of the lamplighter that we analyze is the one described in [45, 58, 59].
Let G = (X, E) be a finite simple graph without loops.

Definition 8.10.1 The lamplighter graph associated with G is the finite graph
L = (X, £) with vertex set

X =1{0,1xX={(0,x:0ef0, 1} xeX]
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and edge set

&= [{(a),x), 0,y)} : [x =y 0(z) =6() forall z#xand w(x)#6(x)]

or [x~yand w:@]}.

Clearly, £ coincides with the wreath product G @ K5, where K is the complete
graph on two vertices (cf. Figure 8.5).

Remark 8.10.2 Another description of the lamplighter graph is the following.
We associate with each vertex x € X a lamp that may be either on or off. A con-
figuration of the lamps is a map w: X — {0, 1}: the value w(x) = 1 (respec-
tively, w(x) = 0) indicates that the lamp at x is on (respectively, off). A vertex
of the lamplighter is a pair (w, x) consisting of a configuration of the lamps
and a vertex of X. Two vertices (w, x) and (6, y) of the lamplighter graph are
adjacent if and only if one of these two conditions are satisfied:
x~yand w =6 (awalk edge);

. . . (8.34)
x =yand wand @ differ exactly in x (a switch edge).

This is the so-called walk or switch lamplighter: the neighbors of the vertex
(w, x) may be obtained by either walking to a neighbor of x in G and leaving
all the lamps at their current states, or remaining at x but changing the state of
the lamp at x.

Finally note that two configurations @ and 6 may be added: (w + 0)(x) =
w(x) + 6(x) mod 2.

In the literature, several variations on this construction have been analyzed;
see [136], and, for infinite lamplighters and their spectral computations [17, 69,
70, 941].

Let A € End(L(X)) denote the adjacency operator associated with the lamp-
lighter graph L, so that

[APN(w,x)= Y @O,y

(0.3~ (w,x)

forall ® € L(X)and (w, x) € X.Since L(X) =L ({O, 1}X) ® L(X), itis useful
to determine the A-image of a tensor product of functions: if F € L ({0, 1}*)
and f € L(X) we have

[ACF ® (@, x) = F(o+8)f(x) + F(@) Y _ f() (8.35)

y~x
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for all (w, x) € {0, 1}¥ x X. Indeed, the first term corresponds to a switch at x
(8 is regarded as the configuration with only the lamp at x on) and the second
to a walk from x.

With each 0 € {0, 1}* we associate the linear operator Ag: L(X) — L(X)
defined by setting

[Aa f1) = (=1’P L) + D fO) (8.36)

y~x

forall f € L(X) and x € X, and the character yy € Z,* = {O/,I\}X c L{o, 1}%)
defined by setting

xo (@) = (_1)erx O(xX)o(x)
for all w € {0, 1}* (cf. Section 8.5).
Theorem 8.10.3 For all 6 € {0, 1}X and f € L(X) we have:
Alxo ® ) = xo ® Ao f. (8.37)

Suppose also that Ay 1, X2, ..., o.ne) are the distinct eigenvalues of Ay
and Vy ; is the eigenspace of Ay corresponding to the eigenvalue Ag j, j =
1,...,h(0). Then

{roj:0 €0, 3", j=1,2,...,h(8)}

are the eigenvalues of A (not necessarily distinct) and Wy j = {xo @ f : f €
Vo, ;) is the eigenspace of A corresponding to Ag ;.

Proof. Applying (8.35) we get
[A(xe ® N (@, x) = xo(@ + ) f(x) + xo(@) Z A

y~x

= 2o (@) [(—D“”f(x) +3 f(y)} (8:38)

y~x

= [xo ® Ag f](w, x).

The other statements follow easily from (8.37). O

8.11 The lamplighter on the complete graph

This section is based on [45]. See also [34] and [136] for another version of the
following construction.
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Given a finite set X, we denote, as usual, by Wy(X) the space of constant
functions on X and W\ (X) = {f € L(X) : }_,.x f(x) = 0}. Then (cf. Proposi-
tion 2.1.1), we have the decomposition

LX) = Wo(X) ® W, (X). (8.39)

Let now K, = (X, E) be the complete graph on n vertices so that X =
{1,2,...,n}and E = {{x, y} : x, y € X, x # y}). The eigenspaces of the adja-
cency operator on the complete graph on n vertices are Wy(X) and W;(X),
with corresponding eigenvalues n — 1 and —1, respectively; see Section 8.4.
Let £ = (X, &) be the associated lamplighter graph. Let 6 € {0, 1}* and
set

Xy = {xeX:0(x)=0)}.

For f € L(X) and x € X, equation (8.36) becomes:

O+ X fm+ X fO)  ifxeX

)’G;é(g : yeX\Xo
[Ao f1(x) = = (8.40)
TO=ZN o+ T o+ T fo) ifxeX\X.
yeXy yeX\Xp:
Y#x
Let f € L(X). If
flx, € Wi(Xp) and fx\x, = 0 (8.41)

then (8.40) becomes

fO+ Y f) ifxeXy

veXp:
A0 f1(x) = -
> fO) ifx e X\ X
Y€Xp
= Zf(y) =0 (in both cases).
Yy€Xy

Therefore, the space of all functions satisfying the conditions in (8.41) consti-
tutes an Ag-eigenspace with eigenvalue 0.
Similarly, if

flxvx, € Wi(X \ Xp) and fly, =0 (8.42)
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then
> fO) ifx € Xy
yeX\ Xy
[Ao f1(x) = —fO+ Y fy) ifxeX\Xp
yeX\Xp:
y#x
_ 0 ifx e Xg
| —2r0 iftxex\ X,

= —2f(x) (in both cases).

Therefore, the space of all functions satisfying the conditions in (8.42) consti-
tutes an Ag-eigenspace with eigenvalue —2.

Finally, suppose that |Xg| = k with 0 < k < n, and let f = aly, + Blx\x,,
for some «, B € C. From (8.40) it follows that

ko + (n — k)B ifx € Xy

A =
[Ag f1(x) {ka_l_(n_k_z)ﬁ ifxeX\Xy.

Note that if kK = 0 (respectively, k = n), thatis, Xy = & (respectively, Xy = X),
then f is constant and is an Ag-eigenvector with eigenvalue n — 2 (respectively,
n). When 1 <k < n — 1, elementary calculations show that the eigenvalues of

k nk n—2+44/(n—2)2+8k

: k
the matrix ( p n—k—2) are )»(i) = 5

T (k)
<k>) (k) A
where v}’ = .
+ ) > + 20

We then define the one-dimensional Ay-eigenspaces (subspaces of L(X))

and the corresponding eigenvec-

tors are (1 o)

Wi = {f = aly, + 0Palxyx, : @ € C},
for1 < |Xp| <n—1,and
Wo ={f =alx : a € C},
if |Xp| =0, n.
We also define the following subspaces of L(X):
Wo.o =span(1 Q@ f: f € W),
Wio = span((—1) ® f: f € Wp),
where 1(w) = 1 and [-1](w) = (—1)Zwx®® _forall w € {0, 1}¥, and, for 1 <
k<n-—1,
W/fo =span(xy ® [ : |Xs| =k, f € W),
Wie1 = span(xp ® f: |Xg| =k, flx, € Wi(Xp) and flx\x, = 0),
Wiz = span(xo ® f 1 |Xg| =k, flx, = 0 and fx\x, € W1(X \ Xp)).


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.009
https://www.cambridge.org/core

8.12 The replacement product 273

Exercise 8.11.1 Show that

(1) Wy, is the A-eigenspace with eigenvalue n — 2;

(2) Wy is the A-eigenspace with eigenvalue n;

3) W,fo is the A-eigenspace with eigenvalue Ai‘), fork=1,2,...,n—1;
(4) D;_; Wr is the A-eigenspace with eigenvalue 0;

5) @Z;(l) W2 is the A-eigenspace with eigenvalue —2.

8.12 The replacement product

In this section, based on [58], we introduce the replacement product. This is a
natural construction but it is worthwhile to introduce specific notation in order
to get a precise description of it. This notation will also be used for the zig-zag
product (cf. Section 8.13).

Let G = (X, E, r) be a finite d-regular graph possibly with multiple edges
and loops.

Let x and y be two distinct vertices in X. Recall that E, denotes the set of
edges incident to x. This way, E, N E, is the set of edges joining x and y (note
that x % y if and only if E, N E, = Q).

Set [d] ={1,2,...,d}. Then for each x € X we (arbitrarily) choose a bijec-
tive labelling of the edges incident to x using [d] as the set of labels, that is, a
bijection A, : E, — [d]. We refer to (h,),cx as to the (edge) labelling of G and
we say that G is a labelled graph. Given a vertex x € X and an edge e € E such
that r(e) > x, the label & = h,(e) is called the color of the edge e near x and
we also say that e is the h-edge near x. Note that, unless otherwise specified,
if x, y € X are distinct and adjacent, and e € E, N E,, then there is no relation
between the color A, (e) of e near x and the color Ay (e) of e near y. Moreover, if
r(e) = {x}, that is, e is a loop at x, then e has only the color %,(e) near x.

Definition 8.12.1 The rotation map
Rotg: X x [d] — X x [d]
associated with the labelling (h,).cx is the (bijective) map defined by setting
Rotg(x, i) = (v, j) where e = h;l(i), r(e) = {x,y}, and j = hy(e), (8.43)
forallx € X and i € [d].

In other words, if e = h;l(i) € Eisaloop atx, then Rotg(x, i) = (x, i), while
if r(e) = {x, y}, with y # x, then Rotg(x, i) = (y, j), where j is the color of e
near y. Note that

E=(X x[d])/ ~ (8.44)
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where = is the equivalence relation defined by setting (x, i) &~ (x, i) and

(x, 1) = (, J) if (3, j) = Rotg(x, i)

forallx,y € X and i, j € [d].
With the rotation map Rotg we associate the permutation matrix Rg indexed
by X x [d] defined by setting, for all (x, i), (y, j) € X x [d],

) ) 1 if Rotg(x, 1) = (y, j)
Ro((x.D.0:0) =1 l)the(;\f/i:e e (8.43)

In the following proposition, we show the connection between the permu-
tation matrix Rg and the adjacency matrix A = Ag of G. We use the operator
C in (8.21) and we think of Ry (respectively, A) as a linear endomorphism of
L(X x [d]) (respectively, L(X)).

Proposition 8.12.2 For all f € L(X) one has
CRg(f ® 1) = Af.

Proof. Clearly, for (x, i) € X x [d] we have
Rg(6,®38;) =6:® ;

where (y, j) = Rotg(x, i). Then
Ro(S: @ 1) = > Ro(6: @)=Y Y  6,®5;

i€[d] ield] (y.j)eXx[d]:
Rotg (y, j)=(x,i)

so that

CRg(S: @)=Y >  C,®8)
ield] (,j)eXx[d]:
Rotg(y, j)=(x,i)

Yoo s

ield] (y,))eXx[d]:
Rotg(y, j)=(x,i)

> s,

ye.X:
x~yin G

= Ad,.

(by Lemma 8.7.3.(i1))

The general result follows by linearity. 0

Exercise 8.12.3 Show that if X is a finite nonempty set, then a map Rot: X x
[d] — X x [d] is the rotation map of a labelled d-regular graph with vertex
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set X if and only if Rot o Rot is the identity map. Moreover, loops correspond
to fixed-points of Rot.

Hint: Suppose Rot o Rot is the identity map. For x € X set E, = {Rot(x, i) : i €
[d]} and define E = (Uxexfx) / &, where & is as in (8.44). Moreover, r: E —
P(X) is defined by setting r[Rot(x, i)] = {x, ¥}, where Rot(x, i) = (y, j), for all
xeXandi e [d].

Definition 8.12.4 Let G = (X, E, rg) be a d-regular graph and F = (Y, F, rr)
a k-regular graph with ¥ = [d]. Assume that in both graphs we have defined
a labelling and a rotation map as in Definition 8.12.1. Then their replacement
product is the (k + 1)-regular graph G(@)F with vertex set X X [d] and the rota-
tion map defined by setting, forx € X, i € [d], and j € [k + 1],

((x, m), h) if j € [k] and Rotz(i, j) = (m, h)

Rotger((x, 1), j) =
or P Rotge, i), ) ifj=k+1.

Exercise 8.12.5 Show that Rotgg 7 o Rotg@r is the identity map so that, by
Exercise 8.12.3, the definition of replacement product is well posed.

Remark 8.12.6 Actually, to define the replacement product it is not necessary
to label F. The definition may be modified by saying that (x, i), (z, m) € X x
[d] are adjacent in G@)F if

x ~ zand Rotg(x,i) = (z,m) (edges of the first type)
or (8.46)
x=zand i ~min F (edges of the second type).

Clearly, each vertex is incident to exactly one edge of the first type and to k
edges of the second type. Note also that the replacement product is a subgraph
of the lexicographic product (cf. Definition 8.8.1). Indeed, the edges of the first
type (respectively, second type) in (8.46) are a subset of the edges of the first
type (respectively, precisely the set of all edges of the second type) in the lexi-
cographic product.

Remark 8.12.7 A d-regular graph G = (X, E, r) is d-edge-colorable if there
exists a map ¢: E — [d] such that the restriction of ¢ to E, is a bijection for
each x € X. In other words, G is d-edge-colorable when we may assign a color
to each edge in such a way that for each x € X and j € [d] there exists exactly
one edge with color j incident to x. If such a map ¢ exists, we may use it to get
a labelling of G such thatif x, y € X and e € E, N E, then e has the same color
¢(e) both near x and near y. This way, in (8.43) we always have i = j. If this
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condition is satisfied, we may write the first condition in (8.46) in the form:
x ~ z, i = m, and the label of the edge connecting x and zis i. (8.47)

Here is an informal description of the replacement product G().F; compare
with the figures in Exercise 8.12.8. Replace each vertex of G by a copy of F.
The edges of each copy of F constitute the edges of the second type in (8.46).
Then join the copies of F by means of the edges of G, taking into account the
labelling of G, as in (8.46) (edges of the first type).

Exercise 8.12.8 Prove that the replacement products K5(T)C4 of the complete
graph K5 on five vertices (with the corresponding labellings) and the 4-circle
C4, are as in Figures 8.12 and 8.13. These examples, taken from [1], show that
the replacement product does depend on the labelling of the first graph.

Figure 8.12. The replacement product K5(@®C, (with a given labelling of K5s).

Proposition 8.12.9 Let B be the adjacency matrix of F and Rg the permutation
matrix in (8.45). Then the adjacency matrix of the replacement product G®F
is given by

Mg@f =Rg + Iy ® B.

Figure 8.13. The replacement product Ks(@®C, (with another labelling of Ks).
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Proof. The matrix Rg (respectively, Iy ® B) takes into account all edges of
the first type (respectively, second type) of G®F; compare with Proposition
8.8.3.30). U

We end this section by showing that the lamplighter construction in Section
8.10 may be obtained as a replacement product.

Let then O, = (X, E) be the n-dimensional hypercube (see Section 8.5).
Using the notation in both Section 8.10 and in the present section, we may
identify X with {0, 1}/"]. Moreover, two vertices w, 8 € {0, 1} are adjacent
when there exists j € [n] such that: w(j) # 0(j) and w(h) = 6(h) forh # j. In
this case, the edge {w, 0} € E is labelled by the color j both near w and near
0. This shows (cf. Remark 8.12.7) that the n-dimensional hypercube is n-edge-
colorable.

Proposition 8.12.10 Ler F = ([n], E) be a simple graph without loops on
n vertices. Then the product replacement Q,@)F obtained by means of the
labelling described above is isomorphic to the lamplighter F ? K.

Proof. In the terminology of Remarks 8.10.2, 8.12.6, and 8.12.7, a switch edge
in F 1 K; corresponds to an edge of the first type in Q,@)F: both the switch
condition in (8.34) and the conditions in (8.47) become: i = m, w ~ 6, and the
color of the edge connecting w with 6 is i.

Similarly, a walk edge in F : K, corresponds to an edge of the second type
in Q,@™.F: for (w, i), (8, m) € Q, x [n] both the walk condition in (8.34) and
the second condition in (8.46) become: i ~ mand w = 6. O

8.13 The zig-zag product
This section is based on the exposition in [58]. The original sources are [74]
and [128]. We assume all the notation in Section 8.12, in particular in Defini-
tion 8.12.4, so that G = (X, E, rg) is a d-regular graph and F = (Y, F,rr) a
k-regular graph with Y = [d].

Definition 8.13.1 The zig-zag product of G and F is the k*>-regular graph G@)F
with vertex set X x [d] and rotation map Rotgg # described by the following
conditions. We use the set [k] x [k] to label the edges of the graph and, for
xeX,held],and i, j € [k],

Rotgar((x, h), (i, /) = (0, D), (', ),

wherey € X, [ € [d] and 7, j' € [k] are determined by means of the following
steps:
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(i) (W,i)=Rotr(h,i);
(i) (1) = Rotg(x, h);
(i) (1, j") =Rotz(l', j).

Remark 8.13.2 Here is a more detailed description of these steps. We replace
each vertex x of G with the vertices (x, 1), (x, 2), ..., (x, d). Then the vertices
(x, h), (v, 1) € X x [d] are adjacent in the zig-zag product G@).F if it is possible
to connect them in the replacement product G@)F with a path of length three
and of the following form.

(i) First of all, we choose an edge of the second type in G(®F incident
to (x, h), that is, we choose a label i € [k] so that the vertex (x, #') is
determined by the rotation map: Rotz(h, i) = (#, {'); this also yields
the label i’ € [k]. We refer to this as to a zig move.

(ii) Itis then determined the unique edge of the first type in G@)F incident
to (x, i), that is, the vertex (y, I') = Rotg(x, h"). We refer to this as to
the jump move.

(iii) Finally, we choose an edge of the second type in G@®F incident to
(y, 1), that is, we choose a label j € [k] so that the vertex (y, [) is deter-
mined by the rotation map: Rotx=(!’, j) = (I, j'), which also yields the
label j' € [k]. We refer to this as to a zag move.

Proposition 8.13.3 Using the notation in Proposition 8.12.9, the adjacency
matrix of the zig-zag product is:

Msar = (Ix ® B)Rg(Ix @ B). (8.48)
Moreover, there exists a [(k +1)° — kz]—regular graph ‘H such that
Mé’@f = Mgepr +H,
where H is the adjacency matrix of H.

Proof. Clearly, in (8.48) the two factors (Iy ® B) take into account the zig and
zag moves, while Ry is the jump move. Now consider the following graph C. Its
vertex set is again X X [d] and two vertices are adjacent in C if there is a path
in G@.F of length three connecting them. By Proposition 8.1.6, the adjacency
matrix of C is Mé@) - Moreover, C is regular of degree (k + 1)3, possibly with
multiple edges and loops. Finally, we conclude by noting that G@).F is a sub-
graph of C so that, denoting by H = (X x [d], E(H)) the subgraph of C with
edge set E(H) = E(C) \ E(G@JF), we have, cf. Proposition 8.12.9,

H = [Rg + (Ix ® B)]' — (Iy ® B)Rg(Ix ® B). 0
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Exercise 8.13.4 Using the first result in Exercise 8.12.8, prove that the zig-zag
product of the complete graph K5 on five vertices (with the given labeling) and
the 4-circle Cy, is as in Figure 8.14.

Figure 8.14. The zig-zag product Ks@)Cj.

Remark 8.13.5 Proposition 8.13.3 and Exercise 8.13.4 show that it is not nec-
essary to introduce a labelling in F in order to construct the zig-zag product.
But the labelling of F is necessary to get a [k] x [k]-labelling on the zig-zag
graph.

Exercise 8.13.6 Assume the notation in Proposition 8.12.10. Define the walk-
switch-walk lamplighter as follows: (w, i), (6, m) € Q,, x [n] are adjacent if
there exists j € [n] such thati ~ j, j ~ m, w(h) = 6(h) for h # j and w(j) #
0(j). Show that this graph is isomorphic to the zig-zag product Q,@F.

8.14 Cayley graphs, semidirect products, replacement products,
and zig-zag products

In this section we introduce the concepts of a Cayley graph of a (finite) group
(with respect to a given generating subset) and of a semidirect product of two
(finite) groups. Then, by means of several exercises, we illustrate the connec-
tions between the Cayley graph of a semidirect product of two groups and a
modified version of the replacement and of zig-zag products of the Cayely
graphs of these groups (with respect to suitable generating subsets). They are
based on the exposition in [58]. The original sources are [8] and [74].

Let G be a finite group. A subset S € G is termed generating if every element
g € G may be written as a product g = sy, - - - 8, With sy, 82, ..., 5, € SU Ss-1
for some m > 0, where S~' = {57! : s € S}. A subset § C G is said to be sym-
metric provided § = S~
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Let S C G be a symmetric generating subset. Then the associated Cayley
graph T'(G, S) is the graph with vertex set G and edge set {{g, gs} : s € S, g €
G}. In other words, two vertices g, ¢ € G are adjacent if and only if g™'g’ € S.
Note that I'(G, S) is undirected since S is symmetric: g~'g € S if and only if
(@) 'g=(g7'g)" € S. Moreover, I'(G, §) has no multiple edges: if gs = gs’
for some g € G and s, s’ € S, then the cancellation property implies that s = s'.
Moreover, I'(G, S) has loops if and only if S contains the identity element (and,
if this is the case, then there is exactly one loop based at each vertex of I'(G, S)).
Finally, note that we may use the elements of S to get a labelling of I'(G, S):
the rotation map (8.43) is then defined by setting

Rotrg,s)(g, 5) = (gs, s_l)
forallge Gands € S.

Exercise 8.14.1

(1) Show that the discrete circle C,, (cf. Definition 8.6.1) is the Cayley graph
of the cyclic group Z, with respect to the (symmetric) generating set
S={1,n—1}

(2) Show that the hypercube Q, (cf. Definition 8.5.1) is the Cayley graph
of the group Z; with respect to the (symmetric) generating set § =
{(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0, }.

We now recall the well known construction of a semidirect product of two
(finite) groups (see, for instance, [12, pp. 20-24], [148, pp. 6-8]).

Definition 8.14.2 (Semidirect product) Let G be a finite groupand N, H < G
two subgroups of G. Then G is the (internal) semidirect product of N by H and
we write G = N x H, when the following conditions are satisfied:

(a) N 4G;
(b) G =NH,
(¢) NNH = {lg}.
Proposition 8.14.3 Suppose that G is a semidirect product of N by H. Then

(i) G/N=H;
(ii) every g € G has a unique expression g = nhwithn € N and h € H;
(iii) foranyh € H and n € N set ¢p(n) = hnh™'. Then ¢y, € Aut(N) for all
h € H and the map

H — Aut(N)
h —> ¢h

is a homomorphism (conjugation homomorphism);
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@iv) ifnh,n hy € G are as in (ii), then their product is given by
nihy - nahy = [ny - hinohy iy = [nigy, () 1hiha. (8.49)

Conversely, suppose that H and N are two (finite) groups and we are given
a homomorphism

H — Aut(N)
h — ¢h~

Set G = {(n, h) : n € N, h € H} and define a product in G by setting

(n, h)(ny, hy) = (ngp(ny), hhy)

foralln,n; € Nandh, hy € H (compare with (8.49)). Then G is a group and it
is isomorphic to the (inner) semidirect product ofﬁ ={(n,1g):ne N} =EN
by H= {(ly,h) : H € H} = H. The group G is called the external semidirect
product of N by H with respect to ¢ and it is usually denoted by N x4 H. More-
over, with the above notation, the following conditions are equivalent:

(a) G is isomorphic to the direct product N x H;
(b) H is normal in G;
(c) @y is the trivial automorphism of N for all h € H.

Proof. The proof is just an easy exercise and it is left to the reader. O

Clearly, the internal and external semidirect products are equivalent con-
structions and we shall make no distinction between them.

Suppose now that G = N x H is a semidirect product. For n € H we denote
by nf its orbit under the action of H, that is n” = {hnh™' : h € H}. Let Sy
(respectively, Sy) be a symmetric generating subset for H (respectively, N) and
suppose that n'/ € Sy for all n € Sy (in other words, Sy is H-invariant). Let
then x1, x3, ..., xx € Sy form a set of representative elements for the orbits of
Sy under the action of H, that is,

Sv=a [ [ ] ][
sl 4

and set Sy = {x', 55", ..., x'}. In the following exercises we ask the reader
to investigate the connections between the construction in Sections 8.12 and
8.13 and the semidirect product of groups.

Exercise 8.14.4
(1) Show that
S=SyUSy

is a symmetric generating subset for G.
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(@)

3)

“4)

Graphs and their products

Prove that the Cayley graph I'(G,S) is the modified replacement
product

T(N, Sy)®I(H, Sy)

defined as follows. The vertex setis G = NH. Each g = nh € G is inci-
dent to |Sy| edges of the second type, which connect it with the vertices
{nhs : s € Sy};thisis asin Remark 8.12.6. Moreover, nh is also incident
to 2k edges of the first type, which connect it with the vertices

{nhxj,“ = (- h R = 1,2, k}
Show that the set

S = {sxflt:s,teSH,j:1,2,...,k}

is another symmetric generating subset for G.
Prove that the Cayley graph I'(G, S) is the modified zig-zag product

(N, Sy)@I(H, Su)

that may be defined as in Remark 8.13.2 but using the modified replace-
ment product in (2).

Remark 8.14.5 If k =1 and x; = xl’l, then the modified replacement prod-
uct in Exercise 8.14.4.(2) coincides with an ordinary replacement product. The
same holds for the modified zig-zag product in Exercise 8.14.4.(4). In general,
a modified product may be seen as a “union” of ordinary products.
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Expanders and Ramanujan graphs

This chapter is an introduction to the theory of expanders and Ramanujan
graphs. It is based mainly on the exposition in the monograph by Davidoff-
Sarnak-Valette [49] and the paper [74]. First of all, we present the basic
theorems of Alon-Milman and Dodziuk, and of Alon-Boppana-Serre, on the
isoperimetric constant and the spectral gap of a (finite, undirected, connected)
regular graph, and their connections. We discuss a few examples with explicit
computations showing optimality of the bounds given by the above theorems.
Then we give the basic definitions of expanders and describe three fundamental
constructions due to Margulis, Alon-Schwartz-Schapira (based on the replace-
ment product, cf. Section 8.12), and Reingold-Vadhan-Wigderson [128] (based
on the zig-zag product, cf. Section 8.13). In these constructions, the harmonic
analysis on finite Abelian groups (cf. Chapter 2) and finite fields (cf. Chapter
6) we developed so far, plays a crucial role.

The original motivation for expander graphs was to build economical robust
networks (e.g. for phones or computers): an expander with bounded valence is
precisely an asymptotic robust graph with the number of edges growing linearly
with size (number of vertices), for all subsets. Since their definition, expanders
have found extensive applications in several branches of science and technol-
ogy, for instance: in computer science, in designing algorithms, error correcting
codes, extractors, pseudorandom generators, sorting networks (Ajtai, Komlos,
and Szemerédi, [6]), robust computer networks (as in their initial motivation),
and in cryptography (in order to construct hash functions: these are used in hash
tables to quickly locate a data record given its search key). From a more theo-
retical viewpoint, they have also been used in proofs of many important results
in computational complexity theory, such as SL = L (Reingold, [126]) and the
PCP theorem (Dinur, [56]).

283
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9.1 The Alon-Milman-Dodziuk theorem

In this section we present the discrete analogues, due to Dodziuk [57] and
Alon-Milman [9], of the well-known Cheeger-Buser inequalities in Rieman-
nian geometry (cf. [38] and [26, 27]).

LetG = (X, E, r) be a finite (undirected) k-regular graph (possibly with mul-
tiple edges and loops). Recall that £y = {e € E : |r(e)| = 1} denotes the set of
allloopsof Gand Ey = {e € E : |r(e)| =2} = E \ Ey.

Definition 9.1.1 Let F C X be a set of vertices of G. The boundary of F is the
set

AF ={ecE:r(e)NF # @and rle) N (X \ F) # @} CE;

of all edges in G joining (vertices in) F' with (vertices in) its complement X \ F.
The isoperimetric constant (also called the Cheeger constant) of G is the
non-negative number

oF X
h(g)=min{%:F§X,0<lF|§%}.

Note that one has

0F| = Y Aly)= Y AY) ©.1)
xeF {x.yler(dF)
yeX\F

Moreover, h(G) is strictly positive if and only if G is connected, and
h(G) < k. 9.2)

Indeed, if G is connected, then 3 F is nonempty for all & # F ; X, thus show-
ing that 4(G) > 0. If G is not connected, then there exists a connected compo-
nent whose vertex set F satisfies 0 < |F| < % and, clearly, 0F = &, showing,
in this case, that /(G) = 0. Moreover, if @ # F C X, since G is k-regular, the
total number of edges incident to some vertices in F is at most |F |k, so that
|0F| < |F|k, and (9.2) follows.

Finally, note that some papers (for instance [10]) use the normalized isoperi-
metric constant (or edge expansion constant) that is defined as #/'(G) = ;%g)’
and, by virtue of (9.2), satisfies /' (G) < 1.

Let A be the adjacency operator of G and set A = kI — A € End(L(X)),
where, as usual, I denotes the identity map. Then, for f € L(X) and x € X we

have that

[AF1) = kf@) = Y ACL )FG) = kf () = DA ),

yex X
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Moreover, keeping in mind Proposition 8.1.5 and the notation therein, we have
that the eigenvalues of A are:

M=0<h=k—ju < <Ay =k— px-1. ©-3)
In the sequel we shall often use the following summation argument.

Remark 9.1.2 In our setting, for a € L(X x X) symmetric (i.e. such that
alx,y) =a(y,x)forallx,y € (X) and b € L(X), we have

Y. atxy) = % YD altey) = % YD atky) 94

{x.y}er(Er) xeX yeX: yeX xeX:
yx x~y
yF#X x#y

and, by the regularity of G (namely, degx = k for all x € X),

D AG ) () + b)) =Y (k= A(x, )b(X). 9.5)

{x.yler(E) xeX
In particular, taking b = 1x we get 2|E;| = k|X| — |Ey|, that is,
2|E1| + |Eo| = kIX]. 9.6)
Lemma 9.1.3 Let f € L(X) be real valued. Then

AF =Y A (F@) = FO0))P 9.7)

{x.yter(Er)
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Proof. We have
> A@Y) (fFx) = fO0))

{x.yter(Er)
= Y AEY) (@ + 1))
{x,yter(E))
-2 ) A@NDOf)
{x,y}er(Ey)
=, Y (k= AG, DG = DD A )FOf )
xeX xeX yeX:
y~x
yx
=k) 0P =D D ACNIO)
xeX xeX y)ew)gc
=k) 07 =D D A@NF@F)
xeX xeX yeX
=k [0 =Y IAfI0f )
xeX xeX
=k(f, /) —(Af. f)
= <Af’ f)a
where =, follows from (9.5) with b(x) = f (x)2, and from (9.4) with a(x, y) =
A, y) f()f(). 0

Definition 9.1.4 The operator A € End(L(X)) is called the combinatorial
Laplacian and the right hand side of (9.7) the Dirichlet form on G.

The terminology in the above definition is based on the classical mean-
value property of harmonic functions on R” (which constitute the kernel of
. _ 9 92 2
the Euclidean Laplace operator A = pr + PP 4+ m).

Remark 9.1.5 Suppose that G = (X, E) is a finite simple graph without loops.
Recall that we may identify the edge set E with the set of two-elements sets
{x, y} C X such that x ~ y. In this setting, the boundary of a subset F C X is
given by the set of edges

oF ={{x,y}eE:xeFandy¢ F} CE.

Moreover, if G is k-regular, the combinatorial Laplacian and its associated
Dirichlet form (9.7) can be expressed as

[Af1G) =kf(x) = Y f()

y~x


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core

9.1 The Alon-Milman-Dodziuk theorem 287

and

(Af, Y=Y (f&)—f»),

{(x.yleE

respectively, for all f € L(X)and x € X.

We recall (cf. Proposition 8.1.4) that if W is the space of constant functions
onX and W) = {f € L(X) : ).y f(x) = 0}, then L(X) = Wy @ W;.

Lemma 9.1.6 Suppose that G is connected. Then we have

)lek—mzmin{<(fffj>c> fe Wl,f;ﬁO} 9.8)
and
/,L]Zk—)\l: ax{(f—;; fE 1,f7é0} (99)

Proof. Since G is connected, the multiplicity of the eigenvalue Ao = 0 of A is
one: the corresponding eigenspace is Wy (cf. Proposition 8.1.5). Therefore, the
other eigenvalues of A, namely A < --- < A,_; (n = |X]), are all positive with

corresponding eigenfunctions ¢y, . . ., ¢,— that can be chosen to be real valued
and to constitute an orthonormal basis of W;. Then, forevery f = aj¢p; + - - - +
Oln_l(f)n_] e W, \ {0} (Ol], Lo, € (C) we have

(A, ) =(A(a1¢1 + -+ + oy 1Pu1), 11 + -+ + Ay 19-1)
= (Mo + -+ A1 1Pn—1, 2101 + -+ Ay 1Pn—1)
=Ml P+ -+ Aol )

(by 93) = Ailo [* + -+ + Ayl |2
= Ja(lonl® + -+ lop1 )

= r{fs f),
showing that | < <<Aff—’fj;>. Since A} = <<A¢‘ 1) (9.8) follows. The proof of (9.9)
is analogous and is left to the reader. O

Theorem 9.1.7 (Alon-Milman) Let G = (X, E, r) be a finite connected k-
regular graph. Then

L < h(G).
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Proof. We apply Lemma 9.1.6 to a suitable function in W;. For F C X such
that 0 < |F| < %‘, we define fr € L(X) by setting
IX\F| ifxeF

FFO=V 0 itrex\F

Then Yy fr(x) = |X \ F| - |F| — |F| - |X \ F| =0, so that fr € W;, and

(fro fr) =Y fr)” = X\ FI” - |F| + |F|” - |X \ F|

xeX

=|X\F|-|F|-(IX\F|+|F|)=|X\F|-|F|-|X].
Moreover,

+|X| if {x,y} € r(3F)

0 otherwise.

Jr() = fr(y) = :

Therefore, by virtue of Lemma 9.1.3 we have

(Afr, fr) =Y AGY) (fr()— fr())

{x.yter(Er)

=X ) Ay

{x,y}er(oF)
(by 9.1)) = [X|*-|3F].
Thus, from Lemma 9.1.6 we deduce that

IXI  [8F| _ IXP-19Fl (Afr, fr)

. — = = )\,1 = k — MU1.
IX\F| |F| IX\F[-|F|-1X]  (fr, fF)
Since |F| < ‘Xl , we have D‘f)\(lF\ >3 ! and therefore
|0F| IX\F| _ k—m
= (k=) > : (9.10)
|F| X 2

As the isoperimetric constant 4(G) is, by definition, the minimum of the left
hand side values (with 0 < |F| < m) of (9.10), the statement follows. ]

In the following theorem we give an upper bound for the isoperimetric con-
stant.

Theorem 9.1.8 (Dodziuk) Let G = (X, E, r) be a finite connected k-regular
graph. Then

MG) < v2k(k — ).
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Proof. Let f € L(X) be a non-negative function and denote by «, > o, >

- > o1 > g > 0its values. Consider the map j: X — {0, 1, ..., r} defined
by

S = o
for all x € X (such amap j is clearly well defined). We also define the level sets
Xi=freX: fWzat={xeX:jKx) =i

fori=0,1,...,r.Clearly, Xo = X D X; D -+ D X, # . Finally, set

Bp= Y A —fOrI= Y. A& =0

{x.y}er(E) {x.y}er(Er)

Claim 1.

By =Y [0Xl(e;; — oy _,).
h=1

Proof of Claim 1. Given any {x, y} € r(E;) we may suppose, up to exchanging
x and y, that f(x) > f(y), equivalently, j(x) > j(y). This way, we have

r(0Xp) = {{x, y} 1 jO) < h < j(0)} 9.11)
forallh=1,2,...,r. Moreover,

J(x)
Br=) " Ay (@ —ajy)= Y Ay Y (@ —ap ).

tx.yler(Er): be.yler(Er): h=j(y)+1
J@)>jy) J@)>j)

In the last expression, each “telescopic” summand («} — o _,) appears exactly
A(x,y) times for every {x, y} € r(E;) such that j(x) > h > j(y), equivalently
(cf. (9.11)), exactly A(x,y) times for every {x,y} € r(9X}). In other words,
each “telescopic” summand appears exactly [0X},| times (cf. (9.1)). The claim
follows. U

Claim 2.
By < V2K IIfI (AS, f)2.

Proof of Claim 2. From the inequality 2ab < a*> + b?, for all a,b € R, we
deduce that

(FOO) + fON = FOO* + FO) +2f@)fO) < 2[f@)* + fFO)*] (9.12)
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for all x, y € X. Now,

Bp= Y JVAGYIF® + O VAE I = fO)

{x.y}er(Er)
1

2

<m] DLACVI@+ O D A@MIFE) — FOP

{x.yter(Er) {x.yter(Er)

=

1
2

<o V21 D AP+ FOPIL (Af )
{x,yter(E)

= (o) V2 {Z(k —A(x, x))f(x)z} (Af, )2

xeX
1

sﬁc{Zf(x)?} (Af )2,

xeX

where < follows from the Cauchy-Schwarz inequality, <. follows from
(9.12) and Lemma 9.1.3, and =, follows from (9.5). ]

We recall that the support of f € L(X) is the set
supp(f) = {x € X : f(x) # 0).

Claim 3. Suppose that

X1

[supp(f)| < B

Then

By > h(@)| fI*.
Proof of Claim 3. By our hypothesis on f, we have oy = 0, so that X; =
supp(f), and 0 < |X;| < % for every h = 1,2, ..., r. Keeping in mind the

definition of the isoperimetric constant, this implies that

10X5] = h(G)|X] (9.13)
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forevery h =1,2..., r. From Claim 1 we deduce that

r

By =Y _[0Xul(e; — )
h=1

(by (9.13)) = h(&) Y 1Xul(@} — o))
h=1
= WG [IX 1@ — o) + X1 1(a?, — a2 ) +
o Xl — o) + Xyl ]
= h(G) [IX e + 1X,—1 \ Xl +
FIXa \ Xptlo?, + -+ X0\ Xala?]
= h(IfI,

291

where the last equality follows from the fact that X;,_; \ X, is the set on which

f takes the value .

O

Claim 4. Let 1 < i < n — 1. Denote by ¢; € L(X) a real eigenfunction associ-

ated with the eigenvalue ); = k — u; and define f; € L(X) by setting

¢i(x) + |¢i(0)|

fi(x) = max{¢;(x), 0} = 3

forall x € X. Then
[Afil(x) < Aigpi(x)
for all x € X such that ¢;(x) > 0. Moreover, we have

(Afis /i)Y < MILAIP

Proof of Claim 4. Let x € X such that ¢;(x) > 0. Then we have fi(x) = ¢i(x)

and therefore

[A£1G) = Kfi(x) = Y A ) fi()

yeX

=kpi(x) — Y A, ))i(y)
#1010

< ki(x) — Y Alx, ))i(y)
yeX

= [A¢il(x)

= Lipi(x),


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core

292 Expanders and Ramanujan graphs

proving the first part of the claim. On the other hand,

(Afi fiy = Y IALIDfi) = Y [AfIO$ix)

xeX xeX:
$i(x)>0
<k D ¢ =Ml
xeX:
$i(x)>0
where the inequality follows from the first part of the claim. g

We are now in a position to complete the proof of Dodziuk’s Theorem.

Let ¢; be a real eigenfunction associated with the eigenvalue A} = k — ;.
Switching ¢; with —¢,, if necessary, we may suppose that the subset X =
{x € X : ¢1(x) > 0} satisfies the condition 0 < | X | < % (observe that since
¢ € W) and ¢, #£ 0, the set {x € X : ¢;1(x) > 0} is nonempty). Taking into
account, in order, Claim 3, Claim 2, and Claim 4 (and the notation therein), we
deduce

WO < By, < V2k(Af1, A 1A < V2k(k — )l fi]1%,

and the statement follows after dividing by || f; ||>. O

Definition 9.1.9 Let G = (X, E,r) be a finite connected k-regular graph.
Denote by k = o > 1 > -+ - > u, the eigenvalues of the adjacency matrix
of G. The spectral gap of G is the positive number

8(9) = po — 1 =k — py.

Remark 9.1.10 The theorem of Alon-Milman ensures that, in order to have a
“large” isoperimetric constant i(G), it suffices to have a “large” spectral gap
8(G). Conversely, the theorem of Dodziuk ensures that this is also a necessary
condition. More specifically:

3(G)=8=h(G) > g (Alon-Milman)

2
hG) > & = 8(G) > z—k (Dodziuk).

In the remainder of this section we compare the exact values of the isoperi-
metric constant with the estimates provided by the theorems of Alon-Milman
and Dodziuk for some graphs presented in Chapter 8.

Example 9.1.11 (The complete graph) Let K, be the complete graph on n >
1 vertices (cf. Section 8.4). Recall that the graph K, is regular of degree k = n —
1 and the eigenvalues of the associated adjacency matrix are ;o = n — 1 (with
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multiplicity one) and u; = —1 (with multiplicity n — 1). As a consequence, by
virtue of Theorem 9.1.7 and Theorem 9.1.8, the isoperimetric constant h(K,,)
satisfies

k —
g - 2’“ < h(K,) < v/2k(k — 1) = /201 — Dn < /2n.
Moreover, if F, ={1,2,...,h},h=1,2,...,n, we have |0F,| = h(n — h) so
oF
that 19F3| = n — h. It follows that

|Fil

[0F:| — [0Fn2

h(K,) = min =
I<h=n/2 || [Flny21]

n—[n/2],

where, as usual, [-] denotes the integer part (floor function). It follows that
h(K,) ~ n/2 showing that the Alon-Milman inequality is asymptotically opti-
mal; in fact, for n even we have h(K,,) = n/2 and, in this case, the Alon-Milman
inequality is indeed an equality.

Example 9.1.12 (The hypercube) Let O, = (X,,, E,;) be the n-dimensional
hypercube, n > 1 (cf. Section 8.5). Recall that X,, = {0, 1}", the graph Q, is
regular of degree k = n, and that the second eigenvalue of the associated adja-
cency matrix is ;i = n — 2. As a consequence, by virtue of Theorem 9.1.7 and
Theorem 9.1.8, the isoperimetric constant k£(Q,,) satisfies

V=5 o) = I = V=2 01

Moreover, if F’ = {x € X,, : x; = 0} is the hyperplane x; = 0, we have |F'| =
|X,|/2 = 2""!and, forevery x € F’, there exists exactly one edge in dF’ issuing
from the vertex x, namely {x, x'}, where x; = l and x, = x; fori = 2,3, ..., n.

It follows that |0F’| = |F’| and therefore from the Left Hand Side estimate in
(9.14) we deduce

[0F|  |9F'|
mn — <
0<|F|<2-! |F]| [F|

1 = hQn) =

showing that 7(Q,) = 1. We remark that, as for the complete graph, the Alon-
Milman inequality is indeed an equality.

Example 9.1.13 (The discrete circle) Let C, = (X, E,,) be the discrete circle
on n > 3 vertices (cf. Section 8.6). Recall that X;, = Z,,, the graph C,, is regular
of degree k = 2, and that the second eigenvalue of the associated adjacency
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matrix is u; = 2cos(2mw/n). As a consequence, by virtue of Theorem 9.1.7
and Theorem 9.1.8, the isoperimetric constant i(C,) satisfies

k —
1 — cos(2 /n) = 2’“

< h(Cy) < V2k(k — 1) = 2/2(1 — cos(2 /n)).

9.15)
Let F, =1{0,1,...,h}, h=0,1,...,[n/21— 1. Then 0 < |F|=h+1 <
[n/2] and 9F; consists of the two edges {n — 1,0} and {h, h + 1}, so that

oF, 2
|0F;| = 2 and ||F’I| = It is also clear that if F C X,,, 0 < |F| < [n/2] is
h
not connected (as a subgraph of C,), then |dF| > 2. It follows that
oF 2 2 4
h(C,) = min u: min —— = -,
0<|F|<[n/2] |F| 0<h<[n/21-1 h + 1 [7/2] n

Comparing with (9.15), since

2
1 — cos(2m /n) = 2sin*(r /n) ~ Lz
n

and

. 4
2/2(1 — cos(2m /n)) = 4sin( /n) ~ —,

we deduce that in this case the upper bound provided by Dodziuk (Theorem
9.1.8) is asymptotically better than the lower bound provided by Alon-Milman
(Theorem 9.1.7).

Example 9.1.14 (The 2-regular segment) Let G, = (X, E,,, r,) be the 2-
regular segment on n > 2 vertices (cf. Exercise 8.6.3). Recall that X, =
{0,1,2,...,n— 1} and that the second eigenvalue of the associated adjacency
matrix is @1 = 2cos(r /n) (cf. (8.10)). The isoperimetric constant 4(G,) then
satisfies the inequalities

— M1

1 —cos(mw/n) =

< W(Gy) < V2k(k — 1) = 2y/2(1 — cos(w /n)).

(9.16)
ForO<h<k<[n/2]—1wesetFpy=1{h,h+1,...,k}. Then |F, ;| =k —
h+1 <[n/2] and

(h—1,h), (kk+ 1)) ifh>0
Fui = .
(kK + 1)) ifh=0.

‘We then have
0Ful _ 10Foil _ 1 1
| Fh k| [Foxl  k+17 [n/2]
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so that
|0F| . 1 1

min —— = min =
0<|F|<[n/2] |F| O<k<[n/21-1k+1  [n/2]

%

h(gn) =

SN

Comparing with (9.16), since
2
. 2 b4
1 —cos(w/n) = 2sin“(/2n) ~ —
2n?
and

. 2
2\/2(1 — cos(mr /n)) = 4sin(w /2n) ~ —,
n

we deduce that, as for the discrete circle, the upper bound provided by Dodziuk
is asymptotically better than the lower bound provided by Alon-Milman.

9.2 The Alon-Boppana-Serre theorem

In this section we present the Alon-Boppana-Serre Theorem. A weaker ver-
sion (cf. Corollary 9.2.7) was originally proved by Alon and Boppana [7]. The
present statement (cf. Theorem 9.2.6) is due to J.P. Serre [146] who studied
eigenvalues of Hecke operators and their distribution. Our proof closely fol-
lows the presentation in the monograph by Davidoff, Sarnak, and Valette [49].
For another proof, due to Alon Nilli, we refer to the next section.

Let G = (X, E, r) be a finite connected k-regular graph.

Definition 9.2.1 (Hecke operators) A path p = (xo, e1, X1, €2, ..., €, x,)inG
is said to be non-backtracking if e,y # e¢; foralli=1,2,...,r— 1.

(a) For r > 1 define the X x X matrix A, by setting
A,(x,y) = |{non-backtracking paths of length r from x to y}|

forallx,y € X.
(b) Form > 1 set

T = Z Ap_or.
0=r=[m/2]

We also set Ty = Ay = I the identity matrix.

Clearly, A} = T; equals the adjacency matrix A of G. Moreover, T, = Ay +
A, and, more generally, for i > 1,

Tn=Ao+Ar~+---+Ayand T = A1+ A3+ - -+ Apppr. (9.17)
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Proposition 9.2.2 (Hecke relations I) The matrices A;’s satisfy the following
relations:

(i) A? = Ay +kI;
(i) AjJA, =AA =A1+(k— DA, _ forallr > 2.

Proof. Let x,y € X and r € N. We first recall (cf. Proposition 8.1.6) that
Al (x, y) equals the number of all paths of length r connecting x and y, in par-
ticular, A (x, y) # 0 if and only if x ~ y.

(i) If x and y are distinct, then a path of length 2 connecting x and y is

(ii)

necessarily non-backtracking. Therefore, A%(x, y) = Ax(x, y).

Suppose now that x =y. For every neighbor z ~ x (possibly,
z=x) there are exactly A(x,z) edges connecting x and z. Thus,
among all the A(x,z)> paths p = (x, e|, z, €2, x) of length 2 start-
ing at x, passing by z, and returning at x (note that A(x,z)> =
A(x, 2)A(z, x)), there are exactly A(x, z) which are backtracking (e; =
e;) and A(x, z)(A(x,z) — 1) which are non-backtracking (e; # e;).
Altogether we have

Ax) =) Ax =) Ax )+ Y Al 2)AK ) — 1)

~x X X

=k 4+ Ax(x, x),

showing that A} = A> = Ay +kI.
By definition we have

[A1A](x, y) = th(x, DAz, Y). 9.18)

zeX

Now, A,(z, y) counts the number of non-backtracking paths of length r connect-
ingzand y. If (z = xo, e1, x1, €2, ..., X,—1, €r, X, = ) is one of these paths, we
have two possibilities:

(a)

(b)

x # x1: then for every e € E such that r(e) = {x, z}, we have that
(x, e,z = xg, €1, X1, €2, ...,X—_1, €, X, = y) is anon-backtracking path
of length r 4 1 connecting x and y, and it contributes to the count of
Ar+1 (%, y)s

x=2x;: then (x=x,e,x,€3,...,%_1,€,X,=Yy) 1S a non-
backtracking path of length » — 1 connecting x and y: it contributes
to the count of A,_;(x,y) and it appears exactly (kK — 1) times in
(9.18) since e; can be any of the (k — 1)-edges such that r(e;) > x and
el 75 e).


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core

9.2 The Alon-Boppana-Serre theorem 297

This shows the equality A1A, = A,+1 + (k — 1)A,_;. The proof that A,A| =
Arq1 4 (k— 1A, (thus yielding also A1A, = A,A;) is similar and it is left to
the reader. O

Corollary 9.2.3 (Hecke relations II) For all m > 1 we have
Tpit =TTy — (k — DTy
Proof. By Proposition 9.2.2.(i) we have
TP =Al=Ay+kl =T, + (k— DT

and the case m = 1 immediately follows. In order to prove the general case
observe that, for h > 1,

Tn'Ty = TonAy
(by (9.17)) = ApA1 + A2A; + - - + ApAy
(by Proposition 9.2.2.(i1)) = A1 +A3+- - -+Axu+1
4+ (k— 1)(A1+A3+- - -+Az—1)
(again by (9.17)) = kTy—1 + Aopy1,
and, similarly,
DTy = AT +A3A| + - + AgA
=Ar+kAg+As+ -+ Ay + (k= DA + Ay + -+ - + Aop)
= kAo + Aojo + k(Az + -+ + Agy)
= kTop + Aopyo.

In other words,
T,Ty = kTy—1 + Ay
for all m > 2. From this we deduce
Tps1r — [TnTh — (k = DTy—1] = T — KTy — Appgr + (k — DT

= Tur1 — Tuo1 — Ani
—0,

and the statement follows. O
Let P,, denote the modified Chebyshev polynomial as in (A.4).
Theorem 9.2.4 For every m € N we have


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core

298 Expanders and Ramanujan graphs

Proof. We proceed by induction on m. Clearly, Py = 1 so that Py(A) =1 = Ty,
while P;(x) = x so that P;(A) = A = T;. Moreover,

Puny1(A) = Bu(A)A — (k — DP,y—1(A)
=TT — (k— 1T,
= Im+1,

where the first equality follows from Lemma A.9, the second one from the
inductive hypothesis, and the last one from Corollary 9.2.3. g

Theorem 9.2.5 (Trace formula) Denoting by o>y > -+ > u,—1 the
eigenvalues of A, we have

n—1
Z Z Apor(x,x) = ZPM(MJ)
j=0

xeX 0<r<[m/2]

forallm > 1.
Proof. First note that
TrA® = pg +py+ -+ (9.19)

for all £ € N. Then we compute Tr7}, in two different ways. By definition of
T, (cf. Definition 9.2.1) we have

TTw= ), ThAwa= ) D Awalo.

0<r<[m/2] 0<r<[m/2] xeX
On the other hand, from Theorem 9.2.4 we deduce that

n—1

TeT,, = TrPu(A) = Y Pulit)),
j=0

where the last equality follows from (9.19) and linearity of the trace. 0

Theorem 9.2.6 (Alon-Boppana-Serre) Foreverye > 0andk > 3 there exists
a positive constant C(¢g, k) such that for every finite connected k-regular graph
G = (X, E, r) the number of eigenvalues of the corresponding adjacency matrix
belonging to the interval [(2 — ek — 1,k is at least C(e, k)|X|. Note that
C(g, k) does not depend on |X| but only on ¢ and k.

Proof. Let G = (X, E, r) be a finite connected k-regular graph with |X| =n
vertices and denote by o > @y > - -- > u,—; the eigenvalues of the associated
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adjacency matrix. From Theorem 9.2.5 and (A.6) we then deduce that

n—1
X( ad )zO (9.20)

for all m € N. Let Z, be as in Corollary A.14. Then, by (9.20) and Corollary

A.14.(1), we have
n—1 )
ZZE <L> >0
k—1

Jj=0

Set g = g(e, k) = max,_, ,, z=1)Ze and observe that, by virtue of Corol-

lary A.14.(iii), we have ¢ > 0 (since k > 3 implies J% >2). Ifpu;>(2—

e)vk—1forall j =0,1,...,n— 1thereis nothing to prove. Otherwise, there
exists 0 < jo < n — 1 such that

wj>Q2—-eWk—1for0<j<j
pj<@—eWk—1forjo<j<n—1.
Then

Jo—1 i
Z / <gqj
> ,3( k_1> < qJo

j=0

while, by virtue of Corollary A.14.(ii),

n—1
M e
FZ,Z<¢1<—_1>S (n— jo).

Therefore
n—1

Wi . . .
0524( k’ 1) = qjo—(n—jo)=—-n+jo(g+1)
Jj=0 N

so that the number jj of eigenvalues in [(2 — £)+/k — 1, k] satisfies
n 1

> —— = ——IX|,
qg+1 qg+1

Jo
O

Corollary 9.2.7 (Alon-Boppana) Let G, = (X,,, E,,, 1), n € N, be a family of
finite connected k-regular graphs, k > 2, such that lim,_, , |X,,| = +00. Then

liminf u,(G,) > 2vk — 1.
n—oo

and the proof is achieved by taking C(e, k) = #
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Proof. For k = 2, each G, is either a cycle or a 2-regular segment (cf. Exercise
8.6.3), and the result follows from (8.9) and Exercise 8.6.3, respectively. For
k > 3, the statement follows from the previous theorem (since

liminf u1(G,) > 2 —e)vk — 1

for all ¢ > 0). ]

9.3 Nilli’s proof of the Alon-Boppana-Serre theorem

We now give an alternative proof of the Alon-Boppana-Serre theorem given by
Alon Nilli [122] (a pseudonym of Noga Alon: Nilli Alon is his daughter; see
[5] for a picture of Nilli Alon when she was a child). Our proof extends the
original proof in [122] to graphs with multiple edges but with no loops. See
also the discussion in [74].

We begin with an elementary lemma.

Lemma 9.3.1 Let k and h be positive integers with k > 3. Set o = 3 and

o cos[(i — h)a]
(k=12

fori=0,1,...,2h. Then the sequence By, B1, ..., Po, is unimodal, that is,
there exists 0 < ig < 2h such that

Bo < Bi-+ < Biy < Bigr1 = Bipr2 = -+ = Pae
More precisely:

o fork=3, ih =2
o fork=4, ip=1
o fork>15, iy =0.

Proof. First of all, note that (recall that « = 7;)

. iT 7w 4 L
cos[(i — h)a] = cos <ﬂ — 5) = sin T sin(ia). 9.21)

Therefore, for1 <i <2h—1,

Bis _ sinl(i+ Dal

B Vk— Lsin(ia) ©-22)

The function

gla) = isin[(i + D] — (i + 1) sin(icr)
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satisfies g(0) = 0 and
g(a)=iG{+ 1) (cos[(i + Da] — cos(iar)) < 0

for 0 < ia < (i+ 1)a < 7. This is the case since (i + 1)a < 2h;—h = 7. Then
0 = g(0) > g(«) and therefore, from (9.22), it follows that
Bivi _ it
Bi T ivk—1
for 1 <i < 2h— 1. On the other hand, by the addition formulas for the sine
function applied to the numerator of (9.22), we get

: (9.23)

Bir1 _ cosa + cot(ia)sina
B k—1 '

(9.24)

so that % is decreasing for 1 < i < 2h — 1. Moreover, from (9.21) 8y =0 <
B = \/% sin ;’—h Then we can take iy + 1 as the smallest 1 < i < 2h — 1 such
that the quantity in (9.24) is smaller than 1: this exists because for i = h the
quantity in (9.24) is equal to 3‘;‘%"1 < 1 (recall that k > 3).

We now determine the values of iy for all k > 3.

Case k = 3. For i = 3, from (9.23) we get ﬁ—;‘ < 347 < 1. Note that for i = 2,
from (9.22) we get

B3 sin 3« 3

=— 5> — >
B2 /2sin2a h—oto0 24/2
so that iy = 2 is the correct index that works for all h.
3

Case k = 4. Again from (9.23) for i = 2 we get % <355 < 1.Fori=1 we

17

B __ _sin2a o 2
Bl T VBsina pyieo V3°
Case k > 5. From (9.22), for i = 1 we get

have Therefore, ip = 1.

B sin 2« _ 2cosa <1
Bi Jk—lsine Vk—1_
Then we have iy = 0. 0

Let now G = (X, E, r) be a finite graph. Given two subsets ¥, Z C X we set

AY,Z) = Z Ay, 2). (9.25)

(v,2)eY xZ
In other words, A(Y, Z) equals the number of edges that join a vertex in Y with
avertex in Z. Note that A({y}, {z}) = A(y, z), so that we shall also write A(y, Z)
instead of A({y}, Z), forall y, z € X and Z C X. Moreover, ifx;,x, € Y N Z are
distinct and adjacent, then in the sum (9.25) the equal summands A(x;, x») and
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A(xz, x1) both appear, giving altogether a contribution of 2A(x, x,); in other
words, the edges in ' ({x;, x2}) are counted twice.
For k and & positive integers, with k > 3, we set

Vi = Biri, for0 <1i<2h—ip, (9.26)

s

where the §;’s and iy are as in Lemma 9.3.1. Note that y»;_;, = Pap = cos 3

=0.
We now give a second lemma, of a pure combinatorial nature, which is the
core of the proof of the main theorem of this section.

Lemma 9.3.2 Let G = (X, E, r) be a finite connected k-regular graph, with

k > 3, and denote by A its adjacency matrix. Suppose there exists a vertex xy €
X with no loops based at it, and define f € L(X) by setting

vi I 0=<d@xx)=i<2h—ip
flx) = , _
0 if d(x,x0) = 2h — iy,

where the y;’s are as in (9.26). Then
Af, ey = (fs Hlrx2vk — 1cosa.

Proof. Set X; = {x € X : d(x, xo) = i} and n; = |X;|. By our assumption on xy
we have A(xg, xo) = 0 and therefore

A(xo, X1) =k = |Xi| = n;. (9.27)
Moreover, fori > 1,
AXim1, Xo) = [Xil =y (9.28)
and
AXi—1, Xi) + AXi, Xi) + AXig1, Xi) = kn; (9.29)

because the left hand side counts all edges with a vertex in X; (and the edges
with both vertices in X;, but which are not loops, are counted twice). Then

2h—ip—1 2h—ip—1

(. P =Y _f@?= > Y f@'= > my (930
i=0

xeX =0 xeX;
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and
Af. oo = ) DA DFOfO)
xeX yeX:
y~x
2h—ip—1
= D ¥y D AEMI)
i=0 xeX; yyegi

= Yo1A(xo, X1)+
2h—ig—1
+ D vl AKX + VAL X)) + vip A, X0l

i=1

9.31)

In order to give a lower bound for (9.31), we first note that from 0 < yy < y;
(cf. Lemma 9.3.1) and (9.27) we deduce that

YoriA(xo, X1) > v5A(xo, X1) = ygk > 2Vk — Tcosaly;  (9.32)

(the last inequality follows immediately from (k — 2)> > 0 and cos o < 1).
In the last line of (9.31), for the first term of the sum, corresponding toi = 1,
keeping in mind (9.27) and y; > y», we have
Y0A(Xo, X1) + 1AX1, X1) + 12AX, X1)
= Y0AXo, X1) + 2[AX1, X1) + A(Xa, X1)]
(by (9:29)) = nAXo, X1) + y2lkni — A(Xo, X1)]
(by (9.27)) = yok + yalk® — k]
= k[yo + (k = Dy»]
(by 9.27)) = mlyo + (k = Dy2l.

As far as the terms corresponding to i > 2 are concerned, keeping in mind
that y,_1 > y; > ¥iy1, from (9.28) and (9.29) we deduce that

Yie1AXi—1, Xi) + viA(Xi, Xo) + Vi1 A(Xig1, Xi)

> Vi-1AXi—1, Xi) + Vi1 [AXG, X)) + AXip, Xi)]

= Vi1l — ni + AXi-1, XD + Vi [AXG, Xi) + A(Xiy1, X))

= Yi-1i + Vi1 [AXi—1, Xi) — ni] + i1 [AXG, Xi) + A(Xig, X0
> Vit + Vir1 [AXi—1, Xi) — mi] + v [AXG X)) + AXi, X))
= Yi-1i + Vir - + AXi—1, Xi) + AXG, Xi) + A(Xi, X))l

= Vit + Vi1 (k — Dy

= nilyi-1 + (k = Dyin1l.
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Moreover, for all i > 1 we have

nilyi-1 + (k — D)yl
k1
- (k — 1)([+io)/2
2Vk—1

T k= T2

cos[(i + iy — h)a]
= [24/k — 1 cosa]n; e — D)2

= [2vk — 1 cos a]n;y;,

where the first equality follows from (9.26).
Using the above estimates, we get the desired lower bound for (9.31):

ni {cos[(i +ip — h — Da] 4 cos[(i + ip — h + Da]}

n; cos & cos[(i + iy — h)a]

2h—ip—1
Af. g = [2vVk—Tcosal Y my?
i=0
(by (9.30)) = [2vk — 1cosal{f, f)rwx)-
O

To derive the main result of this section, we need to recall the Courant-
Fischer min-max formula for the eigenvalues of a Hermitian operator.

Exercise 9.3.3 (Courant-Fischer min-max formula) Let W be an n-dimen-
sional vector space and 7: W — W a Hermitian operator. Denote by g >
1 > ---> u,— the (real) eigenvalues of T and by {ug, uy, ..., u,—1} a cor-
responding orthonormal basis of eigenvectors. Let 0 < s < n — 1. Denote by
G(W, s) the Grassmann variety of all s-dimensional subspaces of W and set
Us = (Ug, Ugy1y ooy Up—1)-

(1) Prove that for each V € G(W, s + 1) one has dim(V N Uy) > 1
Hint: use the Grassmann identity.
(2) Show that

max{(Tw, w) : w € U, |w| = 1} = ;.
(3) From (1) and (2) deduce that foreachV € G(W,s + 1)
min{(To,v) :0 €V, |v]| =1} < us.
(4) Show thatif V = (ug, uy, ..., us) then

min{(Tv,v) : v € V, |v|| = 1} = u,.


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core

9.3 Nilli’s proof of the Alon-Boppana-Serre theorem 305

(5) From (3) and (4) deduce the Courant-Fischer min-max formula

max min{{(7v,v) :0 €V, |v] =1} = us,.
VeG(W,s+1)

We are now in position to present some fundamental estimates for the eigen-

values of a k-regular graph.

Theorem 9.3.4 Let G = (X, E, r) be a finite connected k-regular graph, k > 3,
with no loops. Suppose that there exist a positive integer h and s + 1 vertices
X1, X2, ..., Xeq1 € X such that d(x;, xj) > 4h, for i # j. Then

1,(G) > 2k — 1 cos % (9.33)
Proof. For j =1,2,...,s+ 1 define f; € L(X) by setting

yi if0 <d(x,x;) =i <2h—i

Jito) = {o if d(x, x;) > 2h — i,

where the y;’s are as in (9.26). Then (f;, fi)r(x) = O (because f; and f; have
disjoint supports) for 1 < j#k <s+1,sothat U = (f1, f>, ..., fe+1) is an
(s + 1)-dimensional subspace of L(X). Moreover, from Lemma 9.3.2 (where

Xp therein is replaced time after time by xp, x5, ..., x,+1) we deduce that
T
(Af, L = (s lrx2+vk — 1 cos o 9.34)
forall f e U.

From Exercise 9.3.3 (the Courant-Fischer min-max formula) and with the
notation therein we deduce

= in{(Af. fev, —1). (935
7 VeG(f{l(%Hl)mln{( fhwx feVilflux =1} (9.35)

Then (9.33) follows from (9.35) and (9.34). O
Corollary 9.3.5 Let G be a finite connected k-regular graph, k > 3, with no

loops. Suppose that the diameter of G satisfies that D(G) > 4h for some positive
integer h. Then

2
(@) = 2vk=1(1-—).
8h?
Proof. Apply Theorem 9.3.4 with s = 1 and the estimate cos 6 > 1 — %. O
Corollary 9.3.6 (Alon-Boppana-Serre: II proof) Let ¢ > 0 and k > 3. Then

there exists a positive constant C(¢, k) such that the following holds. For every
finite connected k-regular graph G = (X, E, r) with no loops, the number of
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eigenvalues of the corresponding adjacency matrix belonging to the interval
[2 —e)Wk — 1,k] is at least C(¢e, k)|X|. Explicitly, we may choose

2% ifk =3
Cle, k) = R,

k—1) v ifk > 4.

Proof. We start by denoting # as the (positive) integer satisfying
h> 2 s h—1 (9.36)
>h—1, .
NG

so that ¢ > jfTé and therefore (recall that cosd > 1 — %)

2
2k =1 cos 27[71 > 2k —1(1 — %) > k=12 —¢).
(We want to use the inequality in Theorem 9.3.4, that is,
,uo,m,...,uszzx/k—lcos;—hz«/k—l(Z—e) (9.37)

with the best possible, that is, the smallest, 4.) According to Theorem 9.3.4,
choose the largest s such that the hypotheses therein are satisfied, and let
X1, X2, ..., X+1 € X be the corresponding points. Then, for every x € X there
exists 1 < j < s+ 1 such that d(x, x;) < 4h — 1. Arguing as in the proof of
Proposition 8.1.1, we conclude that

IX| <G+ D[l +k+k(k—1)+ -+ k(k— 1)*2

(k— 1)1 — 1}

=(s+l)|:1+k )

From (9.37) we deduce that such a constant C(e, k) exists and satisfies

Cety > Lo [y oD -1 B (9.38)
g, > — > _ . .
IX| k—2
Now, for k > 4 we have
k— 1)1 _1
1+k% <k-1" (9.39)

because this is equivalent to
—2+k(k— D" < (k—2)(k — DH*
which is certainly satisfied as k < (k — 2)(k — 1) for k > 4. Therefore,
Clek) = (k= 1) = (k= 1)~ >7/Ve
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where the first inequality follows from (9.38) and (9.39), and the second from
(9.36). Finally, for k = 3 we may use

k— 11—
1+k%lk=3 — 3 . 24]171 _ 2 S 24h+1

in place of (9.39). U

9.4 Ramanujan graphs

Definition 9.4.1 Let G = (X, E, r) be a finite connected k-regular graph.
Denoteby k = o > 1 > --- > u,— the eigenvalues of the adjacency matrix
of G. Setting

M(g)=max{|ﬂz| : |/’Ll|¢kvl:1’2?sn_1} (940)

one says that G is a Ramanujan graph provided

w(G) < 2vk—1.

Note that if G is bipartite then (cf. Proposition 8.3.4) G is Ramanujan if and
only if

w1 <2vk—1.

Exercise 9.4.2 (see [99]) Let G be a connected strongly regular graph with
parameters (v, k, A, i) (cf. Definition 8.2.1). Show that G is Ramanujan if and
only if

2h — puWk—1 < 3k+pu — 4.

In the remainder of this section, we apply methods and results on finite fields
established in Section 7.1 to introduce and describe the Paley graph, which con-
stitutes an interesting example of a Ramanujan graph. We follow the approach
in the monograph by van Lint and Wilson [97].

Let p be an odd prime and g = p". The Legendre symbol on F, may be
defined, as in Definition 4.4.7, by setting

1 if y # 0 is a square in IF,,
n(y)=1—1 ifyz0isnotasquareinF,

(see also Proposition 6.4.4).
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Exercise 9.4.3 Let ¢ = p" with p an odd prime.

(1) Show that » is a multiplicative character of F, and that, in the notation
of (7.11), we have

n(x*) = exp(mik) fork=0,1,...,q—1.
(2) Prove that, for z # 0,

D nomey+2) =—1

yely

Hin: for y # 0, n()n(y + 2) = n(y*)n(1 +y~'2).
(3) Prove that —1 is a square in IF, if and only if g =1 mod 4.
(4) Define a matrix R = (r(x, y))xyeF, by setting

r(x,y) =nx—y) forallx,y e F,.

Prove that

e R is symmetric (resp. antisymmetric) if g =1 mod 4 (resp. ¢ = 3
mod 4).

e RJ = JR = 0, where J is as in Exercise 8.2.2.(1).

e RRT =ql —J

Hint: Use (2).

Example 9.4.4 (The Paley graph) Let p be an odd prime and ¢ = p". Suppose
that g =1 mod 4. The Paley Graph P(q) has vertex set I, and two distinct
vertices x, y € I, are joined if x — y is a square. Note that, by virtue of Exercise
9.4.3.(3), x — y is a square if and only if y — x is a square. We deduce that P(g)
is an undirected simple graph without loops.

Figure 9.1. The Paley graph P(13).
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Exercise 9.4.5 We use the same notation as in Exercise 9.4.3 and Example
9.4.4.

(1) Show that the adjacency matrix of P(q) is
1
A= E(R +J-=1).

(2) Deduce that P(q) is a strongly regular graph with parameters (g, %(q —
1), }q =5, g—1)
Hint: See Exercise 8.2.2 and Exercise 9.4.3.(4).

(3) [99, 161] Show that P(g) is a Ramanujan graph
Hint: Use Exercise 9.4.2.

9.5 Expander graphs

Definition 9.5.1 Let G, = (X,,, E,,, r»), n € N, be a sequence of finite (undi-
rected) graphs. Suppose that there exist and integer k > 2 and ¢ > 0 such that

e G, is k-regular for all n € N;
o |X,| = +o0asn — +oo;
e h(G,) > eforalln e N,

where A(-) denotes the isoperimetric constant (cf. Definition 9.1.1). Then we
say that (G, )en is a family of expander graphs (briefly, expanders).

Remark 9.5.2 From (9.6)" we deduce that if (G, ),e is a family of k-regular
graphs, then

k
E|Xn| =< |En| =< k|Xn|

forall n € N, that is, the number of edges grows linearly with the size, i.e. with
the number of vertices, of the graphs G, (because & is fixed).

Also, the condition #(G,)) > ¢ ensures a good connectivity of the graph G, in
the following sense: if A,, € X, is a subset such that |A,| < %, then, in order to
“disconnect” A, from its complement X,, \ A,, that is, to remove 04,,, we need
to “cut” at least €|A,| edges of G,. Note that if |A,| & |X,|, then the quantity
e|A,| grows linearly with |X,|. In other words, expanders provide a solution
to the following min-max problem: to minimize the number of edges and to

maximize the connectivity of the graphs.

 Note that in (9.6), Ey (respectively, E) is not the edge set of Gy (respectively, G;), but denotes
the loops (respectively, E \ Ey) of a generic graph G = (X, E, r).
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Moreover, keeping k fixed and letting |X,,| — +oo for n — 400, the graphs
G, become more and more “sparse,” that is, they have a large number |X,,| of
vertices, but each vertex has a “small” fixed number k of neighbors.

Recalling Remark 9.1.10, we immediately have the following equivalent def-
inition of expanders.

Definition 9.5.3 (Spectral definition of expanders) Let G, = (X,,, E,, ),
n € N, be a sequence of finite connected graphs. Suppose that there exist and
integer k > 2 and § > O such that

e G, is k-regular for all n € N;
e |X,| = +o0asn — +oo;
e 3(G,) >dforalln e N,

where §(-) denotes the spectral gap (cf. Definition 9.1.9). Then (G, )uen is a
family of expanders.

Remark 9.5.4 We may reformulate Corollary 9.2.7 as follows:

limsup §(G,) = k — liminf u1(G) < k — 2vk — 1. (9.41)
n—oQ

n— 00

As a consequence, if §(G,) > § for all n € N, then necessarily
8 <k—2vk—1. (9.42)

Example 9.5.5 Let (G,).eny be a sequence of finite connected k-regular
Ramanujan graphs. Suppose that |X,,| — +00 as n — 400. Then (G, )nen is
a family of expanders with § = k — 24/k — 1 (cf. Definition 9.5.3). It follows
from Remark 9.5.4 that a sequence of Ramanujan graphs is asymptotically opti-
mal within the sequences of expanders.

The construction of a single Ramanujan graph is not difficult (see Exercise
9.4.2 and Exercise 9.4.5). On the contrary, the construction of a sequence of
Ramanujan graphs of a fixed degree (and increasing size) requires very deep
results from number theory. One of these results is the so-called Ramanujan
conjecture, eventually proved by several mathematicians including Deligne and
Drinfeld. For this reason, although Ramanujan never worked in graph theory,
these expanders were named after him.

The first explicit construction of a sequence of Ramanujan graphs (of con-
stant degree k and increasing size) were given for the following values of k:

e k= p+ 1, with p an odd prime, by Lubotzky, Phillips, and Sarnak [101],
and Margulis [112] in 1988;
e k =3, by Chiu [40] in 1992;
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e k=g+1,withg = p", pprime and r > 1, by Morgenstern [116] in 1994.

An elementary account of the Lubotzky-Phillips-Sarnak graphs and Mar-
gulis graphs is in the monograph by Davidoff, Sarnak, and Valette [49] where,
however, the authors do not provide a full proof of the Ramanujan property but
only a weaker explicit estimate of the spectral gap (the construction of these
graphs is relatively easy, but the proof of the Ramanujan property is indeed the
difficult point). See also the monographs by Winnie Li [95], Lubotzky [99], and
Sarnak [135, Chapter 3].

Very recently, in 2015, Marcus, Spielman, and Srivastava [109] proved that
there exist infinite families of regular bipartite Ramanujan graphs of every
degree k > 3. Later, in [110] they proved the existence of regular bipartite
Ramanujan graphs of every degree and every number of vertices. With respect
to the previous work, this is more elementary (although based on the proba-
bilistic method, cf. [11]), but it does not provide an explicit construction. On
the other hand, however, the construction of expanders is much more elemen-
tary: in the following sections we shall give several examples.

9.6 The Margulis example

In 1973 Margulis constructed the first example of a family of expanders [111].
His approach was quite abstract, based on the notion of Kazhdan property (T)
(cf. the monograph by Bekka, de la Harpe, and Valette [19]). In 1981, Gabber
and Galil [64], using classical Fourier analysis, were able to simplify Margulis
example and to provide a lower bound of the spectral gap. Similar improve-
ments were obtained in 1987 by Jimbo and Marouka [83] who used Fourier
analysis on the finite group Z, @ Z,. Further simplifications were made by
Hoory, Linial, and Wigderson [74], although they attributed the merit to Bop-
pana. Our exposition is strictly based on this last reference.

We start by introducing some basic notation taken from Chapter 1 and Chap-
ter 2. Let n > 1. Write the group A = Z,, & Z, as a set of column vectors:

A= {(XI) L X1, X2 eZn},
x

equipped with the usual componentwise addition, and denote by 0 = <8>

the zero of A. We also consider 2 x 2 matrices with entries in Z,. Clearly, a

. (a b . .. o rs .
matrix ( d)’ with a, b, ¢, d € Z,, is invertible if and only if its determinant
c
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a b .. . . U
det d) = ad — bc is invertible in Z,. Moreover, if this is the case, we have

the usual formula
a b\ (dad—be)"  —blad —be)!
c d “\—c(ad —bc)™'  a(ad —be)™' )

Let us set w = €2™/" and, for x = (il) and y = Gl) € A, write (x,y) =
2 2
X1y1 + x2y». Arguing as in Section 2.4, we can write the Fourier transform of a
function f € L(A) as
Fo) =Y f@o™™ vyeA.
xeA
Then, the inversion formula (cf. Theorem 2.4.2) takes the form

fl) = % > Fpet vxe A,

yeA

while the Plancherel and Parseval formulas (cf. Theorem 2.4.3) become respec-
tively:

Y IFOP=n- [ If@P YfeLA)

yeA X€A

and

YN AWAM =Y iREE Vi fr € LA).

yeA xeA

Note also that f(O) =D e f(x) so that

F0)=0s>"fx) =0. (9.43)

xeA

The following result is elementary but new.

Proposition 9.6.1 Ler f € L(A), Ba 2 x 2 invertible matrix with entries in Z,,
and b € A. Define g € L(A) by setting g(x) = f(Bx + b) for all x € A. Then,

30) = 0B I F(B ),

forally € A.
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Proof. Lety € A. Then we have

) =) f(Bx+ b ™)

x€A
(z=Bx+b) = Zf(z)af(Bf]Z*Bflb’y)
Z€A
— !By Zf(z)wf(z,(B‘l)Ty)
z€A
= " F(By). 0

In what follows, a special role will be played by the following 2 x 2 matrices

with entries in Z,,:
1 2 1 0
Tl_(o 1> and T2_<2 1>

whose inverses are

Clearly,

T X1 _ x| + 2x; 71 X1 _ x| — 2x7
! X2 X2 ’ 1 X2 X2
X1 X1 1 {*1 X1
T = T =
2 <XQ> (2)(?1 + )Q) 2 ()Q) <—2)C1 + X2)

(everything mod n). Moreover, we identify Z, with the integral interval

(-2, 5)={keZ:—% <k <3} Clearly,

(9.44)

[ n n)_ [—m,m) ifn =2miseven
2'2/ [-m,m] ifn=2m+ 1isodd.

Then we can identify A with the set

[(2)mm e 15 )

The diamond in A is the set (see Figure 9.2)

D:{(xl) €A |+ ol < f}.
X2 2
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—
e}
I3

—

S

Figure 9.2. The diamond D in A.

We define a partial order in A by setting
lxi| > [yi] and [x2| = |ys]

(xl) > <y1> it 1 or
X2 Y2

[x1] > |y1] and |xz| > |y2].

We now present a series of technical lemmas, which are essential for our

subsequent calculations.
Lemma 9.6.2 Let x = (i1> e D\ {0).
2

(1) If |x1| = |x2| then two of the four points

Tix, Tflx, Trx, Tz’lx

are strictly greater than x and the other two are incomparable with x;
(1) if |x1| # |x2| and x; # O # x,, then three of the points in (9.45) are
strictly greater than x and the other one is strictly smaller;
@iii) if|x1| # |x2| but either x; = 0 or x, = 0, then two of the points in (9.45)
are strictly greater than x and the other two are equal to x.

Proof. (i) Suppose first that x; = x;. Then

—1 —1 (X% —X —1 —1 (X1
e (%) = (2 wa e () =

are incomparable with x. Moreover,

x|+ x| < = x| <+
x|+ x| < = = |x1] < =,
: : 2 : 4
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and therefore

Tix=T <x1> = <3x1> and Hx =1 (xl) = <x1 ) .
X1 X X1 3x1

irst case: suppose —Z2 < x; < 2. Then —2 < 3x; < 2 and therefore |3x;| >
First £ =< ¢- Th 5<3 5 and theref 3
|x1| ensures that T1x > x and Trox > x.

Second case: suppose —3 < x; < —¢. Then —%n < 3x; < —5 so that

n
- <3 +n< -,
4~ 2

and we must take 3x; + n to represent 3x; in the range [—3, 5). This gives

[3x1 +n| > § > |x1] so that Tix > x and Tox > x.

Third case: suppose g <x < ﬁ. Then g <3x < %n so that
n n

—— <3 —-n<—-,

2

4

and we must take 3x; — n to represent 3x; in the range [—3, 5). This gives
[3x1 —n| > 7 > |x1| and, again, T1x > x and Tox > x.
When x; = —x; we may argue similarly: now 7, l’lx > xand Tz’lx > x, while
T1x and T,x are incomparable with x. We leave the easy details to the reader.
(i1) By (9.44) it suffices to compare |x; + 2x;| and |x; — 2x,| with |x;]|, and
|x2 4+ 2x;] and |x, — 2x;| with |x;]. It is easy to check (exercise) that, by means
of the symmetries

X] <> —X1, Xp <> —Xx2, and x; <> xa,
we may reduce to the case
0 < x <xi.

Clearly, we also have x; < 5,x1 +x; < 5,and x; < 7.
First comparison: We have

x| — 2% < X ifx, <3

X1 — 2x| = e
20 —x1=x— (1 —x)<x ifF <x <x,

and therefore 7, 'x < x.
Second comparison:

If x; +2x < % then |x; + 2x3| = x1 + 2x > X3.

Ifx; + 2x, > 5 thenx; < jyields § < x; +2x; < %n, which in turn implies
that —5 < —n +x; + 2x; < —7, so that —n + x| + 2x; represents x; + 2x; in
the range [—7, 5) and | —n+x; + 2xp| = n —x; — 2x3 > xy, since x; +xp

n

In both cases, T1x > x.
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Third comparison:

If 2x; +x2 < 5 then |2x; + x| = 2x1 + X2 > x2.

If 2x; +x2 > 5 then, from 2x; +x; = (X1 +x)+x <5+5=n we
deduce that % < 2x1 + x, < n, which in turn implies that —g <2x1 +x —
n < 0, so that 2x; + x, — n represents 2x; + x; in [—%, %) and |2x; +x; —
n| =n—2x; —xa > x, because x; +x, < 5.

In both cases, Trhx > x.

Fourth comparison:

If —2x; +x > —%l then | — 2x; ~|—)C2| =2Xx] — X3 > Xo.

If —2x; +x, < —3, from x; < 5 we deduce that —2x; + x, > —n, which
in turn implies that 0 < —2x; +x; +n < g so that —2x; + x; + n represents
=2x1 +x2 in [—3,5) and | —2x; +x2 +n| =n—2x; +x2 > xp (because

X1 < 3).

In both cases, Tz_lx > X.

(iii) Arguing as in (ii), we may reduce to the case 0 = x, < x;. Then Tlilx =
x, hx = (x1, 2x)7 > x,and T, 'x = (xq, —2x1)7 > x. O

Lemma 9.6.3 Let y: A x A — R denote the function defined by setting

% ifx>y
vy =1% ify>x
1 otherwise,
forall x,y € A. Then
Y y)y(,x) =1 (9.46)
and
5
yxy) < 1 (9.47)

forall x,y € A. Moreover, if x = (i1> € A\ {0}, we have
2

TTX1 1
|cos T' Ay x) +y(x, T, X))

TXy 1
+lcos — [ [y (x, Tix) + y (x, T} x)] < 3.65. (9-48)
n

Proof. (9.46) and (9.47) are obvious. We divide the proof of (9.48) into two
cases.
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First case: x is outside the diamond D. By virtue of (9.47), the left hand side of
(9.48) is bounded above by

5 TX] X
—(]cos —| + | cos —=). (9.49)
2 n n

Since the cosine function is even, we may assume that 0 < xj, x, < ’5’ so that
0 < %2 < % and x; > cos =2 is positive and decreasing. It follows that the
maximum of (9.49) is achieved on the boundary of the diamond, and therefore
(9.49) is bounded above by (here the max is over all 0 < x; < %):

5 TX| w(n/2 —x1) 5 TX| . TTX)
max | —=(|cos —| 4+ |cos ——|) | = max [ =(cos — 4+ sin —)
2 n n 2 n n

542
< Tf < 3.65.

Second case: x is inside the diamond D. Now, using the trivial estimate
|cosO| < 1 we get that the left hand side of (9.48) is bounded by

Y, Tix) + y (e, T ') + v (o, Tox) + p (e, Ty ). (9.50)

If |x1] = |x2| by Lemma 9.6.2.(i) and the definition of y we have that (9.50)
is bounded above by 1+ 1 + ‘51 + ‘5—‘ = 3.6 < 3.65. Suppose now that |x;| #
|x2]. If x; # O # x,, then by Lemma 9.6.2.(ii) we have that (9.50) is bounded
above by 3 - % + f—‘ = 3.65. If either x; or x; is equal to zero, then by Lemma
9.6.2.(iii), we again have that (9.50) is bounded above by 1 4+ 1 + % + ‘5—‘ =3.6
< 3.65. O

Lemma 9.6.4 Let G: A — R be a non-negative function such that G(0) = 0.
Then

3 26() [G(T;lx)| c0s L | 4+ G(T 1 x)] cos 2 |] <3655 G
n n
xX€A X€A
9.51)
Proof. Letx,y € A. From (9.46) we deduce that
2G(0)G() < ¥ (X, )G + ¥ (1. )G

Then, the left hand side of (9.51) is bounded above by

> {| cos %| [y TG + v (T, )G x)2] +

x€A

+|cos %| [y T 0GP + v (1w G 0]} 052)
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Setting ¥’ = T, 'x and observing that x| = x; (thatis, 7> and 7, ' do not change
X1, see (9.44)), we get

TX X,
Z | cos Tlh/(Tz_lx, 0)G(T, %) = Z | cos Tlly(x/, X )G(X')?.

x€A x'eA

Similarly, with the change of variable x” = Tl’lx, we have x] = x, and

x//
> leos TRy (1 0GP = Y feos TRy (&, Tid )G G )R
n n

x€eA x"eA

Therefore, recalling that cos =1 = cos 2 and cos =2 = cos 22, the upper
bound (9.52) equals

2 X ~1
> G0 {leos T [y o) + v (T3 0]

x€A

X
+ os T2 [y (. Tix) + y (e 101

which, by virtue of Lemma 9.6.3 and the hypothesis G(0) = 0, is bounded
above by 3.65 > _, G(x)*. O

x€A

Finally, we state a result, which is a consequence of the previous lemmas
and that will quickly lead to the proof that the Margulis graphs are expanders.
Recall that Wi (A) = {f € L(A) : erA f(x) =0}, and set e¢; = (1,0)” and
e; = (0, 1)T.

Theorem 9.6.5 For all real valued f € Wi(A) we have
Z FOUFTix) + f(Tix + e1) + f(Tox) + f(Tox + €2)] < 3.65 || fII74)-

xeA

(9.53)

Proof. First of all, note that, by virtue of Proposition 9.6.1, if F denotes the
Fourier transform of f, then the Fourier transform of the function

x> f(Tix)+ f(Tix+e) + f(Tx) + f(Thx + ey)

is the function

X = Cl> > F(T, %) + F(Ty, 00" + F(T7 %) + F(T7 ' x)w™,
2

because (T, =T, (I, )T =T,;', T 'e; = e1, and T, 'e; = e,. There-

fore, by the identities of Plancherel and Parseval, (9.53) is equivalent to

Zm[F(Tz_lx)(l + ")+ F(T;7 )1+ @™)] <3.65 |Fll,,. (9.54)

x€A
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while condition er 4 f(x) = 0is equivalent to F'(0) = 0 (see (9.43)). Since

(2 2 . 2wt ,
1+ | —|1+COS—+I n—|

= 2(1 + cos —)
n

t
= 4cos> —

then (9.54) follows from Lemma 9.6.4 and the triangular inequality (by setting
= |F|). (]

We now present the Gabber-Galil version of the Margulis construction.

Definition 9.6.6 (Margulis expanders) For every integer n > 1, we define the
8-regular graph M, = (X,,, E, rp4,), where X,, = Zﬁ, equipped with the rota-
tion map (cf. Exercise 8.12.3) Rot,, : X, x [8] — X,, x [8] defined by setting

Rotyy, (x, i) = (y;, i +4 mod 8)
for all x € X, and i € [8], where

1 = Tix, sz T1x + ey, =Dhx+e

ys = Tl_lx, ye =T, Ix, y7 T lx—e, ys Tz—lx_ e (9.55)
forall x € X.
Observe that the second line of (9.55) can be rewritten as
x=Tys =Tys =Ty +e1 =Thys + e, (9.56)

showing, in particular, that Rot vy, is indeed a rotation map (cf. Exercise 8.12.3).
Note also that M,, may have multiple edges and loops. For instance, 710 =
1,0 = Tl_' 0= Tz_' 0 = 0 so that there are (exactly) four loops at 0.

Exercise 9.6.7
(1) Show that, if n is divisible by 4, then there are two (distinct) edges con-

. 2
necting < /4> and <x1 :/Z/ >
(2) Show that, if n — 1 is divisible by 4, then there are two (distinct) edges

. X x1+m—-1)/2
connecting <(n _ 1)/4> and < n—1y4 )
Theorem 9.6.8 The 8-regular graphs M, = (X,,, E,, rm,) satisfy:

pi(M,) =7.3

forall n € N. In particular, (M,), >, is a family of expanders.
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Proof. Letn > 5. For f € W, real valued we have

A o ) =Y [AM LI f ()

xeXy

> F@U(Tix) + f(Tx) + f(Tix + e1) + f(Tox + €3)

xeX,
+ F(T7 %) + (T ') + f(T7 'x —en) + f(T, 'x — e2)]
(by (9.56) =2 " fOLf(T1x) + f(Tax) + f(Tix + e1) + f(Tox + €2)]

xeX,
2
=713 f Nz x,),

where the inequality follows from Theorem 9.6.5. From (9.9) we deduce that
1 (M,) < 7.3 and therefore

07=8-73< k— I’LI(MH) = S(Mn)

Thus, in accordance with Definition 9.5.3, (M,,),.cy is a family of expanders
with spectral gap § > 0.7. 0

9.7 The Alon-Schwartz-Shapira estimate

This section is an exposition of the main result in [10], where the authors —
using, however, a slightly different definition of a replacement product — give
a lower bound for the isoperimetric constant of a replacement product. This
result is interesting because it does not rely on spectral techniques but on a
direct combinatorial argument.

We use the notation of Definition 8.12.4.

Theorem 9.7.1 Let G = (X, E, rg) be a d-regular graph and F = (Y, F,rr)a
k-regular graph with Y = [d]. Assume that in both graphs we have defined a
labelling and a rotation map as in Definition 8.12.1. Then:

N LT, - 1RG)
MG®F) = min {E [7:|h(]-'), gT} . (9.57)
Proof. First of all, for x € X we set E, = {x} x [d], so that we can regard the
vertex set X x [d] of G®F as the disjoint union | [, E, (observe that each
8, is a copy of F and the E,s are joined according to the structure of G, as
explained in Definition 8.12.4 and Remark 8.12.6).
Let now I' € X x [d] such that

0] < L1x o ayy = X4 9.58)
— X = —. .
-2 2
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Set

eI, =TNE;
e X' ={xeX: I\ <d-"P}Vand X" =X \ X
o I"=][,cx Txand I'" =[],y s (clearly, I [ [T” =T).

We distinguish two cases.
First case:

h(G)
T’ > ET' [ (9.59)

Note that, by definition, for x € X’ we have

- HG)
|ux\rx|— |F|> 4

so that (observing that |I'y| < d)

h h
Dux

h(g) <!

|8\ Tl =

Similarly, from (9.2) we deduce that < 1, so that

Iy = QIF l.

Then, both in the case |I'y| < %5 and in the case |E\ [} < % by definition
of h(F), we deduce that there are at least h(g) [T |h(F) edges (of the second
kind) connecting I', and its complement E, \ I, (a copy of F). Then, by our
assumption (9.59), the edges connecting I" and its complement are at least

1 h(G) h(G) 1 (hG)
IWE—E(

Tk
10 d 4d d)H(J:)

After dividing by ||, this yields the first term in the minimum in (9.57).
Second case:

/ hG)
Tl < ET'H (9.60)

Since I' = T [ [ T, this gives

" h(g)
Ir’| > (1 1Od>|r| 9.61)
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Moreover, since, by definition, |T'y| > d — h(Tg) for each x € X”, summing up
over X" we get |[T'] > |X"| (d - %g)), and therefore

1
" laix
| Nl 3diX]

X < —— < <
G) h@) nG)

(where the last inequality follows from (9.58)). From the inequality 2(G) < d
we deduce that

d
i _2
hGg — 13’
so that
4 2
X7 < ngl- (9.62)
Note also that
1
X" > EIF”I (9.63)

simply because
=] =1 ]] &d=ax"L.
xeXx” xex”
We claim that
X"

min{|X|, |X"[} >
Indeed, from (9.62) we deduce that
1 1
IX'| = 1X| = 1X"| = ZIX| = = 1X"|.
3 2
By definition of 4(G), it follows that there exists a set F of edges of G such that
1 "
|F| = Eh(g)IX |

and F connects X’ with X”. Denote by ® the corresponding set of edges (of the
first type) in G®F (so that they connect vertices in [ | _,, E, with vertices in
[Lcx» Ex). Since for x € X” we have |Ty| > d — “& then |8, \ ['y| < 2 5o
that at most @ |X"'| of the edges in ® connect a vertex in | [ .y, (Ey \ I'y) with
avertex in | [,y E, (recall that each vertex is incident to exactly one edge of
the first type, cf. Remark 8.12.6). Therefore, if we denote by &, the subset of
® of all edges that connect vertices of I'” with vertices in [ [y, Ey, then

h 1
|P2| = [P — %IX”I > Zh(Q)IX”I- (9.64)
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Consider the decomposition ®, = &3 | [ P4, where @5 are the edges that con-
nect vertices of I'” with vertices in I'” and ®, its complement (so that an edge
of &4 connects a vertex of I'”” C I with a vertex in the complement of I"). Then

|Ps3] < |T|
1 h(G) r

0 a
h(G)/10d
1 —h(G)/10d

(because h(G) < d) < h;—i)|r//|

_ MG
- 9

(by (9.60))

A

(by (9.61)) = T

(by (9.63)) 1X"|.

It follows that
[D4] = |D2] — D3]

1 1 ”

(by (9.64)) > <4_1 - §> h(G)1X"|

5 10)

\

(by (9.63)) > % d [T
5 hG) h(G)
(by (9.61)) > 36 d <1 - W) T
(because 1 — @ > 2) > yLQ)m.

10d — 100 — 8 d
This computation yields the second term in the min of (9.57), ending the proof
of the theorem. (]

Theorem 9.7.1 applies to situations where we have a lower bound for the
normalized isoperimetric constant of G. Here, we give an example.

Corollary 9.7.2 Let (G,),en be a family of regular graphs such that

o the degree of G, is d, and d,, — +00 as n — +00;
o G, has a, vertices and a, — +00 as n — —+00;
o there exists § > 0 such that h(d—g") > 4§ foralln € N.

Let also (F,)uen be a family of k-degree expander graphs. Suppose that JF,
has d,, vertices and there exists € > 0 such that h(F,) > € for alln € N. Then
G, ®F, is a family of (k + 1)-degree expanders with a,d, vertices and

WGy Fy) = min (25, 2
mmy{ —, —
ﬂ@ n ey 4078
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foralln € N.
Proof. Tt is an immediate consequence of Theorem 9.7.1. 0

Following [10], we construct a family of graphs that may take the role of G,
in Corollary 9.7.2.

Let p be a prime number, ¢ = p’ for some positive integer ¢, and denote by
I, the field of order ¢g. Given a positive integer r, we define the finite graph
LD(q, r) as follows. The vertex set is IF;“ ={(ap,a1,...,a,):a; €F, j=
0,1,...,r}. For each a = (a9, a;,...,a,) € ]Ffl+1 and for each (x,y) € ]Ffl
there is a edge connecting a with

a—}—y(l,x,xz,...,x’):(a0+y,a1 +yx, ..., a, +yx").

This way, there are g loops at each vertex (these correspond to the case y = 0),
and all other edges are simple. It follows that LD(g, r) is regular of degree ¢*
and has ¢"*! vertices.

Theorem 9.7.3 Suppose that 1 <r < q. Then

n1(LD(g, r)) < gr.

Proof. We give a complete spectral analysis of the graph LD(g, r), by
exhibiting an orthonormal set of eigenvectors and by computing the rela-
tive eigenvalues. Actually, the eigenvectors are the character of the additive
Abelian group IF;“, but, in our exposition, we prefer to follow the original
sources and derive their properties from scratch. Fix a nontrivial linear map
L: F, — F,. For instance, thinking of I, as a t-dimensional vector space over

F, Ge., F; ={(a1,a2,...,00) 0 €Fp,i=1,2,...,1}), then we can take
L(ay, g, ..., o) = 1. Another choice could be the trace map Trr, /¥, (cf. Sec-
tion 6.7). Also, fora = (ag, ay, ..., a,)and b = (by, by, ..., b,) € IF;*' we set

a-b= Zr:ajbj.
Jj=0

Let w = ¢*™/P be a primitive p-th root of the unity and, for a € IF;*', define
Vgt IF;“ — C by setting

va(b) = "V

forall b € IF(’IH.
Note that

Vg = 0_g, 04(b) =vp(a), and v,(b+ c) = v,(b)v,(c) (9.65)

foralla, b, c € ]F;“.
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We claim that for a # (0,0, ...,0)

Z 0a(b) = 0. (9.66)

beF;H

Indeed,

Z va(b) = Z k@b

beFyt! beF;H!

S SN

helF, be]F;“
L(a-b)=h

kYo
helF,

=0,
where

F IR

q
Fql

K=|{beF," :La-b)=h}| =

is independent of £, and the last equality follows from the fact that w is a prim-
itive p-th root of the unity (recall Lemma 2.2.3). The claim is proved.
As a consequence, for a, b € IF;’L' from (9.65) and (9.66) we deduce

(Vas OB) ety = Z va(Qvp(c) = Z 0a—p(C) = 8a,b|IF:,+1|’

r+1 r+1
celFy celFy

that is, the set {v, : @ € F;*'} is an orthogonal basis in L(F,;"'). More precisely,
(Va)qepr+ constitutes a parameterization of the characters of IF(’]“.

‘We now show that the functions v, € L(]F;“) are eigenvectors of the adja-
cency matrix A of the graph LD(q, r). Indeed, fora, b € Ffl“ we have

[Av.](b) = Z vab+y(1,x, %%, ..., x"))

x,yel,

(by (9.65)) = Z 0, (y(1, x, x2, X)) | va(b)

x,yel,


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core

326 Expanders and Ramanujan graphs

so that, setting p,(x) = Z;zo a;x’, we have that v, is an eigenvector whose
corresponding eigenvalue p, is given by

pa= Y vay(1, x5, ..., X))

x,yel,

— Z a)L()’Pa(x))

xyel, 9.67)

— Z Za)L(W"(x))

xelF, yeF,
Pa(x)=0

= |Fygl - {x € Fy : pa(x) = 0},

where the two last equalities follow from the identity Zyqu @rOPa) =
IFy180, p.(r)- Now, if a = (0,0, ..., 0), then u, = |IF,,|2 = ¢°: this is the largest
eigenvalue (recall that LD(q, r) is qz—regular). If a # (0,0, ...,0), then the
polynomial p,(x) has at most r roots in F, and therefore u, < |Fy|lr =gqr. U

Corollary 9.7.4 Suppose that 1 <r < gq/2. Then

2
h(LD(q, 1)) > ‘]Z

Proof. This follows from Theorem 9.7.3 and the Alon-Milman theorem
(Theorem 9.1.7):

P = m@D@. ") _ ¢ —qr

h(LD(q, r) > 2 : > 12

2
.
=4

Example 9.7.5 For n € N let
G, =LD(", 2"
and
T = Mo

the Margulis graph (cf. Definition 9.6.6). Recall that G, has 2" +D vertices
and degree d(G,) = 2%". Moreover, by Corollary 9.7.4, h(G,) > % so that

hGn) _ 1

— > .
dg, — 4
Also, F,, has 2%" vertices and constant degree d(F,,) = 8. Moreover, by virtue
of Theorem 9.6.8 and the Alon-Milman theorem (Theorem 9.1.7), we have
8 — w1 (Fp) - 8—17.3 _ 7

h(Fy —.
(Fa) 2 2 -2 20
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Then by Corollary 9.7.2 (with & = - and § = 1) we have that {G,®F, }uen
is a family of 9-degree expanders. In fact, for every n € N, the graph G,®F,
has 272" '+ . 220 — 22" +3) vertices and its isoperimetric constant satisfies

WG, ®F,) > mi 1 1 7 1 1 7
Z©OFy) >min| — - — - — , == )= )
© 40 16 20 8 4 12800

9.8 Estimates of the first nontrivial eigenvalue for the
Zig-Zag product

In this section, following [128], we give an upper bound for the first nontrivial
eigenvalue of a zig-zag product in terms of the first nontrivial eigenvalues of its
factors.

We first need to introduce a slightly modified version of 1 (G). Keeping the
notation of Proposition 8.1.5, for a connected k-regular graph G we set

lzl(g) = max{|u1|, |/’Lnfl|}-

In other words, (71(G) is the largest (in absolute value) eigenvalue of the adja-
cency matrix of G different from o = k. Note that, if G is bipartite, then, by
Proposition 8.3.4, 111(G) = k. Moreover, u1(G) < 1£1(G) and, by replacing u,
by 111, we obtain a variant of the spectral definition of expanders (cf. Definition
9.1.9 and Definition 9.5.3).

In the notation of Proposition 8.1.4 and Lemma 9.1.6 we have

IASI _ o TAS )]

Z1(G) = max = X —— (9.68)

: rewirzo Il rewirzo  |If]2
Indeed, if vo, v1, ..., v, is an orthonormal basis of L(X) such that Av; =
mjvjfor j=0,1,...,n—1,thenoy,..., v, is an orthonormal basis of W;.

Thus, if f = Z'j’;; ojvj wehave Af = Z;’;} ojp;v; and

n—1

AfAf) =)l < m @111
j=1

so that
(AfAf) o
— == < (9)".
If12 ‘
On the other hand, if ;| = (1(G) (j = 1or j =n— 1) then
(Av;, Av;) B
L = i (G)%
llo;ll

The proof of the other equality is similar.
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Remark 9.8.1 It is important to notice that since the adjacency matrix A of G
is real and symmetric, we can select the orthonormal basis {vg, 01, ..., 0,1}
of L(X) made up of real-valued functions. Thus, denoting by Lk (X) the space
of all real-valued functions on X, in (9.68) we can replace W; by W; N Lr(X).

In the following we shall use the notation in Sections 8.7, 8.12, and 8.13.
Lemma 9.8.2 Ler f € Wi (X x [d]). Then
(UIx ® B)f* € LX) ® Wi(ld]) (9.69)
and

I(Ix ® B)fIl < i1 (F)ILF.

Proof. First of all, using (8.20) we have

(Ix ® B)f* = (Ix ® B) (Z 5 ® f;) =) 8 ®Bf .

xeX xeX

Then, using again (8.20) and the B-invariance of W, ([d]) (cf. Proposition 8.1.4),
(9.69) follows. Moreover, by (9.68)

IBf eqan < 1 (NFEzqan
for all x € X so that

12 112
1Ux ® B)f W xiany < D 18 ® BE N coeran

xeX

(by 8.12)) = > IBf I qany

xeX

< 1 (F)? Z 1A ay

xeX

= (I eeap- 0

Lemma 9.8.3 Let f € Wi (X x [d]). Then

Ml(g)

[(Ra 1, fI1 < =117

Proof. First of all, note that, from Lemma 8.7.4 and Proposition 8.12.2, it fol-
lows that

1 1
CRgf! = ~CRg [(Cf) ® Lia)] = ZACF. (9.70)
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Then, again by Lemma 8.7.4, we have

(Rof", 1y = = (Rg 1, (CF) ® 1)) Lixexiany

— =

= > RefMx DICFI)

(x.)eX x[d]
1
(by 8:21)) = < (CRGf", Cflrx)
1
(by (9.70)) = d—2<ACf, Cfre-
Now, by Lemma 8.7.3.(ii), Cf € W;(X) and therefore

1
(Rgf, £ = ZIACt. CA)l
1£1(G)

(by (9.68)) < —=IICf 170,
(by (8.12)) = ltld(f) ICf)® l[d]”i(xX[d])
(by Lemma 8.7.4) = %g)”f””; 0

Recall that Lr (X x [d]) denotes the space of all real valued functions defined
on X X [d]. Since Rg is a symmetric matrix, Lr(X X [d]) decomposes into
eigenspaces of Rg and, since Ré = Ix«[4;, Wwe deduce that Rg has only 1 and
—1 as eigenvalues. Set

e Vi={felrX x[d]):Rgf = f}
e Vo ={felpX x[d]):Rgf =—f}.

Then

LrX x [dD)=Vi®&V,
is the orthogonal decomposition of Lr(X X [d]) into eigenspaces of Rg.
Lemma 9.8.4 Ler f € Lr(X x [d]). Then we have

(Rgf, f) = cosCO)IIfI1%,
where 0 is the angle between f and V.
Proof. Write f = f1 + f>, with f; € V; and f, € V,, so that

Ifill = cos@|fll and [l fall = sin®@f],

as shown in Figure 9.3.
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fi

Figure 9.3. The decomposition f = f; + f>, with f; € V; and f; € V,.

Then
Rof. f/y={h—Sfo, i + 12)
= AP = 1417
= (cos* 6 — sin® 0)|| fI?
= cos(20)[I£]1>. O

We now introduce an auxiliary function: for 0 < o, 8 < 1 we set

1 1
(@, f) = S (1 = pho+ 5/(1 = p)%? + 452
The elementary properties of this function are described in the next lemma.

Lemma 9.8.5 Let 0 < «, B < 1. Then the following holds.

(1) P(x,0)=0a, PO,p)=p and ®(a, 1) = P(1, ) = 1.

(i1) For B < 1 fixed, the function o +— ®(«, B) is strictly increasing.
(iii) For o < 1 fixed, the function B — ®(«, B) is strictly increasing.
@iv) Ifa, B < 1then ®(a, B) < 1.

W) ®@,B)<1—-pBa+ B <o+ 8 (First upper bound).

vi) P(a,B)<1-— %(21 —a)(1—p% (Second upper bound).
(vii) ®(a, B) > % (Lower bound).

Proof. (i) and (ii) are obvious. (iii) requires some elementary algebra. For the
moment, suppose that ) <o <1land 0 < ;) < B, <1.SetA; = (1 — ,312)01
and A, = (1 — ﬂzz ). We have to prove that

A+ AT +4B% < Ay + /A + 4B3. 9.71)
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First of all, note that A; > A, and
A} — AT =d% (B3 - B2 — B — BY)
<2(8; - BD)
< 4(B5 — B
so that
AT +4B7 < A3 +4B5. 9.72)

We then write (9.71) in the form

Ay = Ay < \JAT+4pE — [A2 1 4B

which, by virtue of (9.72), is equivalent to (by squaring both sides)

AT+ 4P AT £ 4BY < My + 287 + 263,

Squaring again both sides, with some elementary calculations, (9.71) is in turn
equivalent to

ALBs +ASBT < (BT = B + AAa(B + B). 9.73)
Now recalling that A; = (1 — ,312- )a for j = 1,2 one easily checks that
ALpy + A1 = & (Bl — i) + AiAa(B + B)

and (9.73) follows. This shows (9.71).
(iv) follows from (i) and (ii) (or (iii)), but we give a straightforward direct
proof. If 0 < a, B < 1 then (1 — B?)a < 1 — B2 so that

D, ) = %(1 — BHa + %\/(1 — B2)a? +4p?
Ta_gys !t —_ B2y 2
<51 =p)+ 3=y +4p

-ty =1

= A=)+ 1+p)=1.

(v) Completing the square inside the square root we have

O, B) < %(1 o %\/a C B 4B £ 41 = Fa

= %(1 — Ao + %[(1 — BHa + 28]

=(1-pHa+B.
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(vi) The inequality

1
®la, f) =1 -5 —a)1 - B

is equivalent to

V(I = B2Pa® +482 < 1 + 2.
Squaring both sides this becomes
@’(1- g2 < (1 - g%

which is sat1sﬁed since a? < 1.
(vii) If m <53 L1 — B%)a then there is nothing to prove. Otherwise,
we can write the inequality in the form

2l g PR TR
l—a+pB21+a) 2 -2

and squaring both sides (the left hand side is positive) we get

4% <2a(1 = BHI(1 — )+ B + )] + [(1 — o) + B (1 + )],
that is,
4> + (1 = B2 < {a(1 = B) +[(1 — ) + B (1 + )]}
=1+
which becomes
(1= g <1 -p).

This is clearly satisfied since a? < 1. O

Remark 9.8.6 The first upper bound is useful when « and § are small, while
the second upper bound is useful when « and § are close to one. Moreover, it
is an easy exercise to show that if § < 1 then

2 1 2
al=p)+p=1-20-0)d =5

if and only if

_.
|
=

S
IA

+
=
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In [127] the authors use the function ¥(x, 8) =1 — (1 —a)(1 — B)? in
place of ®. This is also useful when « and B are close to one. We just note
that

_l _ _ p2 _ _ _ 2
I=s0=)d=p)=1-(0-a)d=f)

if and only if g > % As a consequence, as soon as f§ > 1 the second upper
bound in Lemma 9.8.5 yields a better estimate than the one provided by W in
[127].

We are now in position to state and prove the main result of this section.

Theorem 9.8.7 (Reingold-Vadhan-Wigderson) In the notation of Section
8.13 we have the following inequality for the first nontrivial eigenvalue of a
zig-zag product:

L1 CAF) < Ko (/fl(g) MH(JT))’

d = k
where ® is the function in Lemma 9.8.5.

Proof. Let 0 # f € Wi (X x [d]) N Lr(X X [d]) (cf. Remark 9.8.1). By virtue
of Lemma 8.7.4 (recall that B is the adjacency matrix of F) we have

1
(Ix®B)f! = ~Ux ® BI(C) @ 1]

1
(as Blyg) = k1) = E[(Cf) ® k14
= kfl.
Therefore,
(Ix®@B)f=Ux @B)(f' + fH)=kfl + UIx®B)f*. (974
Setting B = %(IX ® B) and recalling Proposition 8.13.3 we have
=(Rgx ® B)f, Ix ® B)f)

(by (9.74)) =K (Rg(f" + Bf), f! + Bf*)
(by Lemma 9.8.4) = k?cos 20| f! + Bf*|?

(where 6 € [0, 7 /2] is the angle between f! + Bf* and V) so that

I Brlg2
(Mg@rf, ) — 2 eos 20 1"+ Bf|

T TP 9.75)


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core

334 Expanders and Ramanujan graphs

By virtue of (9.68), the remaining part of the proof is devoted to get an upper
bound for the modulus of the right hand side of the above equality. We introduce
three further angles:

e ¢ € [0, /2] is the angle between f!l and f = fI + f* (see Figure 9.4);

‘4

f\l

Figure 9.4. ¢ € [0, /2] is the angle between f! and f = fI + f+.

o ¢’ is the angle between f!l and f! + Bf* (see Figure 9.5);

Bft

Figure 9.5. ¢’ is the angle between f!l and £ 4+ Bf*.

e Y € [0, /2] is the angle between f! and V.
By (9.69) we have that fI 1 Bf* so that ¢’ € [0, 7 /2]. We claim that
Oely—¢,¥+¢l

By symmetry, it suffices to prove that 6 < v + ¢', because by switching the
role of ¥ and 6 (that is, switching fI with fI + Bf*, see Figure 9.5) the
inequality ¥ < ¢’ 4 6 follows. Let & be the orthogonal projection of f! into
V, and denote by & the angle between f! + Bf* and k. Then, ¥ is the angle
between i and f!, 0 < Y + ¢', by virtue of the triangular inequality for angles
in a three dimensional real space and 6 < & because 6 is the minimal angle
between fI + Bf* and a vector /1 € V.
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I+ Bt

Figure 9.6. ¥ € [0, 7 /2] is the angle between f! and V.

Keeping in mind Figure 9.4 and Figure 9.5, and by virtue of Lemma 9.8.2,
we have

tang’ |fMtang’ IBfH 1 _
o Whene WL Ly, 9.76)
tan ¢ [l /1| tan @ L=l k

By Lemma 9.8.3, Lemma 9.8.4, and the definition of

Rof, 1Y) _ @)
e s d

cos2yr =

9.77)

By Figure 9.4 and Figure 9.5,

I+ BFAP wrg I1P cose

I+ 12 S IAP cos?er

cos ¢

In conclusion (see equation (9.75) and the observation following it), we have
to maximize

@lcos20) W B B _ o’
0s2

= k*| cos 20|
I+ f112 cos” ¢’

subject to the constraints:

(1) ¢.¢". ¥ €0, 3];
@ 0ely—¢. ¥ +¢l;
(3) p="me < M) (cf. (9.76));

@) a =]cos2y| < 19 (cf. (9.77)).

We distinguish two cases, namely

T , , , . v , T f
0,5¢[¢—¢,1//+¢]©<p <mm{1//,§—w}©¢ <1/f<5—¢

(this condition ensures that cos 2y < 1) and

’ . T
@ 2 mln{ws E - W}
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(now cos 21 = 1 is possible).

Case I: ¢' < min{yr, 7 — ¥}
First of all, note that since

0<1/f—¢’§95w+<p/<%

we have

lcos 20| < max({|cos 2(y + ¢")|, | cos 2(y — ¢')I}
= max{|cos 2 cos 2¢'—sin 2 sin 2¢'|,
|cos 24 cos 2¢'+sin 24 sin 2¢’ |}
cos 2 cos 2¢" + sin 24 sin 2¢’
{ — cos 2y cos 2¢’ + sin 2 sin 2¢’
= | cos 2y cos 2¢’| + sin 2 sin2¢’,

if cos2yr cos2¢’ >0
if cos2y cos2¢’ <0

where =, follows from sin 2 sin 2¢’ > 0. Therefore

2 2

s s cos

LA ? cos 2¢" cos 29| + — ? sin 24 sin 2¢’
cos” ¢’

S2@/ - coszgo’
1 78
= El(l — B cos 2y +(1 + %) cos 2y cos 2¢| ©.78)

2

co
|cos 26|
co

+ B sin 24 sin 2¢

where § = ?a—'l‘% as in (3), and the last equality follows from two elementary

trigonometric identities, namely

2
1
€O 9 0s2¢" = ~[1 — B2 + (1 + B) cos 291,

cos? ¢’ 2

which has a long but elementary proof, left to the reader, and

2 sin 2¢ 1
cos” ¢ . 2 tan . tan . .
—sin2¢ = =22 sin2¢’ = =% sin2¢ = B sin2¢.
C052 (p/ sin2¢ 1
2tan ¢’ tan ¢’
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Finally, the triangular inequality applied to (9.78) (recall that | 8| < 1 by (9.76))
yields

2

1
SR P < (1 - B cos2y|
costg’ 2

| cos 20|

1 1
+ 5(1 + B2)| cos2y/| - | cos 2¢| + 3 -2 sin 29 - sin 2¢

! 2
Sex (1= %) cos 2y]

+ %\/(1 + B2)2(cos 2¢)? + 4% (sin 2y )?

(by @) = %(1 —Ba + %m — p2Pa? +4p?
= ®(a. p).

where <,, follows by applying the Cauchy-Schwarz inequality. We then
conclude by invoking Lemma 9.8.5.(ii) and (iii), and keeping in mind the
inequalities in (3) and (4).

Case II: ¢’ > min{ys, 7 — ¥}
We now have ¢ — ¢’ < 0or ¢ +¢" > 7 so that

2

2
cos cos
| cos 20| Ld < bl
cos? ¢’ ~ cos? ¢’
tan” ¢’ tan’ ¢’ 9.79
_ 2‘/’ F(1— 2(/))0052(0 ( )
tan- ¢ tan” ¢

(by 3)) = p*+ (1 — B*)cos’ ¢,

where the first equality is an elementary trigonometric identity, whose proof is
left to the reader. Now, since ¢" > min{y, 7 — v}, we have

2¢" > 2y cos2¢’ < cos2yr
or = Jor = c0s2¢’ < |cos2y¥| = a.
20 > —2¢ cos2¢’ < —cos2y

Since

(14 p*)cos’p — B°

(1 —B*)cos?p + p2

(another trigonometric identity whose proof is left as an exercise) we get
(1+p*)cos? g — B _
(I —pB*)cos’p + > —

cos2¢’ =

)
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which is equivalent to

B2(1 +«a)
AI+a)+1—a

2
cos ¢ < 57

Applying this inequality to (9.79) we get

2 2
08201 05 = 7 (= ) g R
282
T l-a+p1tae)
< ®(a, B),

where the last inequality follows from Lemma 9.8.5.(vii). The statement then
follows, as in the previous case, from Lemma 9.8.5.(ii) and (iii), together with
the inequalities in (3) and (4). O

9.9 Explicit construction of expanders via the Zig-Zag product

In this section, we present the basic recursive construction that uses the esti-
mates in Theorem 9.8.7 to construct a family of expander graphs. Let G =
(X, E, r) be a finite connected graph. We define the non-oriented square of
G as the graph G? = (X, F, s) with the same vertex set of G, edge set defined as

F={{xe,ye,z}:x,y,2€X,e1,e; € E,r(er) = {x,y}, r(ex) = {y, 2}},

where {x, e, y, e, z} should be thought of as the pair of paths (x, ey, y, €2, 2)
and (z, e, y, e1,x), and s({x, e1, y, €2, 2}) = {x, z} for all {x,e;,y,e3,2} € F
(note that x, y, z are not necessarily distinct). In other words, F is the set of
all (non-oriented) paths of length two in G.

Clearly, if A is the adjacency matrix of G, then A? is the adjacency matrix of
G? (see Proposition 8.1.6). Moreover, it is immediate to see that G 2 is connected
if and only if G is not bipartite: the reader is invited to find a direct proof of this
fact and, in the case G is k-regular, to deduce it from Proposition 8.3.4 and
Proposition 8.1.5.

Finally, if G is k-regular we clearly have

£1(G?) = i@1(G)* (9.80)

Theorem 9.9.1 Let G be a d-regular graph with d* vertices, d > 2 and suppose
that

Hi(9) =

Al


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.010
https://www.cambridge.org/core

9.9 Explicit construction of expanders via the Zig-Zag product ~ 339

Set
Gi=G* and Gu1 =G.@G forn> 1.

Then G, is a d>-regular graph with d*" vertices and

d2
H1(Gn) < > (9.81)

In particular, the sequence (G,),cn is a family of expanders.

Proof. By construction, G; has d* vertices, is regular of degree d?, and satisfies
oG < % (by (9.80)). We proceed by induction. Suppose that G, is a d>-
regular graph with d*" vertices and (9.81) holds. Then G2 has d*" vertices, is
regular of degree d*, and satisfies 1i1(G?) < 2" Therefore Gy, has d*' - d* =
d* "D vertices, is regular of degree d? (by Definition 8.13.1), and, by Theorem

9.8.7 and Lemma 9.8.5.(v),

1 1 d’

L n < d2 — — = —,

H1(Gnt1) < <4+4> >

The sequence (G,),cn then forms a family of expanders (cf. Definition

9.5.3). O

Example 9.9.2 Consider the graph LD(q, r) introduced in Section 9.7, where
g = p' with p prime, and ¢, r positive integers. We use the notation in the proof
of Theorem 9.7.3. Recall (cf. (9.67)) that the eigenvalues of LD(q, r) are given

by
Yo = Z Z @FOP)
xeF, yeF,
pa(-x)zo
ac IF;’L'. Now, for a # (0,0, ..., 0), the polynomial p,(x) has at most r roots

in IF, and therefore (cf. the end of the proof of Theorem 9.7.3)

el < gr. (9.82)

Then, for » = 7 and g > 4r the graph G = LD(g, 7) satisfies the hypotheses
of Theorem 9.9.1. Indeed, G is d-regular of degree d = ¢, the number of its
vertices is ¢! = ¢® = d*, and (cf. (9.82))

11(G) < rd < %l.
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10

Representation theory of finite groups

In this chapter we give a concise but quite detailed and complete exposition of
the basic representation theory of finite groups. This may be considered as a
noncommutative analogue of Chapter 2. Indeed, we emphasize the harmonic
analytic point of view, focusing on unitary representations and Fourier trans-
forms. Our exposition is based on our previous books [29], [33]. We also refer
to the useful monographs by: Alperin and Bell [12], Diaconis [53], Fulton and
Harris [63], Naimark and Stern [119], Serre [145], Simon [148], and Sternberg
[154].

10.1 Representations, irreducibility, and equivalence

Let G be a finite group and V a finite dimensional vector space over C. We
denote by End(V') the algebra (see Section 10.3) of all linear maps 7: V — V
and by GL(V) the general linear group of V consisting of all invertible elements
in End(V).

Definition 10.1.1 A representation of G over V is a homomorphism p: G —
GL(V). In other words, we have:

e p(g): V — Vis linear and invertible for all g € G;

o p(g182) = p(g1)p(g2) forall g1, g2 € G;

e p(g7) = p(g) ! forall g e G;

o p(1g) = Iy where 1 is the identity elementin G and Iy : V — V is the iden-
tity map (and thus the identity element in GL(V)).

We shall denote a representation by a pair (o, V). Note also that p may be
seen as an action (g, v) — p(g)v of G on V, where p(g) is an invertible linear
map for all g € G. Denoting by n the dimension dim(V') of V, since GL(V) is

343
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344 Representation theory of finite groups

isomorphic to GL(n, C), the group of invertible n-by-n complex matrices, we
can regard a representation of G as a group homomorphism p: G — GL(n, C).
Then n is the dimension or degree of p and it will be usually denoted by d,,.

The kernel of the representation (p, V) is Kerp = {g € G : p(g) = Iy}. The
representation (p, V) is called faithful if Kerp = {15}. In other words, p is
faithful if and only if it is an isomorphism between G and a subgroup of GL(V).

Let (p, V) be a representation of G and suppose that W < V is a subspace.
We say that W is G-invariant (or p-invariant) if p(g)w € W for all g € G and
w € W. Then, denoting by pw(g) the restriction of p(g) to the subspace W,
that is, pw(g)w = p(g)w for all g € G and w € W, we say that (pw, W) is the
restriction of p to the (invariant) subspace W and call it a sub-representation of
(p, V). We also say that py is contained in p and write (ow, W) < (p, V), or
simply pw < p. One also says that an element v € V is a G-invariant vector,
provided p(g)v = v for all g € G. It is clear that the set of G-invariant vector
is a G-invariant subspace VG <V, which we call the subspace of G-invariant
vectors. Clearly, every representation is a sub-representation of itself.

Let K < G be asubgroup of G. Then setting [Resgp](k) = p(k)forallk € K,
yields a K-representation (Resg 0, V). This is called the restriction of p to the
subgroup K.

The representation (p, V) is called irreducible if the only G-invariant sub-
spaces are trivial: W <V and p(g)W < W for all g € G implies that either
W={0}orW =V.

The direct sum of given G-representations (p;, W;), j=1,2,...,k, is the
G-representation (p, V) where V=W, @ W, @ - - - @ W, is the direct sum of
the corresponding spaces, and p = p; © p2 @ - - - @ py is defined by setting

p(@v = p1(Qw; + pa(Qwr + - - - + pr(Qwy

forallv = wi +wy + -4+ wr € V,w; € W;,and g € G. Conversely, if (p, V)
is a G-representation and

V=WwieWwo oW (10.1)

is a direct sum decomposition into G-invariant subspaces, then p = p; & p, &
- @ pi, where p; = Pw;s J = 1,2, ..., k; we then say that (10.1) constitutes
a (direct sum) decomposition of p.

Let (p, V) and (8, W) be two representations of the same group G. Suppose
that there exists a linear isomorphism 7: V — W such that, for all g € G,

09T = Tp(g). (102)

Then one says that the two representations are equivalent and we write p ~ 6.
Note that ~ is an equivalence relation and that two equivalent representations
have the same degree. We write p #* 6 to denote that p and 6 are not equivalent.
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We will also use the notation V = W to indicate that the representations of G
on V and W are equivalent. However, in expressions as (10.1) we prefer to use
equality to emphasize that we have a concrete decomposition on V into direct
sum of subspaces.

Suppose now that the complex vector space V is unitary, that is, it is endowed
with an inner product that we shall denote by (-, -);, (with associated norm
[I-llv); the subscript will usually be omitted when the space V is clear from
the context. We recall (see [93, 91, 75]) that the adjoint of a linear operator
T: W — V between two unitary spaces W,V is the unique linear operator
T*:V — W such that (Tw, v)y = (w, T*v)w, for all w € W, v € V. More-
over, an endomorphism U: V — V is unitary it U*U = I = UU* and this is
equivalent to the condition (Uv;, Uvy) = (v, vy) for all vy, v, € V. Moreover,
if U is a unitary matrix then U* = ﬁT, the conjugate transpose of U.

A representation (p, V') is called unitary if p(g) is unitary for all g € G, that
is, (p(g)v1, p(g)v2) = (v, w) for all and vy, v, € V. We shall then say that the
inner product (-, -) is p-invariant (or G-invariant).

Exercise 10.1.2 Show that every one-dimensional representation is unitary.
Hint: Show that every inner product on C is of the form (z;, z,) = @z1Z2, where
o > 0, forall 71,z € C.

Given an arbitrary representation (p, V') of a finite group G it is always pos-
sible to endow V with an inner product making p unitary. If (-, -) is an arbitrary
inner product on V, we define, for all vy and v, in V,

W, w) =Y (p(2), p(gw) . (10.3)

geG

Proposition 10.1.3 The representation (p, V) is unitary with respect to the
scalar product (-, -). In particular, every representation of G is equivalent to
a unitary representation.

Proof. First of all, it is easy to see that (10.3) defines an inner product on V.
Moreover, for all vy, v, € V and h € G we have

(o(hyor, p(hw2) =Y (p(@p(hv1, p(g)p(h)va)

geG

= (o(ghr. p(ghivs)

geG

t=gh) =) (p®or, p(t))

teG

= (v, w).

This shows that the inner product (-, -) is G-invariant. O
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We are mostly interested in equivalence classes of representations, thus we
might confine ourselves to unitary representations. Thus, from now on, given
a G-representation (p, V), it is understood that V is a finite dimensional (com-
plex) vector space endowed with a G-invariant inner product and that p(g) is
unitary for all g € G: note that, under these assumptions, we thus have

p(g ) =p@ " =p" (10.4)

for all g € G. Also, we shall use the polar decomposition of a linear operator
(see any book of linear algebra, for instance [75]) in the following form: if
T:V — W is a linear invertible map between two unitary spaces V and W
then there exist a unique positive, self-adjoint operator |T|: V — V (that is,
(ITo,v)y > 0and {|T |v1, v2)y = (v1, |T|v2)y forallo, vy, v, € V,0 # 0) and
a unique unitary isomorphism U: V — W such that T = U|T|. We also recall
that |T| is the unique positive square root of the positive operator 7*T: this
means that |7|?> = T*T and |T| is positive.

Lemma 10.1.4 Let (p, V) and (0, W) be two unitary representations of a finite
group G and suppose that they are equivalent. Then they are also unitarily
equivalent, that is, there exists a unitary isomorphism U:V — W such that

0(g) =U'9()U forall g € G.
Proof. Let g € G. Since p and 6 are equivalent, we write (10.2) in the form
p(e) =T '0(T. (10.5)
Taking adjoints, using (10.4), and replacing g by g~!, we have
p(g) = T*0(e)(T*)".

From (10.5) we then deduce that T*T p(g)(T*T)~! = T*0(g)(T*)~' = p(g),
equivalently,

p(Q) ' (T*T)p(g) = T*T. (10.6)

Now we use the polar decomposition of 7: since |T|> = T*T we have,

_ . _ 2 _ .
p(@) ' ITI?p(g) = ITI?, thatis, [p()'|T|p(g)]” = ITI?,and p(g) "' |T|p(g) is
positive:

(0@~ IT1p(g)v, v) = (IT|p(g)v, p(g)v) > O

for all v €V, v #0. Since p(g)~!|T|p(g) is the square root of the left
hand side of (10.6), by the uniqueness of the positive square root we have
0(&)7 T |p(g) = |T|, that we write in the form

ITIp@ITI™" = p(g). (10.7)
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Then, if T = U|T| is the polar decomposition of 7', we have

U '0(eU = ITIT'0()TIT|™"

(by (10.5))  =ITlpITI"!
(by (10.7)) = p(Q).
This shows that p is unitarily equivalent to 6. U

The assumption that the representation p is unitary has a simple but funda-
mental consequence: if W is a G-invariant subspace of V then Wt = {p e V :
(v, w) =0, Yw € W}, the orthogonal complement of W, is also G-invariant.
Indeed, if v € W and g € G one has (p(g)v, w) = (v, p(g~")w) = 0 for all
w € W.Moreover, V can be expressed as the direct sum of the orthogonal sub-
spaces W and W+, namely V =W @ W+ and p = py @ py ..

Lemma 10.1.5 Every representation of G is the orthogonal direct sum of a
finite number of irreducible representations.

Proof. Let (p, V) be a representation of G. If p is irreducible there is nothing
to prove. If not, as above we get a nontrivial orthogonal decomposition into
G-invariant subspaces of the form V = W @ W+, Then the proof follows by an
easy inductive argument on the dimension of V, because dimW < dimV and
dimW+ < dimV. O

Definition 10.1.6 (Dual) Let G be a finite group. We denote by @, called the
dual of G, a complete set of irreducible pairwise non-equivalent (unitary) repre-
sentations of G (in other words, G contains exactly one element in each equiv-
alence class of irreducible G-representations).

We will also use the following notation: if p, 8 € G then

)1 ifp=0
77 o ifp 6,
(note that if p, 0 € G then p #* 6 is the same thing as p # 6). We end this
section by illustrating some fundamental examples.

Example 10.1.7 For any finite group G we define the trivial representation
(¢, C) as the one-dimensional representation of G defined by setting ¢(g) = Id¢
for all g € G. As it is one-dimensional, it is also unitary (cf. Exercise 10.1.2)
and irreducible.

Example 10.1.8 Let G be a finite group. Denote by L(G) = {f : G — C} the
space of all complex valued functions on G; it is a vector space with respect to
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the pointwise linear combinations: (o f; + a2 2)(g) = o1 f1(g) + a2 f2(g) for
all f1, f> € L(G), a1, a; € C, and g € G. Introduce in L(G) the inner product

(i, ) =) fi@h®) (10.8)

geG

for all f1, f» € L(G). Then the representation (A, L(G)) defined by

[h6(9)f1(h) = f(g~'h) (10.9)

forall g, h € G and f € L(G), is called the left regular representation of G. It
is easy to show that it is indeed a representation: if g, g», g € G and f € L(G)
then we have

[A6(g1)AG(82)f1(8) = {A6(81)[A6(82) f1}(g)
= Da(g2) /1 ' 9)
= f(g;'¢,'®)
= [A6(2182)f1(9),

that is, Ag(g1)Ac(g2) = Ag(g1g2). Moreover, Ag is unitary: if g€ G and
f1, f» € L(G) then we have

(ha(@f1 ha(@f) =Y fig ' M fa(gh)

heG

t=g¢'n) =) AOAD

teG

= (f1, f2) .
Analogously, the representation (pg, L(G)) defined by

[pc(8)f1(h) = f(hg) (10.10)

for all g,h € G and f € L(G), is again a unitary representation, called the
right regular representation. Note that these two representations commute:

rg(@)pc(h) = pg(h)ig(g) forall g, h € G.
As in Section 2.1, we denote by 8, € L(G) the Dirac function at g € G,

defined by

1 ifh=g

8,(h) =
# 0 otherwise.

It is clear that {§, : g € G} is an orthonormal basis in L(G). Note also that
Ag(h)8g, = 8y, Tor all h, g € G so that we may represent every f € L(G) in the
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form

F= @8 =) f@*r(@)d- (10.11)
geG geG

Remark 10.1.9 In many books, the inner product (10.8) is normalized, that is
(fis P = I_é\ > ecc J1(8).f2(g) and this changes many formulz given in the
following chapters by a factor of 1/|G|. Our choice makes the Dirac functions
an orthonormal basis. The normalized scalar product comes from the theory
of compact groups, where the Haar measure is normalized in order to be a
probability measure; see the monographs by Bump [23] and Simon [148].

Example 10.1.10 Let G = S, be the symmetric group of degree n, that is,
the group of all permutations on n elements. The sign representation is the
one-dimensional representation (¢, C) defined by setting £(g) = (—1)#"@Idc,
where sign(g), the sign of the permutation g € §,,, is defined to be 1 if g is an
even permutation (that is, g is the product of an even number of transpositions,
equivalently g € A,, the alternating group), and —1 if g is an odd permutation
(thatis, g € S, \ A,,). As the map sign: G — S, /A,, = C, is a group homomor-
phism, we have (g1g2) = £(g1)e(g2) for all g1, g» € S, so that ¢ is indeed a
representation. As it is one-dimensional, it is also unitary (cf. Exercise 10.1.2)
and irreducible.

Example 10.1.11 Let A be an Abelian group. Then its characters (see Section
2.3) are unitary representations of A and its dual A is itself a group (cf. Defini-
tion 2.3.1; see also Corollary 10.2.7 and Example 10.2.27).

10.2 Schur’s lemma and the orthogonality relations

Given two finite dimensional vector spaces V and W, recall that Hom(V, W)
(respectively, End(V)) denotes the vector space of all linear maps 7: V — W
(respectively, T: V — V). Let G be a finite group and suppose that (p, V') and
(6, W) are two representations of G.

Definition 10.2.1 One says that L € Hom(V, W) intertwines p and 0 if
Lp(g) = 0(8)L,

for all g € G. We will denote by Homg(V, W) (or Homg(p, 6)) the space of all
such intertwiners; it is called the commutant of p and 8. When W =V and 6 =
p itis denoted by Ends (V) (or Endg(p)), and it is simply called the commutant
of p.

We begin with an elementary but useful property.
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Proposition 10.2.2 A linear map L: V — W belongs to Homg(V, W) if and
only if L* belongs to Homg(W, V).

Proof. For all g € G we have
L*0(g) = L*0(g™")* = (0(g ")L)* and p(g)L* = p(g~")*'L* = (Lp(g~" )",
so that L*6(g) = p(g)L* if and only if 0(g~")L = Lp(g™"). ]

The map L — L* is an antilinear isomorphism between Homg(V, W)
and Homg(W, V): indeed, (aT; + B15)* = al{" + ET*, fora,BeC, T, T5 €
Homg(V, W).

We now illustrate the fundamental results that relate the notion of reducibility
of a representation with the existence of intertwiners.

Lemma 10.2.3 (Schur) Let (p, V) and (6, W) be two irreducible representa-
tions of G. If L € Homg(V, W) then either L is the zero homomorphism, or it is
an isomorphism.

Proof. Consider the kernel KerL={v €V :Lo =0} <V and the range
RanL = {Lv : v € V} < W of L. If L intertwines p and 6 then KerL and RanL
are p- and @-invariant, respectively:

veKerlL = Lo =0 = Lp(gv =0(g)Llv =0 = p(g)v € KerL
and
weRanL = v eV :w=Lv = 6(g)w = Lp(g)v € RanL.

By irreducibility, either KerL = V (and necessarily RanL = {0}) or KerL = {0}
(and necessarily RanL = W). In the first case L vanishes, in the second case it
is an isomorphism. g

Corollary 10.2.4 Let (p, V) be an irreducible representation of G and suppose
that L € Endg(V) (that is, L intertwines p with itself: Lp(g) = p(g)L for all
g € G). Then Lis amultiple of the identity: there exists .. € C suchthat L = \ly.

Proof. Let A be an eigenvalue of L (which exists because V is a complex vec-
tor space and C is algebraically closed). Then (L — Aly) € Endg(V) and, by
Schur’s lemma, it is either an isomorphism or the zero homomorphism. But,
by definition of an eigenvalue, it cannot be invertible, and therefore necessarily
L=2Aly. n

The last corollary may be expressed in the form: if V' is G-irreducible then

Endg(V) = {Aly : A € C} = Cy.
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Corollary 10.2.5 Suppose that (p,V) and (8, W) are irreducible equivalent
G-representations. Then dimHomg(V, W) = 1.

Proof. Let Ti, T, € Homg(V, W) \ {0}. Then, by Proposition 10.2.2 T,;T; €
Endg(V) so that, by Corollary 10.2.4, there exists A € C such that 7T} = Aly,
equivalently, Ty = A T5. O

Corollary 10.2.6 Suppose that (p, V) and (n, U) are G-representations. Then
Homg(V, U) is nontrivial if and only if p and n contain a common isomorphic
irreducible G-representation.

Proof. Suppose that T € Homg(V, U) is nontrivial. Then (KerT)* < V isnon-
trivial, p-invariant, and therefore it contains an irreducible representation W <
V (recall Lemma 10.1.5). Clearly, T |w is an isomorphism intertwining W and
T(W) < U. The proof of the converse is left as an exercise (see also Exercise
10.6.9). O

Corollary 10.2.7 Let G be a (finite) Abelian group. A representation (p, V') of
G is irreducible if and only if it is one dimensional (so that it is a character).

Proof. Let us use multiplicative notation for G. Then, for all g, h € G we
have p(g)p(h) = p(h)p(g), so that p(g) € Endg(p). By Corollary 10.2.4, there
exists a function x : G — C such that p(g) = x(g)ly, Vg € G. Then every sub-
space of V is p-invariant so that p is irreducible if and only if dimV = 1. We
leave it to the reader to check that x is indeed a character. U

Exercise 10.2.8 Show thatif p € Gand gisinthecenter Z(G) = {z € G : zh =
hz for all h € G} of G, then there exists A € C such that p(g) = Aly.

Exercise 10.2.9 (Converse to Schur’s lemma) Suppose that the commutant
of a G-representation (p, V) is trivial, that is, Endg(V) = CIy. Show that p
is irreducible (see also Corollary 10.6.4).

Let (o, V) be arepresentation of G. Given v, w € V the element uf) ,, € L(G)
defined by uf ,(g) = {p(g)w, v) forall g € G, is called a (matrix) coefficient of
the representation p; we will omit the superscript “p”” when the representation
p is clear from the context. If {0, v, ..., v,} is an orthonormal basis for V,
then p(g), viewed as an n-by-n matrix, coincides with the matrix (”5),-,1)] (g))l’.f =1
(see Lemma 10.2.13.(i1)).

Note that if f € L(G) and g € G, then (cf. (10.11)) one has

1@ =(ha@b1, f) = 1° 2(8),


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.011
https://www.cambridge.org/core

352 Representation theory of finite groups

where A is the left regular representation of G and §;,, is the Dirac function at
the identity element 15 of G. This shows that any f € L(G) may be realized as
a coefficient of a (unitary) representation.

Lemma 10.2.10 Let (p, V) and (6, W) be two irreducible, non-equivalent rep-
resentations of G. Then all coefficients of p are orthogonal to all coefficients

of 6.

Proof. Let v, v, € V and w;, w, € W. Our goal is to show that the func-
tions u? , (g) = (p(g)v1, v2)y and u?uz’wl(g) = (0(g)w1, wa)y are orthogonal

02,01

in L(G). Consider the linear transformation L: V — W defined by
Lo = (v, 02)y wy, (10.12)
for all v € V. Then, the linear transformation L: V — W defined by

L= 0(g"Lp(g)

geG

belongs to Homg(p, 6). Indeed, for every g € G,

Lp(9) =) 0(h " Lp(hg)
heG

(k=hg) = 6(gk Lp(k)
keG

=6(g)L.

Thus, by virtue of Schur’s lemma, we have that either L is invertible or L = 0.
As p # 0, necessarily the second possibility occurs and therefore

0= (o1, wi)y, = Y (Lp(@1, O(@w1)y
geG

(by (10.12)) =Y " {p(v1, va)y - (w2, 6(@wi)y
geG

=Y (p(@w1, v2)y - O(Qwr, wahy

geG
= ul, (), , (2
geG

— [P 0
- (MI)2,1)1 ’ sz,wl >L(G) . O
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Theorem 10.2.11 Let G be a finite group. Then there exist only finitely many
pairwise inequivalent irreducible unitary representations. In other words,
|G| < o0.

Proof. The space L(G) is finite dimensional and contains only finitely many
distinct pairwise orthogonal functions, and the statement follows from previous
lemma. (]

Let now (p, V) be an irreducible G-representation, d = dimV, and choose
an orthonormal basis {0, v, ..., 04} of V. Recall that the trace of a linear
operator T: V — V is given by Tr(T) = Z;:l(ij, v;). It is easy to check
that Tr: End(V) — C is a linear map, that it does not depend on the choice of
the basis, and that it satisfies the following central properties:

Tr(TS) = Tr(ST) forall S, T € End(V);

Tr(T~'ST) = Tr(S) forall S € End(V)and T € GL(V). (10.13)
Lemma 10.2.12 The coefficients

ul (&) = (v vi)y,, i, j=12,....d, (10.14)
are pairwise orthogonal in L(G). In formulce,
<ufj’ uzh>L(G) - |dﬂ8ik8jh
foralli, j,h,k=1,2,...,d.
Proof. Fix indices 1 < i, k < d and define L; € End(V) by setting
Lix(v) = (v, v;) vg,

for all v € V. Itis easy to check that Tr(L;) = 8. Now set

~ 1 _
Li= o Y p(g HLip(g)
geG
and observe that Z,-k € Endg(p) (see the proof of Lemma 10.2.10). As p is
irreducible, from Corollary 10.2.4 we deduce that Ly = «ly, for a suitable o €
C. Indeed, a = 8;./d:
da = Tr(Ly)
1 _
= — > Tr[p(g " Lup(g)]
Gl =

(by (10.13)) = Tr(Ly).
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It follows that Ly = (1/d)8ly and therefore (Lyv;, vs), = (1/d)8;48. Since

(Lo (v, p(20n),
geG

<Zik1)j7 Uh)V = @

1
= ﬁ Z<p(g)1)]7 Ui>v . (l)k, ,O(g)l)h>v
geG

1
PP
= —(Uu. -y u ,
|G| < b k’h)L(G)

this ends the proof. O

The following lemma presents further properties of the matrix coefficients;
these do not require the irreducibility of p.

Lemma 10.2.13 Let (p, V) be a G-representation and let {v1, va, ..., 04} be
an orthonormal basis of V. With the notation in (10.14) one has:

@) uf (g7 =/ (g);
(i) p(gv; = L, vitef (8);
i) uf (g182) = Yoy ul, (81t} (22);
@iv) Z?: 1 mulﬁ 1(8) =8k and Zlc-i:l mufk(g) = §; (dual orthogo-
nality relations)

forallg g1,80€ Gandi, jk=1,2,...,d.
Proof.

(i) This follows immediately from p(g)* = p(g~")and (v, w) = (w, v) for
allge Gando,w € V.
(ii) This is obvious, since forallv € V one hasv = Y, _, v, (v, vp).
(iii) From (ii) we deduce that

d

d
> ontt (2182) = p(g182)v; = p(1)p(82)v; = Y p(g1)onu] ;(g2)
h=1 h=1

and taking the scalar product with v; we get the desired equality.
(iv) This is an immediate consequence of the unitarity of p(g), that is, of the

relation p(g)p(g)* = p(g)*p(g) = Iy, forall g € G. O

In the following, we shall refer to (uf j(g)) as a matrix realization of the

n
i,j=1
representation p.


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.011
https://www.cambridge.org/core

10.2 Schur’s lemma and the orthogonality relations 355

Definition 10.2.14 Let (p, V') be a G-representation. Then the map x” € L(G)
defined by setting

x*(g) =Tr[p(g) forallg e G
is called the character of p.

Note that, for every g € G, we have that p(g), being unitary, is diagonal-
izable and therefore its trace Tr[p(g)] = x”(g) coincides with the sum of its
eigenvalues. From (10.13) it follows that two equivalent representations have
the same character: indeed, Tr[T p(g)T '] = Tr[p(g)] for every invertible oper-
ator T. Therefore, with each equivalence class of irreducible representations
is associated a character. Clearly, using a matrix realization of p, one has
Trlp(9)l= Y1, uf ;(¢) and this sum does not depend on the particular choice
of the orthonormal system {v, vs, ..., 04} in V. We observe that if p is one-
dimensional, then p(g) = x”(g)ly for all g € G and, by abuse of language, we
say that the representation p coincides with its character and write p = x”°.

Proposition 10.2.15 Let (p, V) be a G-representation. Then we have:

1) x"(1g) =dimV;
(i) x°(s™") = xP(s), forall s € G;
(iii) xP (@ 'st) = xP(s), foralls,t € G;
(iv) if p = p1 ® pa then x” = x” + x;
(v) with the notation as in Lemma 10.2.13 we have:

d
X0 = _ul. (10.15)
i=1

Proof.
(i) Thisis easy: p(lg) = Iy and Tr(ly) = dimV =d.
(ii)) We have
x (s = Trlp(s™ )] = Trlp(s)*] = x*(s)

since p(s) is unitary and Tr(A*) = Tr(A) for all A € GL(V).
(iii) This follows again from the central property of the trace.
(iv) This is easy and left as an exercise.
(v) This is obvious. O

Exercise 10.2.16 Let p be a G-representation and let n = |G].

(1) Show that the eigenvalues of p(g), g € G are n-th roots of unity;
(2) deduce that |x°(g)| < d, forall g € G.
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Proposition 10.2.17 (Orthogonality relations for characters) Ler p, 6 € G.
Then

<Xp7 X6>L(G) = |G|89,9' (1016)

In particular, two non-equivalent irreducible G-representations have different
characters.

Proof. From (10.15), Lemma 10.2.10 and Lemma 10.2.12 we get

dp d(.) d,D dﬁ

|Gl
(x”, XQ)L(G) - ZZW: ”?,j)ua) - Z 280’95’?1‘% = 1G13p.6-

i=1 j=1 i=1 j=1

O

We thus have that the characters of irreducible representations constitute an
orthogonal system in L(G) (in general not complete: see Theorem 10.3.13).
Therefore they are finitely many and their cardinality equals the number of
equivalence classes of irreducible representations (cf. Proposition 10.2.17 and
the comments after Definition 10.2.14).

Proposition 10.2.18 Let p and 0 be two G-representations. Suppose that p =
P1 D P2 @ --- @ pi is adecomposition of p into irreducible subrepresentations
and that 0 is irreducible. Then, setting mg = |{j : p; ~ 0}|, one has

1 0
my = ﬁ(x”, XN (10.17)

In particular, my does not depend on the particular decomposition of p.
Proof. From Proposition 10.2.15.(iv) it follows that x* = ZI;=1 x?i. There-

fore, from Proposition 10.2.17 we deduce that

k k
X" X6 =D _(x” x"e = Y _IGl8,,.0 = |Glmy. 0

j=1 j=1
Corollary 10.2.19 Let (p, V) be a representation of G. Then, with the notation
as in Proposition 10.2.18, one has

P~ @m(a@,
0eG

where mg =60 @O @ - - - D 0 is the direct sum of mgy copies of 0, and

V= @mgWQ,
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where mgWy = Wy @ Wy & - - - ® Wy is the direct sum of my copies of Wy, the
representation space of 0. Moreover,

X0 =Y myx".

0eG

Definition 10.2.20 The number my in (10.17) is called the multiplicity of 6 as
a sub-representation of p. If 6 is not contained in p then clearly my = 0. The
subspace (of V which is isomorphic to) myWj is called the 6-isotypic component
of V.

Example 10.2.21 Let (p,V) be a G-representation. Then the dimension
dim(V?) of the subspace of G-invariant vectors equals the multiplicity m, of
the trivial representation ¢ of G as a sub-representation of p.

Corollary 10.2.22 Let p, n be two representations of G. Suppose that p =
Dpcmeb and n = By gnet are their decompositions into irreducible subrep-
resentations, so that the numbers mgy’s and ng’s are the corresponding multiplic-
ities. Then, denoting by J the set of common irreducible representations, that
is, J =16 e@:mg > 0 and ng > 0}, we have

1
—(x" x") =) mgny.
|G oes
Corollary 10.2.23 A G-representation p is irreducible if and only if
Ix* ) = VIGI.
Corollary 10.2.24 Two G-representations p and 0 are equivalent if and only
ifx”=x"

Theorem 10.2.25 (Peter-Weyl) Let G be a finite group and denote by
(Ag, L(G)) its left regular representation (see Example 10.1.8). Then the fol-
lowing hold:

(1) Every irreducible representation 0 € G appears in the decomposition
of Ag with multiplicity equal to its dimension dy, that is,

L(G) = @dewe, (10.18)
0eG
where Wy denotes the representation space of 6. Moreover,

> dox” = |Gl8y,: (10.19)
0eG

(i) Gl =Y gegds:
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(iii)

Proof.

(ii)

(iii)

Representation theory of finite groups

denoting by ug j the matrix coefficient of 0 € G with respect to an
orthonormal basis (see (10.14)), then the set

ﬁu?.:i,jzl,...,dg,eeé
G

is a complete orthonormal system in L(G).

Denote by

h ~ EPmed (10.20)
0eG

the decomposition of A¢ into irreducibles, as in Corollary 10.2.19, so
that the integer my denotes the multiplicity of the irreducible represen-
tation® € G in Ag. Using the complete orthonormal system {3, : g € G}
of Dirac deltas in L(G) and the identity Ag(h)d; = &, we immediately
obtain that

G| ifg=1
1) = D (ha(©)8h 81y = Y (Sgn. 81) = , ¢
heG heG 0 ifg#lc,
(10.21)
for all g € G; in other words,
X" =1G|31,. (10.22)

From Proposition 10.2.18, (10.22), and Proposition 10.2.15, we deduce

1
~lal
Then, (10.18) follows from (10.20) and (10.23), while (10.19) follows
from, in order, (10.22), (10.20), and (10.23).

Taking dimensions in (10.18), we deduce that |G| = dimL(G) =

Z@eadﬂz'
From Lemma 10.2.10 and Lemma 10.2.12 we have that the functions

ﬁu?.:i,jzm,...,dg,eeé‘
G

constitute an orthonormal system in L(G). This system is indeed com-
plete since its cardinality Y,z d? = |G| equals the dimension of the
space L(G). O

mg (x*, x%) = x"(16) = dp. (10.23)
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The structure of the Peter-Weyl theorem will be examined further in Sec-
tions 10.3 and 10.5. For future reference, it is convenient to state explicitly
the orthogonality relations for matrix coefficients in the following form, which
immediately follows from Lemma 10.2.10 and Lemma 10.2.12. Let (8, W) and
(p, U) be two irreducible G-representations. Then

G|
(Wl up ) = d—eag_,,a,,ha_,;k. (10.24)

We now present a useful formula for irreducible characters.

Proposition 10.2.26 Ler (6, W) € G, w € W beavector ofnorm 1, and ¢(g) =
(B(g)w, w) the diagonal matrix coefficient associated with w. Then

d, _
X' (g) = E*’ > (h'gh) (10.25)
heG
forall g € G.
Proof. Let {v; = w, va, ..., v4,} be an orthonormal basis of W and let uf{j be

as in (10.14) (note that ¢ = ”?,1)- Then

Y ot gh) =Y (6(2)0(h)or, 0()v,)

heG heG

dy
(by Lemma 10.2.13.(i))) = Z Zu‘) [ () (h)(6(9)vi, ;)
i,j=1 heG

(by (10.24) and (10.15)) = ?X"(g). O
0

Example 10.2.27 Let A be a finite Abelian group. In Corollary 10.2.7 we have
shown that its irreducible representations coincide with its characters. Now
we can also deduce that A has exactly |A| distinct characters: this agrees with
Proposition 2.3.3.

Example 10.2.28 Let D, = {(a, b : a" = b*> = 1, bab = a~') denote the dihe-
dral group of degree n, i.e. the group of isometries of a regular polygon with
n vertices. Recall that |D,| = 2n and that any element of D, may be written
uniquely in the form a*b, where 0 < k < n — 1 and € € {0, 1}. Moreover, the
product of two elements is given by the following rule:

a"kpite if s =1

h1é ke he1d kpd\p.0+€
a'b’ - -ab® =d"B°a" b))’ =
( ) a" ke if6=0
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forall h, k=0,1,...,n— 1 and 6, € € {0, 1}. Alternatively, D, may be seen
as the group of matrices generated by

w 0 0 1
a_<0 w_1> and b_<1 O)’

where @ = ¢*/" = cos 27” + isin 27” (compare with the representation p;
below).

In the following, we determine b\n . We consider first the case when n is even.
We have four one-dimensional representations (we identify these with the cor-

responding characters), x5 i=1,2,3,4,defined by
x (@) =1
x*(d'b) = (=1)°
X @b = (=1
2@ b = (—1)F

(10.26)

foralle =0,1and k=0, 1,...,n — 1. Setting @ = €>*"/" as above, we also

define the two-dimensional representations o, t = 0, 1, ..., n, by setting

o* 0 0 o*
Pt(ak) = < 0 wtk) and Pt(akb) = <wtk 0 )

forallk=0,1,...,n—1.
Exercise 10.2.29

(1) Show that each p; is indeed a representation.

(2) Show that p, ~ p,_;.

(3) Show that x? = x!' + x2and x”” = x> + x*.

(4) Show that p,, with 1 <¢ < ’% — 1, are pairwise non-equivalent irre-

ducible representations in two different ways, namely:

(i) by inspecting the invariant subspaces and intertwining operators;
(i1) by computing the characters and their inner products.

(5) Conclude that x', x2, x3, x*, p;, with 1 <t < n/2, constitute a com-

plete list of irreducible representations of D,,.

Solution of (2): pu—(g) = pi(b)pi(8)p;(b) for all g € D,.

Exercise 10.2.30 Determine a complete list of irreducible representations of
D,, in the case n is odd.
n—1

Solution: D, consists of x', x% and p, withr = 1,2, ..., =,

Exercise 10.2.31 The generalized quaternion group is Q, = {a,b: b* =
a",b~'ab = a~'). Note that Q, is the classical quaternionic group.
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(1) Showthatd?> = a™",b* = 1,a*" = 1 and that every element g € Q,, may
be written in the form g = a'bt with0 <k <2n—land h € {0, 1}.

(2) Show that Q, may be seen as the group of matrices generated by a =
(‘5 wa ) and b = (? ’01 ), where w = ¢™/". Deduce that the expression
g = a*b" is unique and that Q,, has 4n elements.

(3) Show that if n is even then Q,/(a?) = C, x C, while if n is odd then
On/ (@) = Gy,

(4) Denote by 7: Q, — Q,/{a®) the canonical quotient map. For every
v oe Qj/_(a\z) set ¥ = ¥ o : this is called the inflation of Y (cf. Sec-
tion 11.6). Show that the inflations ¥, with v € Qm), are four one-
dimensional, non-equivalent representations of Q,,.

(5) Fort=0,1,...,n—1set

pu(a) = (‘g wo_,) and pf(b>=<? (_0”). (10.27)

Show that (10.27) define n — 1 irreducible, non-equivalent representa-
tions of 9, which, added to the four one-dimensional representations
determined in (4), form a complete list for Q,.

10.3 The group algebra and the Fourier transform

An (associative) algebra over C (or complex algebra) is a vector space A over
C endowed with a multiplication operation, the product, such that A is a ring
with respect to the sum and the product, and the following associative law holds
for the product and multiplication by a scalar:

a(AB) = (¢A)B = A(aB)

for all @ € C and A, B € A. The basic example is End(V'), where V is a finite-
dimensional vector space over C, with the usual operations of sum and product
of operators, and of multiplication by scalars.

Let A be a complex algebra. A subalgebra of A is a subspace 5 < A, which
is closed under multiplication. For instance, if V is a finite-dimensional vector
space over C, fix a basis B = {vy, v2, ..., 04} of V. An operator T € End(V)

is called B-diagonal provided there exist scalars ay, «y, . .., g € C such that
To; =ov; foralli=1,2,...,d. Then the B-diagonal operators constitute a
subalgebra of End(V).

An involution in A is a bijective map A — A* such that
o« (A=A

o (@A + BB)* = wA* + BB*
o (AB)* = B*A* (anti-multiplicative property)
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for all «, 8 € C and A, B € A. For instance, if A = End(V), then the map
T — T* (where T* is the adjoint of T) is an involution on A; similarly for
Endg(V) (see Proposition 10.2.2). An algebra with involution is called an invo-
lutive algebra or x-algebra. An element A in a *-algebra A such that A = A* is
called self-adjoint.

A is unital if it has a unit, that is, there exists an element I € A such that
Al = IA = A for all A € A. Note that a unit is necessarily unique and self-
adjoint. Indeed, if 7 and I’ are units in A, then I = II' = I'. Moreover, if
Ae A

and, similarly, AI* = A. Thus I = I*, by uniqueness of the unit.

The dimension of A is simply its dimension as a complex vector space.

In the following, we shall consider only finite-dimensional, unital, involutive,
complex algebras.

The algebra A is commutative (or Abelian) if it is commutative as a ring,
namely if AB = BA for all A, B € A. A basic example is the following: let J be
a finite set and denote by C’ the space of all functions f: J — C with multi-
plication and involution given respectively by:

(AL = A AG) and () = (), (10.28)

forall f, fi, f» € C’ and j € J. Clearly, C’ is isomorphic to the subalgebra of

B-diagonal operators in End(V') (for any basis B of V and) for any vector space

V with dimV = |J|, as well as to the direct sumC pC P --- @ C.
—_—

|J|—times

The center Z(A) of A is the commutative subalgebra

Z(A)={Be A:AB=BAforall A € A}.

The direct sum A @ B of two algebras A, B is the vector space direct sum
with the product defined componentwise: (ay, by)(az, by) = (aja,, bi1b,), for
allay,a; € A, by, by € B.

Let A; and A, be two involutive algebras and let ¢: A; — A; be a map.
One says that ¢ is a x-homomorphism provided that

e ¢(aA + BB) = ap(A) + Bod(B)  (linearity)
e p(AB) = ¢p(A)p(B)  (multiplicative property)
e p(A*) = [¢p(A)]"  (preservation of involution)
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for all @, 8 € C and A, B € A;. If in addition ¢ is a bijection, then it is
called a x-isomorphism between A; and A, and one says that A; and A,
are x-isomorphic. On the other hand, ¢ is a x-anti-homomorphism if the
multiplicative property is replaced by

¢(AB) = ¢(B)p(A) (anti-multiplicative property)

for all A, B € A,. Finally, ¢ is a x-anti-isomorphism if it is a bijective x-anti-
homomorphism. If such a x-anti-isomorphism exists, then one says that .4; and
A, are x-anti-isomorphic.

Let G be a finite group. Recall that L(G) denotes the vector space of all
functions f: G — C.

Definition 10.3.1 Let f, fi, f> € L(G). We define the convolution of f; and f,
and the adjoint of f as the functions f; x f» € L(G) and f* € L(G) given by
setting

LAx Al = fitgh™)fith) (10.29)
heG
and
f@=rfeh (10.30)

for all g € G, respectively.

Note that the convolution (10.29) may be also written in the following equiv-
alent ways:

Ui fal@) =) fils)fa()

s,teGist=g

=Y AWAKTY =" iliah ). (10.31)

heG heG

Proposition 10.3.2 The vector space L(G) endowed with the convolution prod-
uct (10.29) and the involution (10.30) is a unital, involutive algebra, with unit
81, It is called the group algebra of G.

Proof. We leave it as an exercise to prove that the convolution is distributive
with respect to the sum, and that §;,, is the unit.
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Let fi, f2, f3 € L(G) and g € G. Then we have:

LA (o f1@) = Y filgh™)(fa x f3)(h)

heG

=Y filgh™ )™ f3(0)

heG teG

(setting h = st) = Z Zfl(gt_ls_l)fz(s)]%(f)

teG seG

=Y (fix L) V0 = [(fi + f) = ().

teG

This shows associativity of the convolution product. Finally,

U * 1) =Y fi@)f5s™)

seG

=Y fi g HAE)
seG

=[f*flgh)

=[fx Ail"(2),

which shows the anti-multiplicative property of the involution. O

Proposition 10.3.3

(i) Fors,t € Gwe have §5 * §; = 8.
(i) Fors e G, f € L(G)we have: 8;  f = Ag(s)f and f * 8 = pc(s~") f.
(iii) The center Z[L(G)] of the group algebra coincides with the set of all
functions f € L(G) that are constant on each conjugacy class of G, that
is, f(s7'ts) = f(t) foralls,t € G. Such functions are termed central or
class functions.
(iv) L(G) is commutative if and only if G is Abelian.

Proof. Let g, s,t € G and f € L(G).

(i) (8 % 8:)(8) = Djeq 85(8h™ )81 (h) = 83(gt™") = 84 (9)-
(ii)
Gsx Q) =Y 8 f(h') = f(s'g) = [ha()f1()

heG

and similarly (f % 8,)(¢) = f(gs™") = [o6(s~")f1(9)-

(iii) f belongs to the center if and only if f * §; = 6, * f for all s € L(G),
that is if and only if 8, * f * 6,1 = f and this is equivalent to saying
that f is central since, by (ii), 8; * f * 8,-1(¢) = f(s’lts).
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(iv) L(G) is commutative if and only if §; = &5 * 6; = §; * §; = &, for all
s, t € G, that is, if and only if G is Abelian. Alternatively, L(G) is com-
mutative if and only if it coincides with its center, that is, by (iii), if and
only if each conjugacy class consists of one single element, and this is
again equivalent to saying that G is Abelian. O

Exercise 10.3.4 Show that f € L(G)is aclass functionif and only if f(g1g2) =
f(g281) forall g1, g € G.

Given f € L(G) the convolution operator with kernel f is the linear operator
Ty € End(L(G)) defined by setting:

Trf' = f'* f, (10.32)
for all /" € L(G).

Proposition 10.3.5 Ty € Endg(L(G)) for every f € L(G); here, Endg(L(G))
is the commutant (cf. Definition 10.2.1) of the left regular representation of G.
Moreover, the map

L(G) — Endg(L(G))

10.33
f — Ty ( )

is a x-anti-isomorphism of algebras, that is
Tyivp, =TT, and  Tp = (Ty)" (10.34)

forall fy, f>, f € L(G).
Proof. First of all, for f, f' € L(G) and g, gy € G we have:

[Trrc(2)f1(g0) = ([Ac()S'1* ) (g0)
=Y D@/ o) f(h™")

heG

=Y f&  goh)f (")

heG
= [Trf' (g " g0)
= (A1) (80)

so that TrAg(g) = Ag(g)Ty. This shows that 7y € Endg(L(G)). Moreover, if
£ f1, f>» € L(G) then, by associativity of the convolution product,

T (T )= (fxf)x fi=fx(xfi) =T f
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so that T, Ty, = T},+y,. Moreover,

(Trfis Pluey = ) ) fig)f s~ (g)

geG seG
(setting g =ts") = Z Zfl O fs™ s
teG seG
=YY AW ©fEsT
teG seG

= {f1, Ty 2)L(6)»

thatis, (Ty)* = Ty-. We now prove that the map f > T is a bijection by show-
ing that if T € Endg(L(G)), then there exists a unique element f € L(G) such
that 7 = Ty and that, indeed, f = T§,,,. Uniqueness is clear: let fi, f> € L(G)
and suppose that 7y, = Ty,. Then, recalling that §;, is the unit in L(G), we
deduce that fi = 8, % fi = Ty61, = T1,81, = 81, * f» = fo. Finally, if f' €
L(G), then, using (10.11), we have

Tf=T|Y f©r(@s,

geG

(since T € Endg(L(G)) = Zf/(g)kc(g)T510
geG

(by (10.31)) = f"x (Té,). O

‘We now compute the convolution of matrix coefficients and characters. From
now on, for each 6 € G we fix an orthonormal basis {v? cj=1,2,...,dp}in
the representation space Vjy and denote by uf phj=1 2,...,dy, the corre-
sponding matrix coefficients (as in (10.14)).

Proposition 10.3.6 Forall 6,0 € G we have:

0

- _ |G| P
Wi j % Uy = ——80,68j nltj i (10.35)

dg

foralll <i,j<dyand1 < h,k <d,. Moreover,

X’ % x7 =1Gl89.0x". (10.36)
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Proof. For all g € G we have

[ 5 ] (@) = D uf j(gshu (s

seG
dy
(by (i) and (iii) in Proposition 10.2.13) = Z u?j(g) Z uz.j(s)ugqh(s)
=1 s€G
< Gl
(by (10.24)) =3 uy()80.08048-—
0
=1
|G|

= d—59 o8t} ().

The convolutional property of the characters (10.36) then follows from (10.15)
and (10.35). O

Definition 10.3.7 Let f € L(G) and (8, Wy) € G. The Fourier transform of f
with respect to 0 is the linear operator f(0) € End(W,) defined by setting

F6)=>" f(20(9.

geG

Proposition 10.3.8 Let fi, f>, f € L(G) and 6 € G. Then we have

Fi# h(0) = H1(0)/(0) (10.37)
and
F46) = fo). (10.38)

Proof. We have

AxhO)=> [Z f (ghl)fz(h):| 0(g)

geG LheG

=> "> filgh™) om0 (gh™" )0 ()

geG heG

=Y "1 AilghHeeh™h) | Lo h)

heG | geG

= 11(6)/(6).
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This shows (10.37). For v, w € Wy we have:

(Fr@w. w) =" Flg)B(gw. w)

geG

= <v, Zf(g“)e<g>*w>

geG

= <u, > fgHog Hw

geG

e

= (v, FO)w)
and (10.38) follows as well. O

Proposition 10.3.9 Let f € Z(L(G)) and (6, Wy) € G. Then the Fourier trans-
form of f with respect to 0 is a scalar multiple of the identity, more precisely,

F(O) =y with = Zf(g)x ®= ~{r57).

Proof. Observe that

0F O =D FOOMO") =" Fio(ghg™)

heG heG
(by Proposition 10.3.3.(iii) = > f(ghg 6 (shg™") = F(0),
heG

so that f(6) € Endg(W,). By Corollary 10.2.4 we deduce that f(0) = Aly.
Computing the trace, we obtain

Ady = TeGul) = Te[F0)) = Y " () = (£ 57).
heG

which yields the desired value of A. g

Theorem 10.3.10 (Fourier’s inversion formula) For f € L(G) one has

1®) =G ZdaTr [0(s)7®)] (10.39)

forall g € G. In particular, if f1, f» € L(G) satisfy the condition ﬁ(@) = ]";(9)
for every 6 € G, then one has f; = f>.

Proof. Let {v{, 03, ..., 0]} be an orthonormal basis for Wy for all 6 € G. By

«/%9

virtue of Theorem 10.2.25, the corresponding (normalized) coefficients Gl Ui j»
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Lhj=1,2,...,dyp,0 € 5 constitute an orthonormal basis in L(G). As a conse-
quence, also thelr conjugates *‘/; 9 constitute an orthonormal basis and thus

for every function f € L(G) we have

@ =15 L35, Z( ), (10.40)

0eG  ij=1

for all g € G. Now, recalling that f(@) = dec f(2)0(g) we have

(foul )= floul ()= F©0(0].vf) = (O] v7) (10.41)

geG geG
and
dg o dg
S ()l @ = D2 (7o, of) wf ocewt)
i, j=1 i,j=1
dy
= {F©Onl. o)
=1
dy
=20 Hi O] vf)
j=1
=Tr[6(g)f(6)].
Thus, replacing this expression in (10.40), we deduce (10.39). U

Exercise 10.3.11 Deduce the Fourier inversion formula (10.39) from (10.19),
first in the case f = &,, g € G, and then, using linearity, in the general case (cf.
(10.11)).

The Fourier inversion theorem shows that every function in L(G) is uniquely
determined by its Fourier transforms f(@ ), 6 € G. Note that although the
expression of f, with respect to an orthonormal system made up of matrix coef-
ficients is not unique but depends on the choice of an orthonormal basis in each
representation space Wy, 6 € 6, the Fourier inversion formula, however, does
not depend on the choice of such bases.

Finally, from this analysis we deduce that the algebra L(G) is isomorphic to a
direct sum of matrix algebras, namely, L(G) = &, g, (C), where My, (C) =
End(W,) is the algebra of dy-by-dy matrices over C. In order to formulate more
explicitly the properties of the Fourier transform as a linear map, we define the
complex algebra

C(G) = P End(Wp).

0eG
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Clearly, C(a) is a direct sum of algebras and every element 7' € C(G) will be
written in the form T = @, g7 (6), where T'(0) € End(Wy) foreach 6 € G. It
is also involutive with respect to the map T +— T* = @,.5T(6)".

Corollary 10.3.12 The Fourier transform

L(G)—>c@
f—  f

is a x-isomorphism of x-algebras and its inverse is given by the map (inverse
Fourier transform)

C(G) — L(G)
T — TV,

where TV (g) = & X4 deTr [0(g~ DT (0)].
Theorem 10.3.13 The Fourier inversion formula for a central function f has
the form

1 -
f Z(fa X e x’-

|G| —~
0eG
In particular:

(i) the characters x%, 6 € G, constitute an orthogonal basis for the sub-
space of central functions;
(i1) |G| equals the number of conjugacy classes in G.

Proof. The inversion formula follows from Proposition 10.3.9, taking into
account that Tro(g™!) = X"_Qg) for all g € G. Note also that from Proposition
10.2.15 and Proposition 10.2.17 it follows that the characters of irreducible rep-
resentations form an orthogonal system in the space of central functions; the
inversion formula ensures that it is also complete. Since the dimension of the
space of central functions is equal to the number of conjugacy classes (recall
Proposition 10.3.3.(iii)), this dimension must also equal the number of irre-
ducible representations of G. g

Corollary 10.3.14 (Dual orthogonality relations for characters) Let L C G
be a set of representatives for the conjugacy classes of G and denote by C(t) =
{g7"tg : g € G} the conjugacy class of t € L. Then

— |G|
2: o (1) = —68, , 10.42
HEAX @)x°(") |C(t)| s ( )

forallt,t' € L.
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Proof. We begin by observing that (10.16) may be rewritten in the form

IC)| Th) =5
§_|G| X @)x”@) 0.6,

thus showing that the square (recall that |£| = |6|) matrix U = (Ue’t)ﬁeafeﬁ’

with Uy, = 'C(’ X 9(t), is unitary. Therefore
ICtD)l IC(t)| ——
—_— 1) | —=x%t) =34
Z‘/ Gl x () Gl x () =81
0eG
and the statement follows. O

Exercise 10.3.15 Deduce (10.42) from the dual orthogonality relations for
matrix coefficients (cf. Lemma 10.2.13).

Exercise 10.3.16 Let G be a finite group.

(1) Use Theorem 10.3.13 to prove that G is Abelian if and only if its irre-
ducible representations are all one-dimensional.

(2) More generally, prove that if G contains an Abelian subgroup A, then
dy < |G/A| forall @ € G.

Solution of (2): Let (0,V) € G. Consider the restriction (Res 0,V) and let
W <V be a nontrivial Res AQ -irreducible subspace. By (1) we have that W is
one-dimensional. Set H = {g € G : 6(g)W C W} and denote by 7 C G acom-
plete set of representatives for the left cosets of H in G, so that G = [ [, tH.
Clearly A < H,0(g)W € {0(t)W :t € T} forall g € G, and dimf ()W = 1 for
allt € 7. Since, by irreducibility, V = @&,c70(r)W, we deduce thatdy = |T| =
IG/H| < |G/A].

Theorem 10.3.17 (Plancherel formula) For all fi, f> € L(G) we have:

(fi. P = G Z dyTr [f10)f2(6)] . (10.43)

0eG
Proof. From Theorem 10.2.25.(iii) we deduce that

dy

{(fi. fa) = Z i Z(fl, ,J>< ,j,f2>

OeG t/ 1


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.011
https://www.cambridge.org/core

372 Representation theory of finite groups
and then, applying (10.41), we get

i, o) = |G|ngz A@W, of) - of, o) =

geG  iLj=1
dT 0 0
|G|£ ST [£10)/0)1]. .

10.4 Group actions and permutation characters

In the present section we suppose that the finite group G acts on a finite set X.
We recall that this means that we have a map

GxX — X
(g,x) — gx

such that

o for each g € G the map x — gx is a bijection (a permutation) of X, that we
denote by 7 (g);

o the map g — 7 (g) is a homomorphism between G and Sym(X), the group of
all permutations of X.

This is equivalent to saying that (g;g2)x = g;(g2x) and lgx = x so that, in
particular, x — g~ 'x is the inverse permutation 7 (g)~', for all g;, g» € G and
x € X. We usually call gx the g-image of x.

For x € X denote by Stabg(x) = {g € G : gx = x} (or G,) and Orbg(x) =
{gx : g € G} (or Gx) the stabilizer and the G-orbit of x. It is easy to see that
the orbits form a partition of X (see Exercise 10.4.1); the action is transitive
if there is a single orbit, that is Orbg(x) = X (and this clearly holds for all
x € X). Equivalently, it is transitive if and only if for all x;, x, € X there exists
g € G such that gx; = x,. If G acts transitively on X we also say that X is a
(homogeneous) G-space.

Exercise 10.4.1 Let X be a G-space.

(1) Show that Stabg(gx) = gStabg(x)g~!, forallg € G and x € X.

(2) Show that for x, x' € X, the relation x ~ x" if x and x’ belong to the
same G-orbit is an equivalence relation on X, so that the G-orbits on X
constitute the corresponding partition of X.

Lemma 10.4.2 Let X be a G-space. Then

|G| = |Stabg(x)| - |Orbg(x)| (10.44)
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for all x € X. Moreover,

|— Z |Stabg(x)| = number of G-orbits in X.

xeX

Proof. Let x € X and consider the map ¢: G — Orbg(x) that maps g to gx.
By definition it is surjective; moreover one has ¢~!(x) = Stabs(x) and, more
generally, ¢~ '(gx) = {gk : k € Stabg(x)} = gStabg(x) so that, in particular,
o~ '(xX)| = |¢p~ " (x)| = |Stabg(x)| for all X' € Orbg(x). Thus ¢ is a surjective
|Stabg (x)|-to-one map and (10.44) follows. Moreover, if X;, X, . . ., Xj, are the
orbits of G on X then

|Stabg(x)| = — |Stabg (x)]
iy LYY

xeX i=1 xeX;

G|
by (10.44 =
(by (10.44)) |GIZZ|Xi|

i=1 xeX;
h
Z Xi|
= h. O

Example 10.4.3 Let X be a G-space. As in Section 2.1, let L(X) denote the
vector space of all complex valued functions defined on X endowed with the

inner product defined by (f1, f2)rx) = erx f1(x) fa(x), for all fi, f» € L(X).
The permutation representation of G on X is the G-representation (A, L(X))

defined by

(L) f](x) = f(g ')

for all f € L(X), g € G and x € X. As in Example 10.1.8 (which is actually a
particular case of the present construction), it is easy to check that this is a uni-
tary representation and that the Dirac functions §,, x € X, form an orthonormal
basis (now, §,(x) = 1 and §,(y) = 0 if y # x). Moreover, A(g)d; = &g for all
geG.xeX,and f =Y\ f(x)5, for all f € L(X). Let now X = [["_, X;
be the decomposition of X into G-orbits. Then

h
LX) = P Lx;) (10.45)

is clearly a direct sum decomposition into G-invariant subspaces. Indeed, any
f € L(X) may be written in the form f = Z?:l fj» where f; € L(X) is defined
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by setting
fix) ifxeX;
fix) = ' (10.46)
! 0 otherwise,
forall j=1,2,...,h,sothat f; may be naturally identified with a function in

L(X;). Moreover, (10.46) implies G-invariance of the decomposition (10.45).
For this reason, it is customary, in representation theory, to consider only tran-
sitive actions (that is, the case 7 = 1). Note also that even in this case, a permu-
tation representation on a set X with more than one element is not irreducible
because the (|X| — 1)-dimensional space W, = {f € L(X) : ), f(x) = 0} is
always G-invariant: if f € W and g € G then

Y M@fI =Y flg'n=> f0)=0

xeX xeX yeX

so that A(g)f € W,. Note also that, as in Section 2.1, we have the orthogonal
decomposition L(X) = Wy @ W;, where Wy = {f € L(X) : f constant} = Wll.
More explicitly, for any f € L(X) we have

1 1
f= me(X)Jr [f— me(x)}

xeX xeX

where the first summand (the mean value) belongs to W, and the second one
to W. Another important consequence of transitivity is the following: the triv-
ial representation of G is contained in L(X) with multiplicity exactly one and
coincides with Wj. Indeed, if A(g)f = f for all g € G then transitivity implies
that f is constant (in general, the multiplicity of the trivial representation in
(%, L(X)) equals the number of G-orbits). In Exercise 10.4.16 we will give a
necessary and sufficient condition for the irreducibility of W;.

Example 10.4.4 Let G = S, be the symmetric group of degree n (cf. Example
10.1.10). The natural permutation representation of S, is n-dimensional rep-
resentation constructed as in Example 10.4.3, using the natural action of S, on
X =1,2,...,n. See also Exercise 10.4.16.

Example 10.4.5 (The affine group over IF,) Let F, be the finite field withg =
p" elements, where p is a prime number and m > 1 (see Chapter 6). The (gen-
eral) affine group (of degree one) over I is the group of matrices

AFf(F,) = {(g Il’) cacFibe E,}.
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The terminology is due to the fact that Aff(F,) acts (transitively: this is an

easy exercise) on F, = { <)1C> 1x € Fq} by multiplication

6)6-C1)

and the maps x — ax + b (with a € I}, b € IF,)) are the affine transformations
of I,. For this reason, one often also refers to Aff(IF,) as to the finite ax + b
group.

This defines a permutation representation of Aff(IF,), that will be examined
in Exercise 10.4.7 and Exercise 10.4.16. In Section 12.1 we shall fully describe
all irreducible representations of Aff(IF,).

Consider the permutation representation of G on L(X) defined in Example
10.4.3. The corresponding character x* is called the permutation character of
the action of G on X. In the following, we prove a basic formula for x*.

Proposition 10.4.6 (Fixed point character formula) Ler g€ G. Then we
have

X" (@ =l{xeX:gx=x}, (10.47)
that is, x*(g) equals the number of points in X that are fixed by g.

Proof. Recall that the set {5, : x € X} is an orthonormal basis in L(X ) and there-
fore

XM =D (@8, )iy = Y (8er )y, -
xeX xeX
This clearly counts the points in X that are fixed by g (compare with (10.21),
which is just a special case. U

Another formula for x*, in the case of a transitive permutation representa-
tion, will be given in Corollary 11.1.14.

Example 10.4.7 Consider the permutation representation A of the finite affine
group Aff(IF,) (cf. Example 10.4.5). The corresponding permutation character
x* is given by

1 ifa+#1

b
ﬂ<gl>= g ifa=1landb=0

0 otherwise
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for all a € F) and b € IFy. Indeed, solving the equation ax + b = x, that is,
(a— Dx+ b =0, we find:

e if @ # 1 there is a unique solution given by x = —%;

e if a =1 and b = 0 then each x € [, is a solution (the identity fixes every
point);
e if a = 1 and b # O there are no solutions.

The following lemma is usually called “the Burnside lemma,” but it was
known already to Cauchy (see [21, 121, 169]).

Lemma 10.4.8 (Burnside’s lemma) Let G be a finite group acting on a finite
set X and denote by (A, L(X)) the corresponding permutation representation.
Then we have:

Gl Z x*(g) = number of G-orbits on X.
geG

Proof. We clearly have
Gl Zx ® = —(x" 16), 6 (10.48)

where 1 = x*, the character of the trivial representation of G. By Proposition
10.2.18, the right hand side of (10.48) equals the multiplicity of the trivial rep-
resentation as a sub-representation of the permutation representation . Since
(cf. Example 10.4.3) L(X)¢ = EBf’:](CIX,, where 1y, denotes the characteristic
function of the orbit X;, i = 1, 2, ..., h, and (cf. Example 10.2.21) the multi-
plicity of the trivial representation in any G-representation V equals the dimen-
sion of the subspace V¢ of G-invariant vectors, the right hand side of (10.48)
is therefore equal to dim(L(X)®) = h, the number of G-orbits on X. ]

Exercise 10.4.9 Deduce Burnside’s Lemma from Lemma 10.4.2 and Proposi-
tion 10.4.6.

From now on, we assume that G acts transitively on X, that K < G is the sta-
bilizer of a fixed element xy € X, and that 7 is a complete set of representatives
for the left cosets of K in G, that is,

G=]]:« (10.49)
teT
Then the map
v: G/K—> X (10.50)

8K > gxo,
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where G/K is the set of all left cosets of K in G, is a bijection. Indeed, for
g1, & € G we have g1xo = g2 if and only if gl_lgz € K, thatis, g1 K = g,K.
Define an action of G on G/K by setting g(goK) = (ggo)K. It is easy to see
that the map (10.50) is G-equivariant (or, that the G-spaces X and G/K are
isomorphic), that is,

g¥(goK) = W (g(goK)) Vg g0 €G.

In other words, every transitive G-space is isomorphic to a G-space G/K (where
K, as above, is the stabilizer of a point in X).

Exercise 10.4.10

(1) Let H, K < G be two subgroups. Show that G/H and G/K are isomor-
phic as G-spaces if and only if H and K are conjugate in G (there exists
g € Gsuch that H = g 'Kg).

(2) Let X be a transitive G-space. Let xy, x;, € X and denote by K, K’ < G
the corresponding stabilizers. Using Exercise 10.4.1 and (1) show that
the G-spaces G/K and G/K’ are isomorphic.

Given an action of a group G on a set X, the corresponding diagonal action

of G on X x X is defined by setting
g(x1, x2) = (gx1, 8%2), € G, x1,x2 € X.
We denote by (A%, L(X x X)) the corresponding permutation representation.
Proposition 10.4.11 Let X be a G-space and denote by (\,L(X)) and
(A2, L(X x X)) the corresponding permutation representations. Then
2
X =M

Proof. Let g € G. From the fixed point character formula (10.47) we deduce
that

(@) = llxeX : gx = x)?
={x1 € X :gx1 =x1} - [{x2 € X : gro = x2}
= [{(r, 1) € X X X 2 g(x1, x2) = (x1, x2)}]
(again by (10.47)) = x* (g). a
Proposition 10.4.12 Let X be a G-space and denote, as usual, by K < G
the stabilizer of a fixed point xo € X. Let X = Qo[ 1] -] 2 denote

the decomposition of X into K-orbits (with Qo = {xy}) and choose x; € 2;,
i=1,2,...,n. Then the sets

G(xi, x0) = {(gxi, gx0) : g € G} € X x X,

i=0,1,2,...,n, are the orbits of the diagonal action of G on X x X.
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Proof. First of all, note that if (x,y) € X x X then there exist g € G, k € K,
andi € {0, 1, ..., n} such that gxo = y (G is transitive on X) and gkx; = x (let
Kx; = ; be the K-orbit containing g~'x). Therefore,

(x,y) = (gkx;, gxo) = (gkx;, gkxo) € G(x;, xp).

This shows that

n
X x X =|_JG(xi, xo). (10.51)
i=0
Itis also easy to show that G(x;, xo) N G(x;, xo) = D if i # j:indeedif g(, g» €
G satisfy gix; = gox; and g1xp = goxo then, necessarily, g;l g1 € K, and this
forces i = j. Therefore (10.51) is in fact a disjoint union. ]

Conversely, we may rephrase the above result as follows.

Corollary 10.4.13 Let © be a G-orbit on X x X. Then the set Q = {x € X :
(x, x0) € ®} is an orbit of K on X and the map ® — 2 is a bijection between
the set of orbits of G on X x X (with the diagonal action) and those of K on X.

The following result was surely known to Schur and possibly even to Frobe-
nius. Since a standard reference for it is the book by Wielandt [167], for conve-
nience we refer to it as to “Wielandt’s lemma.” Another proof will be indicated
in Exercise 11.4.9.

Lemma 10.4.14 (Wielandt) Letr X be a G-space. Suppose that L(X) =
Gaf’: omiVi is the decomposition of L(X) into irreducible G-representations,
where m; denotes the multiplicity of V;. Then

N

Z ml2 =number of G-orbits on X x X =number of K-orbits on X. (10.52)
i=0
Proof. Denote again by x* the permutation character associated with the G-
action on X. From Corollary 10.2.22 we deduce that:

h

1
2 _
;mi = @(XA’ XA)L(G)

- 1
(x* = " by Proposition 10.4.6) = - > ox?
geG

1
(by Proposition 104.11) = > %M (@

geG
(by Lemma 10.4.8) = number of G-orbits on X x X

(by Corollary 10.4.13) = number of K-orbits on X.
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In other words, by Proposition 10.2.18,
I, 1 2 | S
— X" x =—<x ,lc>=—<x ,lc>
Gl | ) 1G] () |G
is equal to the multiplicity of the trivial representation in the permutation rep-
resentation of G on X x X. U

The following is a slight but useful generalization of the previous result.

Exercise 10.4.15 Let G act transitively on two finite sets X = G/K and ¥ =
G/H. Define the diagonal action of Gon X x Y by setting, forallx e X, y € Y,
andge G

glx, y) = (gx, gy).

(1) Show that the number of G-orbits on X x Y equals the number of H-
orbits on X, which in turn equals the number of K-orbits on Y.

(2) Let L(X) = ®jeym;V; and L(Y) = @ jeyn;V; denote the decomposition
of the permutation representations L(X ) and L(Y) into irreducible rep-
resentations. Denoting by I N J the set of indices corresponding to com-
mon (equivalent) sub-representations, show that the number of G-orbits
on X x Y equals the sum ) _,_,~, mn;.

An action of G on X is called doubly transitive if for all (x1, x2), (y1,¥2) €
X x X)\ {(x, x) : x € X} there exists g € G such that gx; = y; fori = 1, 2.

Exercise 10.4.16 Suppose that G acts transitively on X.

(1) Prove that G is doubly transitive on X if and only if K is transitive on
X\ {xo0}.

(2) Let Wy and W; be as in Example 10.4.3. Prove that L(X) = W, & W; is
the decomposition of the permutation representation into irreducibles if
and only if G acts doubly transitively on X.

(3) Prove that if the action of G on X = G/K is doubly transitive, then K is

a maximal subgroup (K < H < G infers H = G).
Solution. Suppose that K < H < Gandlethe H\ K and g€ G\ K.
By double transitivity applied to (K, hK), (K, gK) € (X x X) \ {(x, x) :
x € X}, there exists ¢ € G such that ¢K = K and ¢hK = gK. But then
g € K, gh € H and therefore g € H. This shows that H = G.

(4) Show that the action of S, on {1, 2, ..., n} is doubly transitive.

(5) Show that the action of Aff(IF,) on F, defined in Example 10.4.5 is
doubly transitive. Deduce that the corresponding permutation represen-
tation decomposes into the sum of the trivial representation and of a
(¢ — 1)-dimensional, irreducible representation. See also Section 12.1.
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Exercise 10.4.17 Consider the dihedral group D, in Example 10.2.28 and
define an action of D,, on the additive cyclic group Z, by setting ah = h + 1
and bh = —h for all h € Z,. Show that this coincides with the natural action
of D, on the regular polygon with n sides. Also show that the corresponding
permutation representation A decomposes as follows:

Xo® x3 @ ( ;5-:,1 pj) if n is even
A=
-1
10 ® (B2, 1) if 1 is odd.

10.5 Conjugate representations and tensor products

The present section is devoted to two basic constructions in linear and multi-
linear algebra, namely dual spaces and tensor products, in the framework of the
representation theory of finite groups. We recall all basic notions but only for
finite dimensional, complex unitary spaces.

Let V be a finite dimensional complex vector spaces. The dual V' of V is
the space of all linear functionals f: V — C. If V is unitary, then the Riesz
representation theorem ensures that for each f € V’ there exists a unique vector
&(f) € V such that:

f(0) = (v, £(f)), forallv € V. (10.53)

The Riesz map & = &y : V' — V is anti-linear, i.e. £(af) + Bf2) = ¢&(f1) +
BE(f>), for all a, B € C and fi, f» € V', and bijective. In V/ we introduce an
inner product by setting, for all f; and f, € V’,

(ft, Lhv = (), E(fD)v. (10.54)
Thus, for f € V' and v € V one has
f)= (. £y = (f.§ " )

which shows that V" = (V’)/, the bi-dual of V, is isometrically identified with
V by means of £,

Definition 10.5.1 Let G be a finite group and (p, V) a unitary representation
of G. We define the adjoint or conjugate representation (p', V') of (p, V) by
setting, forall f e V,v e Vandge G

[0'(@f1) = flp(g~ o], (10.55)
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It is easy to check that p’ is a linear representation of G and p’ is irreducible
if and only if p is irreducible. This is an immediate consequence of the next
proposition.

Proposition 10.5.2 For all g € G we have:
p'(g) =&""p(gk. (10.56)
Proof. Forall g€ G,v € V, and f € V' we have:

(0, E[0"(f]) = [0"(@f1() by (10.53)
= flp(g™ "] by (10.55)
= (p(g v, £(f)) by (10.53)
= (v, p(QIEN])

so that £ p'(g) = p(g)§. =

Remark 10.5.3 Note that, despite (10.56), in general p’ # p: recall that the
map & is anti-linear! However, the following result holds true (modulo the iden-
tification of V” and V).

Corollary 10.5.4 The double adjoint (p’) coincides with p.
Proof. We first observe that

& = (&) (10.57)
Thus, by applying Proposition 10.5.2 twice and (10.57), we obtain

(P (9) =&, 0 (R = EvEy ' p(@vE, " = p(g)

forall g € G. U
We now fix an orthonormal basis {vy, vs,...,04} of V and denote by
{f1, f>, ..., fa} the orthonormal basis in V' which is dual to {0y, v, ..., v4},

that is, such that fi(v;) = §;; (or, equivalently, f; = £71(vy)), for all i, j =
1,2,....d.

Proposition 10.5.5 The matrix coefficients u; (8 of p" with respect to the dual
basis {f1, f2, ..., fi} are the conjugates of those of p, in fomule:

u; ;(8) = u; ;(g) (10.58)

forallge Gandi, j=1,2,...,d.
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Proof. Keeping in mind (10.14), we have

u; ;(g) = (0" (& f fidv

(by (10.54)) = (£(f), &lp' (@) fiDv
(since £(f;) = v; and by (10.56)) = (v;, p(8)v;)v
= (p(gh}, vi)y
=u; (g
forallge Gandi,j=1,2,...,d. O

Corollary 10.5.6 The character of o’ is the conjugate of the character of p:

x" (&) =x"(g) (10.59)
forall g € G.

For instance, if x* (0 < k < n — 1) is a character of the cyclic group Z, as
in Section 2.2, then the character of the corresponding adjoint representation
oy —k
is x 7~

Exercise 10.5.7 (Fourier transform of a character) Prove that for 6 and o in
G we have x°(0) = 8y 'd—i‘lvg.

Remark 10.5.8 A representation p € G is self-conjugate when p and p’ are
equivalent; it is complex when it is not self-conjugate. By virtue of (10.59), we
may say that p is self-conjugate if and only if x”(g) € R for all g € G, that
is, its character is a real valued function. Similarly, p is complex if and only
if x”(g) € C\ R for some g € G. The class of self-conjugate representations
can be further split into two subclasses (real and quaternionic); we refer to [29,
Section 9.7] for more details.

Now we apply the notion of a conjugate representation to the decomposition
of the group algebra. Suppose that our choice of the elements of the dual G of
G makes it invariant under conjugation: for all 6 € G, also 8’ € G. Using the
notation in Theorem 10.2.25, for each 0 € G we set:

M, = j=12,....dp), i=12,....dy:

M= i=1,2,....ds), j=1,2,....dp;

M=, i j=1,2,... dp).

where (---) indicates C-linear span. Recall also the definition of the left
(respectively right) regular representation in Example 10.1.8.
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Theorem 10.5.9 The following orthogonal decompositions hold:

1) L(G) = 690EGM(9 and each MY is both \g- and pg-invariant;

(i) M? = @d” M? . each M(?’ . I8 pg-invariant and the restriction of pg to
M(’ is equivalent to 0;

(i) M EBd" Mj‘: 7 each Me is Ag-invariant and the restriction of A to
Mg, is eqmvalent to 0.

Proof.

(i) The decomposition L(G) = P, G M? is just the Peter—Weyl theorem
(Theorem 10.2.25); the Ag- and pg-invariance are proved below.
(i) Letg, g1 € Gandi, je {l1,2,...,dy}. Then, by Lemma 10.2.13.(iii),

dy
[pc(uf }1(81) = u j(g18) = D ul (g1 ;(9).

k=1

i.e.
dy
po(ul ;= ul uf (9.
=1

Since, by Lemma 10.2.13.(ii), G(g)v? = Zﬁ 1 Og uk](g) we conclude
that the map 1)0 > uf j»J =1,2,...,dy, extends to an invertible oper-
ator that 1ntertw1nes 6 with pg| M-

(iii) Let g, gy € Gand i, je {1,2,...,dp}. Then, by Lemma 10.2.13.(iii),
Lemma 10.2.13.(i), and (10.58), we have

(@l 1(g1) = u (g g1)
dU

= > ul (g7l (g1)

k=1

d
= Z u/(z,[(g)uz,j(gl)
k=1
dy
=l (e (21),
=1
ie. Ag(g)uf_j = Z" . uﬁ juill(g) Again by Lemma 10.2. 13 (ii) we have

9’(g)1)f7’ = ZZ(’ I l)k uk l(g) and this shows that the map v SN u?l, i=

1,2,...,dy, extends to an invertible operator that intertwines 6’ with
AGlwe - g
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The representation M? is the 0-isotypic component of L(G) (see Definition
10.2.20).

Exercise 10.5.10 Show that the orthogonal projection E: L(G) — M’ is
given by Ey f = ﬁf* x?, forall f € L(G).

We now turn to the second fundamental construction in linear and multi-
linear algebra in the framework of representation theory of finite groups we
alluded to above, namely tensor products. In Section 8.7 we have already given
an elementary introduction to tensor products.

Let then V and W be two finite dimensional, complex, unitary spaces. A map
B: V x W — Cis said to be bi-antilinear provided

B(v + v2, w) = B(vy, w) + B(va, w)
B(w, w, + w;y) = B(v, wy) + B(v, wy)
B(av, Bw) = aBB(, w)
for all vy, v, € V, wy, w; € W, and «, B € C. Clearly, the set of all such bi-
antilinear maps is a complex vector space in a natural way; we denote it by
V @ W and call it the tensor product of V and W.

For v € V and w € W we denote by » ® w the element in V Q) W defined
by

[ @ W], w") = (v, )y (w, W)w

forall o’ € V and w’ € W. Elements of this kind are called simple tensors. Note
that the map

VW — VKW
v, w) — PR W

is bilinear, that is,

(av1 + 0202) ® (Brwy + Bowz)
=a15101 @ wi + o1 fov; @ wr + B2 @ Wi + A2 Br02 ® Wy,

forallo;, B; € C,v; € V,and w; € W, i = 1, 2. We claim that the corresponding
image spans the whole V (X) W. Indeed, if {vi}fv , and {w j}j{L denote two bases

for V and W, respectively, then for all B € V Q) W we clearly have

dy dw

B = ZZB(I),‘, U)j)l)i ® V.

i=1 j=1
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This incidentally shows that the simple tensors v; ® wj, i =1,...,dy and j =
1,...,dw, generate V Q) W. Since these are also linearly independent (exer-
cise), they constitute a basis for V Q) W, so that, in particular, dim(V Q W) =
dim(V) - dim(W).

We now endow V (X W with a scalar product (-, -)y ®w by setting

(01 @ w1, 02 @ W)y @w = (v1, L2)v (w1, W2)w (10.60)

and then extending by linearity. This way, if the bases {v;}%" and {w j}‘{w1 are
orthonormal in V and W, respectively, then so is {v; ® w ,}, 1

44444

Letnow A € End(V) and B € End(W). DefineA @ B € End(V ® W) by set-
ting, forallC e VW,

{[A® BJ(O)} (v, w") = C(A™', B*w")

for all o’ € V and w’ € W, where A* € End(V) and B* € End(W) are the
adjoint operators. For v, v" € V and v, w’ € W we then have

{[A®Bl(v ® w)} (v, w") = [v ® W](A™0', B*w")
= (v, A*0 )y (w, B*w')w
= (Ao, 0")v (Bw, w')w
[(Av)® (Bw)](', w').

This shows that
[A®Bl(v @ w) = (Av) ® (Bw). (10.61)

Lemma 10.5.11 Ler A € End(V) and B € End(W). Then Tr(A® B) =
Tr(A)Tr(B).

Proof. Let {vi}f’;l and {w j}7il be two orthonormal bases in V and W, respec-
tively. Then

TA®B)= Y  ([A®BIw:®w)), v ®w))ygw

i=1,..., dv
Jj=1,....dw
(by (10.61)) = > ((Av) ® (Bw)),v; ® wj)y gw
i=1,....dy
Jj=1,....dw
(by (10.60)) = Z (Av;, i)y (Bwj, wj)w
i=1,..., dy
j=1 ..... dW

= Tr(A)Tr(B). (]
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Exercise 10.5.12
(1) Show that the bilinear map

P:VXW>VRW

b, w)—> v w

is universal in the sense that if Z is another complex vector space
and ¥ : V x W — Z is bilinear, then there exists a unique linear map
0: VW — Z such that (v ® w) = ¢(v, w), that is, such that the
diagram

VxW X4

is commutative (i.e. ¥ = 6 o ¢).

(2) Show that the above universal property characterizes the tensor product:
let U be a complex vector space and let ¢ : V. x W — U be a bilinear
map such that
@ vV xW)={y@,w):v eV, we W} generates U;

(b) for any complex vector space Z and any bilinearmap7: V x W —
Z there exists a unique linear map 6: U — Z such that 7 =6 o .
Then there exists a linear isomorphism «: V QW — U such that y =

oo .

Exercise 10.5.13 Let V,W, and Z be finite dimensional, complex unitary
spaces. Prove that the following natural isomorphisms hold:

D VRWEZWRV;

2 CRVV;

B) VRWIRZZVRW R Z):

@) VPEWIRZEVRZDPWRZ).

Note that the third isomorphism, namely the associativity of the tensor prod-
uct, may be recursively extended to the tensor product of k vector spaces: we
then denote by Vi @ Vo &) - - - X Vi the set of all k-antilinear maps B: V| x
Vo x---xVy— C.

We now introduce and study two kinds of tensor product of representations.

Definition 10.5.14 Let G, and G, be two finite groups and let (p;, V}) and
(p2, V2) be representations of G| and G, respectively. We define the outer ten-
sor product of p; and p, as the representation (p; X p, Vi Q V») of Gy x G,
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defined by setting

(o1 B 2181 82) = p1(g1) @ pa(g2) € End (Vi R)V2)

forall g; € G;,i=1, 2.
When G; = G, = G the internal tensor product of p; and p, is the G-
representation (o1 ® p2, Vi @ V) defined by setting

(01 ® p21(9) = p1(8) ® pa(g) € End (Vi Q) 2)
forall g € G.

In the above definition, we have used the symbols “X” and “®” to make a dis-
tinction between these two notions of tensor product (compare with [63]). Note
that, however, in both cases the space will be simply denoted by V; Q) V>. More-
over, it is obvious that, modulo the isomorphism between G and G= {(g.9):
g € G} < G x G, the internal tensor product p; ® p; is unitarily equivalent to
the restriction Resgxc(pl X o).

Lemma 10.5.15 Let p; and p; be two representations of two finite groups Gy
and G», respectively, and denote by x"' and x™ their characters. Then, the
character of p1 X p, is given by

X" (g1, g2) = X" (81)x" (g2) (10.62)

for all g1 € Gy and g, € Gy. In particular, if both p; and p, are one—
dimensional, so that they coincide with their characters, then one has that
p1 R oy = xP K xP = x P x, the pointwise product of the characters. When
G1 = G, = G, as the internal tensor product is concerned, (10.62) becomes

X" (g) = x" (@)X (9) (10.63)
forall g € G.

Proof. This follows immediately from Definition 10.2.14 and Lemma 10.5.11.
(]

Theorem 10.5.16 Let G and G, be two finite groups and let 0, € a and 0, €
Gy. Then 6, X 0, is an irreducible representation of Gi X G,. Moreover, if also
o1 € Gyand oy € Gythen6; X 6, ~ 01 X 0y ifand only if 0, = o1 and 6, = 0.

Proof. By Proposition 10.2.17 and Corollary 10.2.23 it suffices to check that
(x®O: oloy jg either |Gy x G| = |G| - |G»| if 0 = 6; and 03 = 6,, or 0
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otherwise. Now we have

(X" By = 3 x "M (e, @) x ™ e (g1, 82)
(81,82)€G1xG

(by Lemma 10.5.15) = ) x"(g)x*(82)x” (§)x*(g2)

81€Gy
826Gy

=Y x"@x @) Y x*(€)x™(2)

81€G) 826G,
_ 01 o1y | 6, oy
= X)X x ™)

Gyl -Gyl if6 =0y and 6, =
(by Proposition 102.17) = 11 -1621 if 0 = and 6, =0

0 otherwise.
O
Corollary 10.5.17 Let G| and G, be two finite groups. Then the map
G] XG2—>G| XG2 (1064)

(91,92) [ 01 &92
is a bijection.

Proof. We first observe that every conjugacy class in G; x G, is the Cartesian
product of a conjugacy class in G| by one in G», and vice versa. Thus, keeping in
mind Theorem 10.3.13, we have that |Gl/>z}2| equals the number of conjugacy
classes in G| x Gj, which in turn equals the product of the numbers of conju-
gacy classes in G| and G, and therefore, again by Theorem 10.3.13, equals
|Z;T| . |@|. Therefore, by the previous theorem, the map (10.64) is indeed a
bijection. Alternatively, it is immediate to check (exercise) that

Y D yge,) =1Gi x Gy

Glea 026(};

and then we may invoke Theorem 10.2.25.(iii). ]

Exercise 10.5.18 Let G (respectively H) be a finite group and let X (respec-
tively Y) be a finite homogenous G-space (respectively H-space). Let A and
 denote the corresponding permutation representations. In Section 8.7 we
showed that the map 8§, ® 8, > (), x € X,y € Y, yields a natural isomor-
phism LX) Q LY) EL(X x Y).

(1) Show that A X u is equivalent to the permutation representation of G x
HonX xY.
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(2) Show that if G = H and X =Y, then the internal tensor product A ®
W is equivalent to the permutation representation associated with the
diagonal action of G on X x X.

By means of the two basic constructions (adjoints and tensor products), we
now reinterpret the decomposition of the group algebra (cf. Theorem 10.5.9).

First of all, we recall that if V is a finite dimensional vector space and V’
denotes its dual, then End(V) = V' @ V. An explicit isomorphism is given by
linearly extending to the whole of V' XV the map

!
V' QV — End(V) (10.65)
f®v — Ty,
where Ty, (w) = f(w)v forallw € V.
Exercise 10.5.19 Fill up all the details relative to (10.65).

Now consider the action of G x G on G given by

(81.82) 8= 8188,

for all g, g1, g2 € G, and the associated (G x G)-permutation representation
(n, L(G)) given by

(g1, g2)f1(8) = f(g,"882),

for all f € L(G) and g, g1, g» € G. Note that, in terms of the left and right

regular representations, we have 1(g1, 82) = A6(81)06(82) = po(g2)ra(g1),
for all g, g» € G. The stabilizer of the point 15 is the diagonal subgroup
G = {(g, g : g € G}, clearly isomorphic to G, and in the present setting (10.50)
yields:

G = (G x G)/G.

Theorem 10.5.20 With the notation as in Theorem 10.5.9, the restriction of n
to M? is equivalent to 0’ X 0. In particular, it is irreducible.

Proof. For f € Wy and v € W; define F/, € L(G) by setting
Fl () = f(6(3)v). (10.66)
for all g € G. Noticing that, foralli, j = 1,2,...,dy and g € G, one has
ul () = (0w, vf)
(by (10.53)) =[&"" ()] (6(2)0})
= F;J(l)?),l)? (g)7
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we deduce that the Fﬁ ,s span the whole of M?. Moreover, if (g1, g&2) € G x G
and g € G, we have

[n(g1, 82)F},1(8) = F}, (g7 " g82)
(by (10.66)) = £ (6(g; " gg2)v)
(by (10.53)) = (0(g; 8820, &(f))
(by (10.56)) = (6(2)0(g2)v. £[6'(g1)f])
= [0'(1)£1(0()0(g2)v)

6
Ey e .00520(8)

so that the surjective map

Wg/@W(; — Me
f®ov |—>Fﬁu

intertwines 6’ Xl 6 with 1| . The irreducibility of 8" X 6 follows from Theorem
10.5.16. O

Recalling Corollary 10.3.12, the Fourier transform may be seen as an iso-
morphism between L(G) and @,z (W) ® Wy), if we identify End(Wp) with
W, ® Wy as in (10.65).

Exercise 10.5.21 Using the notation in (10.65), (10.66), and in Corollary
10.3.12, show that the inverse Fourier transform of a tensor product f @ v €
W Q W, is given by:

forall g € G.

10.6 The commutant of a representation

In this section we study the commutant Endg (V') of a G-representation (p, V).
First of all, we recall some basic facts on projections (see any book on linear
algebra, for instance [91]). Let V be finite dimensional unitary space. A linear
transformation E € End(V) is called a projection if it is idempotent, that is,
E? = E. If the range W = RanE is orthogonal to the null space KerE, we say
that E is an orthogonal projection of V onto W. It is easy to see that a projection
E is orthogonal if and only if it is self-adjoint, that is, E = E*.
Let now (V, p) be a representation of a finite group G and suppose that

7= @mgwg (10.67)
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is the decomposition into irreducibles as in Corollary 10.2.19 (with J = {6 €
G : my > 0}). We can decompose the isotypic component myW, by choosing

suitable operators Iy 1, Iy 2, . . ., Ip.m, € Homg(Wy, V), in such a way that
my
v=pPnw (10.68)
vel j=1

is an orthogonal decomposition, and
(Ig,iw1, Iy, jwa)y = 8.58; j(w1, wa)w, (10.69)

forall 0,0 €J,i=1,2,....,my, j=1,2,...,m;, w; € Wy and wy € W,.
In particular, each Iy ; is an isometry and the Iy ;s are linearly independent
in Homg(W, V). Then any vector v € V may be uniquely written in the form
V= ey Z;’Zl vg,j, With vg ; € Iy jWy. The operator Ey ; € End(V), defined
by setting Ey ;(v) = vy, j forallv € V, is the orthogonal projection from V' onto
Iy, jWp. In particular, Iy = >, 37", Ep .

Observe thatif v =3, > vg j then p(g)o = 35, 1", p(8ve, ;- As
p(Qvg,; € Iy Wy, by the uniqueness of such a decomposition, we have that
Eg jp(g)v = p(g)vg,j = p(g)Ey, jv. Therefore, Ey ; € Endg(V).

Lemma 10.6.1 With the above notation the following hold.

(1) The space Homg(Wy, V) is spanned by Iy 1,1y 2, . . . , Iy m,. In particu-
lar, my = dimHomg(Wp, V).
(ii) We have

Iy 1o, j = 86.08j4lw, (10.70)
for all 0,0 €lJ, k=1,2,...,myg, j=1,2,...,my; in particular,
13 11, ,w, is the inverse of Iy j: Wo — Ip jWy(< V).
Proof.

(i) If T € Homg(Wy, V), then

T=KT=> iEg,kT.

oel k=1

Since RanE,; ; = I, ;W;, if follows from Lemma 10.2.3 that, if o # 6,
then E, ;T = 0. Moreover, from Corollary 10.2.5, one deduces that
Ey «T = oyl x for some o € C. Thus,

my mg

T = ZEG,kT = Zaklg,k.
k=1 k=1
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(i) By Proposition 10.2.2, I;,J-Igy ; € Endg(Wp) so that, by Schur’s Lemma,
Ig‘y jlgq]’ = aly, for some o € C. Moreover, from (10.69) it follows that

2
(I iIo. jw, w)w, = (Ip jw, Iy jw)y = ||wlly,,

for all w € Wy, so that necessarily « = 1. On the other hand, if (o, j) #

(6, k) then, again by means of (10.69), we deduce that

(Ig o, jw, wyw, = (I jw, Iy gu)y = 0.

O

Clearly, the decomposition of the f-isotypic component of V into irreducible
sub-representations is not unique: it corresponds to the choice of a basis in

HOl’l’lG (W9 s V)

Now, forall 0 € Jand 1 < j, k < my, define T,f ;€ Endg (V) by setting

7;29 o = ngklg,jl) ifv € Igij@

N 0 ifo e Vel ;W.
where V © Iy jW, is the orthogonal complement of Iy W, in V.
Lemma 10.6.2 With the above notation, we have:

RanT; = Iy (W, KerTY; =V © I, Wy,

o b __ sl
7;<A,st,r - 50,08,/»STk,t

and
0 \* _ 70
(T¢)) =Tk
In particular,
0
Tj;=Eo,;
and

HOInG(Ig,jWQ, I@ikWQ) = CT}(Q’]
Proof. From (10.70) and (10.71) we deduce that, for all w € Wp,

T;ce,jle,jw = IG,klg’jIG,jU) = Ie’ku)

(10.71)

(10.72)

(10.73)

(10.74)
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so that RanT! ; = Ip xWp. The same arguments yield KerT}! =V el W,

. :kajlg,xlgqtv ifv ey, Wy
JjostY T

10,1 .
’ ifo eVol,W.
= 50’,06]',57}(9.[01
and

(Ig’klg’jl)l, l)z)v if V] € Ig’jW(; and [S Ig,kWQ

(T 01, 02)y =
ko 0 otherwise
= (01, T}02).

Finally, from (10.71) and (10.74) we deduce that T;}Ia,kw = 85,00 xlo, jW,
which yields Tfj = Ey,j, while Corollary 10.2.5 ensures that every operator
T € Homg(Iy, jWy, Ip xWp) is a scalar multiple of Tk"j O

Theorem 10.6.3 With the above notation, the set
T, 0 el kj=1,2,...,m) (10.75)
is a vector space basis for Endg(V). Moreover, the map

Endg(V) — Dye; M, (C)

my

T —> Dyes (O‘/f, j)

where the a,f, ;8 are the coefficients of T with respect to the basis (10.75), that
is,

k. j=1

mgy
_ 0 0
T=3) ) T

el k,j=1

is a x-isomorphism of algebras.

Proof. Let T € Endg(V). We have

Mgy my
T = IvTIV = (ZZEa,k> T Z ZEGJ

oel k=1 vel j=1
my My
=Y Y > E,uTEy,.
o.0el k=1 j=1

Observe that

e RanE,; ;TEy ; < RanE, ; = I,  Wy;
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. KerE(,_kTEgyj > KerEg__,- =Vo I@_jWg;
« the restriction to Igijg of qukTEgyj isin HOIIIG(IQJ'WQ, Io,kWa ).

From Lemma 10.2.3, it follows that E, ;TEp ; = 0if 0 # 6, while, if 0 =0,
by Corollary 10.2.5 one has that Ey ;T Ejy ; is a multiple of T,fj, that is, there
exist o] ; € C such that

_ 0 7o
Eg,kTEg’j = ak,ka,j'

This proves that the T,f ;8 generate Endg(V). To prove independence, suppose
that we can express the 0-operator as

mg
0=3 > ai;T;

0el k,j=1

For v € Iy jWp, v # 0, we obtain that 0 = ZZZI af’ka‘?jv and this in turn
implies that ot,f,j =O0forallk=1,2,...,mgy,as 7}3,].1) and T,fju belong to inde-
pendent subspaces in V if k # k'

The isomorphism of the algebras follows from (10.72):

my My my m
3 a1, (2 5 ﬂzi‘,JiZ) Y S Sl sy,

el k,j=1 oel hi=1 0,0€J k,j=1h,i=1
my my
0 o 0
DD DI et
0et ki=1 \ j=1
The fact that it is also a x-isomorphism easily follows from (10.73). g

Corollary 10.6.4 With the above notation we have that
dimEndg(V) = ) mj.
oel
In particular, V is irreducible if and only if dimEndg(V) = 1.

Definition 10.6.5 A representation (p, V) is multiplicity-free if my = 1 for all
0el.

Corollary 10.6.6 A representation (p, V) is multiplicity-free if and only if
Endg (V) is commutative.

Observe that

my my

B=36,=31,
j=1 j=1
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is the projection from V onto the §-isotypic component myW,. It is called the
minimal central projection associated with 6.
Recall the definition of the product in C” in (10.28).

Corollary 10.6.7 The center Z = Z(Endg(V)) is isomorphic to C’. Moreover,
the minimal central projections Ey, 0 € J, constitute a basis for Z.

Proof. The space Endg (V) is isomorphic to the direct sum @, _; M, (C). But
A e M, (C) commutes with any other B € M, (C) if and only if it is a scalar
multiple of the identity: A € CI,,. (]

Exercise 10.6.8 Show that £y =
10.5.7 and Exercise 10.5.10.

% > e P(8) x? (g). Compare with Exercise

Exercise 10.6.9 Let (p, V) and (5, U) be two G-representations. Suppose that
V= EB@EJ mogWy and U = EBaeK ngWy,J, K C G, are the decompositions of V
and U into irreducible representations. Show that we have an isomorphism

Homg(U,V) = @D My, m,(C)
0eKNJ

as vector spaces.
Exercise 10.6.10 Let V and W be two inner product vector spaces.

(1) Show that

1
Ti, T5)Hom = ——Tr(T,’T)),
(11, To)Homw,v) pr— (T, T1)

with 71, T, € Hom(W, V), defines an inner product in Hom(W, V)
(called the normalized Hilbert-Schmidt inner product).
(2) Show that if dimW < dimV and T € Hom(W, V) is an isometry then

||T”Hom(W,V) =1

Exercise 10.6.11 Let (p,V) and (8, W) be two G-representations. Suppose
that (6, W) is irreducible and denote by m = dimHomg(W, V') the multiplicity
of6in(p,V).Letalso Ty, 15, . .., T, € Homg(W, V). Show that the following
facts are equivalent:

(@ (Tiwi, Tjwa)y = (w1, wa)wéij, for all wi,wreW and i, j=
1,2,...,m;
(b) the W-isotypic component of V is equal to the orthogonal direct sum

nwehWe---oT,W,

and each operator T is an isometry from W onto T;W;
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(c) theoperators Ty, Tz, . . ., T, form an orthonormal basis for Homg (W, V)
(with respect to the normalized Hilbert-Schmidt inner product);
(d) T/T; =6 jlw, foralli, j=1,2,.

Exercise 10.6.12 In the notation of Corollary 10.3.12, see also Exercise
10.5.21,

(1) show that the Fourier transform is an isometric *-isomorphism between
the group algebra L(G) and C(G), where the scalar product is defined
by setting

1
(T8 = 1 > dyTr(SO) T (O)],
0eG

forall S, T € C(G).

(2) Show that the Fourier transform and the inverse Fourier transform are
one the adjoint of the other, that is, if we identify M? with W, ® Wy by
means of Theorem 10.5.20, then

(F,(f®0) e = (F. f® )
forall F € L(G),v € Wy, f € W/, and 6 € G.

Solution. Fix 6 € G and let {v1,02,...,04,} be an orthonormal basis in Wj.
Then, for v € Wy and f € W, one has

(F,(f ®0))e) = = ZF(g)f [6(g~ "ol

| gEG

=G ZF(g)f (Z 0(g" . vimu,-)

geG

= G - Zf(v ) Y (F(2)0(2)vi, v)w,

geG

=i - Zf(v WE(0)vi. v)w,

dy

= (F(O)i. [f ® 010w,
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10.7 A noncommutative FFT

The aim of this section is to present a noncommutative version of the FFT
developed by Diaconis and Rockmore in [54]. Let G be a finite group, K < G
a subgroup, and 7 C G a complete set of representatives for the left cosets of
K (cf. (10.49)). Given an irreducible G-representation (6, W), we consider an
orthogonal decomposition

ResSW = @vz,_,. (10.76)
j=1

of its restriction to K, into irreducible K-representations. Note that in (10.76)
the K-representations (o, Vo) j=1, 2,...,m, are not necessarily pairwise
inequivalent. Then, by choosing an orthonormal basis in each V;; in (10.76),
we get an orthonormal basis for W such that, identifying a linear operator with
the associated matrix,

o1(k)

o2(k)
0k) = ] , (10.77)

om(k)
forall k € K.
Exercise 10.7.1 Check the details of (10.77).

The orthogonal basis for W that leads to (10.77) is called an adapted basis to
the decomposition in (10.76). Then, for f € L(G), its Fourier transform evalu-
ated at 0 is given by

F0)=>" f()0(2)

geG (10.78)
=Y 00 Y ke,
teT kek

where f; € L(K),t € T, is defined by f;(k) = f(tk) for all k € K. By virtue of
(10.77), we have, forallt € T,

o~

(o)
fi(o2)
> ik k) = . . (10.79)

kekK ~
Ji(om)
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By combining (10.78) and (10.79), we get an algorithm that reduces the com-
putation of f(0) to the computation of smaller (dimension) Fourier transforms
(the f;(o)s) and then to multiplications of these by the matrices 0(¢)s.

Exercise 10.7.2 Denote by T(G) (respectively T'(K)) the number of operations
required to compute the Fourier transform of a given f € L(G) at each irre-
ducible representation of G (respectively of K), and by M(d) the number of
operations needed to compute the product of two (d x d)-matrices. Show that

T(G) =|T|-T(K)+ (I T|— 1)) M(dy).
oek

Exercise 10.7.3 Show that the Cooley-Tukey algorithm in (5.62) is a particular
case of the algorithm considered in this section.
Hint. Just observe that G = Z,,, and K = Z,,.

Diaconis and Rockmore also considered recursive applications of this basic
algorithm when a chain

GZGOZGIZGZZ"'ZszGm+1:{lG}

of subgroups is available, providing several specific examples.
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Induced representations and Mackey theory

In this chapter we introduce the theory of induced representations. This is a
central topic in the representation theory of finite groups. We emphasize the
analytic approach and include a detailed treatment of Mackey’s theory, which
will play a fundamental role in the following chapters, and of the little group
method, due to Mackey and Wigner, that will be used extensively in Chapter 12.
Other treatments of these topics are in the books by Naimark and Stern [119],
Sternberg [154], Simon [148], Serre [145], Curtis and Reiner [42, 43], Huppert
[78], Shaw [147], and Bump [23]. See also our previous monographs [33, 34]
and the expository paper [30].

11.1 Induced representations

Throughout this section, G is a finite group, K a subgroup of G and (o,V) a
finite dimensional unitary representation of K. We suppose that 7 is a system
of representatives for the set G/K of left cosets of K in G as in (10.49). We also
assume that 15 € T is the representative of K. We denote by V[G] the vector
space of all functions f: G — V.

Definition 11.1.1 (Induced representation) The induced representation of a
K-representation (o, V) is the G-representation (A, IndIG{V) whose representa-
tion space is

Ind$V = {f € VIG] : f(gk) = o (k") f(g), forallge G,k € K}, (11.1)
with the action A given by

[M(g1)f1(g2) = f(g;'g2),  forallg), g € Gand f € IndV. (11.2)

399
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Note that A(g)f € Ind,?V forallge Gand f € IndgV, and that X is indeed a
representation (compare with the definition of the left regular representation in
(10.9)). Sometimes we shall denote A by Ind,G(cr.

In Indl(éV we can define an invariant scalar product by setting

1
(i ey = T > (i@, @) (11.3)
geG
for fi, f» € IndgV; it is easy to check that (A, Ind,‘?V) is unitary with respect to
this scalar product. We also use the following reduced form of (11.3):

s Phwagy = Y _UAi©), L@y (11.4)
teT
Indeed, if g€ G and g=1tk, k€ K,t € T, then from (11.1) and the uni-

tarity of o we deduce that (fi(g), f(8))y = (c(k")fi(t), c (k™D fo(t))y =
(f1(®), f2@O)v.

Now we explore the structure of an induced representation. For every v € V
define the function f, € V[G] by setting

—1 .
f(® = ol ifgek (11.5)

0 otherwise.

It is easy to check that f, € IndgV and that the subspace V= {fo v €eV}of
IndgV is K-invariant and K-isomorphic to V; indeed,

(k) fo = Sowow (11.6)
forall k € K.

Proposition 11.1.2 With the same notation as in (10.49), we have the direct
sum decomposition

Ind{V = P r)V. (11.7)
teT

Proof. Take f € IndgV and setv, = f(¢r) € V foreveryt € 7. Then, forty € T
and k € K, we have t’ltok € K if and only if = ¢y, and therefore

D MOf k) =Y £, (¢ 10k) = £, (K)

teT teT
= o (kY = o (k) fto) = fltok)

that is, since fpk € G is arbitrary,

f=Y_M0f,. (11.8)

teT
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Note also that such an expression is unique: indeed, from (11.1) it follows that
every f € IndgV is uniquely determined by its values on 7. U

Conversely, we have:

Lemma 11.1.3 Let (t, W) be a representation of G and V a K-invariant sub-
space such that the direct decomposition

W=V (11.9)

teT

holds. Then the G-representations W and IndgV are isomorphic.

Proof. If we define V asin (11.7) it follows that IndIG{V and W are G-isomorphic.
The easy details are left as an exercise. U

Remark 11.1.4 In some books, as for instance Serre’s monograph [145],
induced representations are defined by means of the property in Lemma 11.1.3.

We observe that the dimension of the induced representation is given by
dim(Ind$V) = [G : K] - dim(V) (11.10)

as it immediately follows from (11.7) and observing that |7 | = [G : K]. We
now prove that induction is transitive.

Proposition 11.1.5 (Induction in stages) Let K < H < G be finite groups and
(0,V) a K-representation.

() The map f +— F given by F(g, h) = [f()l(h), for all f € (VIH])[G],
F e VIG x H], g € G, and h € H, yields a vector space isomorphism
between (VIH]) [G] and V|G x H). By restriction, it yields an isomor-
phism between the G-representations Ind%(Ind% V) and

{F e VIG x H] : F(gh, Wk) = o(kfl)F(g, hh),
Vee G, h,i e H ke K}. (11.11)

(i) The map F — F, where F is in the space (11.11) and Fe VIG] is
defined by setting I::(g) = F(g, 1), for all g € G, yields an isomor-
phism between the G-representations (11.11) and IndIG<V. The corre-
sponding inverse map is given by F + F, where F(g h) = f(gh), for
allhe H,geG.

(iii) The following isometric isomorphism of G-representations holds:

Ind% (Ind?V) = Ind$V. (11.12)
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Proof.

®

(ii)

(iii)

Induced representations and Mackey theory

The isomorphism (V[H]) [G] = V[G x H] induced by the map f +— F
is obvious. Moreover, from the definition of an induced representation,
we get

Ind?V = {f e V[H] : f'(hk) = o (k") f'(h), Yh € H, k € K}
and, setting 6 = Ind%o,

Ind$(Ind?V) = {f € (Ind?V)[G] :
f(gh)=0(h"")f(g), Vg€ G, h € H}.

We deduce that if f € Ind$(Ind{ V) then we have

F(gh, 'k) = [f(gh))(Wk)
=o (k") (Lf(ghI(H))
= o (kOO f(QIH)
= o (k" HIf(I(hH)
=o(k"")F(g, hh'),

for all g€ G, h,W € H, and k € K. This shows that F belongs to
(11.11). By means of the same arguments, it is easy to check that each
F in (11.11) is the image of some f € Ind%(Ind%V).

Let F be in the space (11.11). It is immediate to check that F(g, h) =
F(gh, 1¢),forallg € Gand h € H, so that F is uniquely determined by
its values on G x {1s}. As a consequence, we have

F(gk) = F(gk, 1) = F(g, k) = o (k"' )F(g, 16) = o (k" )F(g),

for all g € G and k € K, so that Fe IndgV.
The isomorphism follows immediately from (i) and (ii). Finally, it is
immediate to check that, modulo the identifications in (i) and (ii), one

has [|F |l jpgey = I1F linaGmattv - O

Example 11.1.6 (Permutation representation) Let G be a finite group acting
transitively on a finite set X. Choose xp € X andlet K = {g € G : gxg = xo} be
its stabilizer. As in Example 10.4.3, we denote by (A, L(X)) the correspond-
ing permutation representation of G. Let now (tx, C) denote the trivial (one
dimensional) representation of K. Then

Ind¢C = (f € L(G) : f(gh) = f(g),Vg € G,k € K} = L(G)¥
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(the space of all right-K-invariant functions on G). The latter is isomorphic to
L(X): the map f — f, where f € L(X) and f € L(G)X is given by

f(&) = f(gxo) (11.13)

for all g € G, yields the desired G-isomorphism. We can rephrase the above
discussion by saying that the permutation representation A and the induced
representation Indgt x are equivalent. Recalling the identification X = G/K as
G-spaces, we can thus write:

(A, L(G/K)) ~ (Ind,((;LK,L(G)K). (11.14)

Exercise 11.1.7 Suppose that K <H <G, set X =G/K, Y =G/H, Z=
H/K, and suppose that xo € X (respectively, yp € Y) is the point stabilized by
K (respectively H).
(1) Show that there exists a unique surjective map 7w : X — Y such that
7 (xg) = yo and w(gx) = grmw(x) for all x € X and g € G (that is, 7 is
G-equivariant).
(2) Show that, in the present setting, transitivity of induction has the fol-
lowing more explicit form: L(X) = IndeL(Z) = ®y€yL(ﬂ_] ).
See [138] for some examples and applications of these simple facts.

Example 11.1.8 Let G be a finite group and N < G a normal subgroup. Denote
by Agn the left regular representation of G/N and by ) the permutation repre-
sentation of G on G/N (note that the corresponding representation spaces are
the same, namely L(G/N)). Then

2(g) = han(gN) (11.15)
for all g € G. Indeed, if f € L(G/N) and g, gy € G, one has

(A6 (gN)f1(goN) = F1(eN) ™" (g0N)] = (g~ goN) = [A(8)f1(goN).

Example 11.1.9 Let G be a finite group and K < G a subgroup. Let also x
be a one-dimensional representation of K. Recall that x : K — C satisfies:
Ix (kD) = 1, x(kiky) = x (k) x (k2), so that x (k™') = x(k)~! = x(k), for all
ki, ky, k € G, and x(1g) = 1. Then the representation space of Ind,? X, that we
denote by Indg(C, is made up of all f € L(G) such that

f(gk) = x(k)f(g) (11.16)

for all k € K and g € G. The corresponding G-action is again given by left
translation:

[Indg x (2)/1(¢) = f(g'¢)
forall f € Ind$C and g, ¢ € G.
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Now (11.7) becomes

Ind{C = @ 1) (Cx). (11.17)
teT

where x is extended to the whole G by setting x (g) = O forall g € G \ K (note
that, this way, f = x € L(G) satisfies (11.16)).

Exercise 11.1.10 Suppose that A, B are finite Abelian groups, B < A and let x
be a character of B. Show that a character ¥ of A is contained in Indjy if and
only if {(b) = x(b) for all b € B and, if this is the case, its multiplicity is equal
to 1.

Now we give a formula for the matrix coefficients and the character of an
induced representation.

Theorem 11.1.11 Let G be a finite group, K < G a subgroup, and T € G a
complete set of representatives for the left cosets of K in G. Let also (o, V') be
a K-representation, {e1, ea, ..., eq} an orthonormal basis for V and denote by
A= Ind,(ga the corresponding induced representation. Define f,, € IndgV as
in (11.5) and f;; = A1) fe; € IndgV forallt €T and j=1,2,...,d. Then
{(fij:teT,j=12,...,d} is an orthonormal basis for IndgV with respect
to the scalar product (11.3) and the corresponding matrix coefficients of ) are
given by the formula

(o(s'gej ey ifs gt €K

(M) .5 fs,i)lndgv = .
otherwise

foralls,t € Tandi,j=1,2,...,d.

Proof. The factthat {f; ; : t € T, j = 1,2, ..., n}is an orthonormal basis eas-
ily follows from (11.4) and the formula f; ;(s) = éye;, for s,¢ € T. Now sup-
pose that g € G and r € 7. Then there exist#; € 7 and k € K such that g~'r =
t1k and therefore

(M. ) = fij(g7'r)
= f,./(t1k)
=8,,0(k e;.

Since k = t;'g~'r and

t=1 < gilretK — rilgteK,
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we deduce that

(A (&), 1(r) =

o(rlge; ifrlgtek
otherwise.

We can use this formula and (11.4) to compute the matrix coefficients of the
induced representation A: fors,r € T and i, j = 1,2, ...,d, we have

@ o Fridimagy = D (D&F AP, foa )y

reT
. (o(s’lgt)ej, ey ifsT'gtek
o otherwise.

O

Corollary 11.1.12 (Frobenius character formula) Ler G be a finite group,
K < G a subgroup, and (0,V') a K-representation. Then the character of the
induced representation Indga is given by

K = Y x7@ e, (11.18)

teT:
t~lgtek

Proof. Let u7 ; denote the matrix coefficients of o and o ; those of A. Then
Theorem 11.1.11 yields:

o —1 i o—1
N T gty ifsTgre K
ug ., (8) = (11.19)
sin,j18 {0 otherwise,
. . d . )\‘ . . .
thatis, if U (k) = (ui’j(k))i,jzl, then the matrix (ut’i;w,(g)>Z.J.:L2 YYYY 4 is givenin

t,seT
block form by (U(1'gs)), ,_,» where U(1~'gs) = 0 whenever r~'gs ¢ K. By

taking the trace of this block matrix, we immediately get the expression for the
character of A in terms of the character of o. O

There is another useful way to write Frobenius character formula. If C is a
conjugacy class in G, then C N K is invariant under conjugation by elements of
K so that it is partitioned as

cnk=]]p. (11.20)

i=1

where the D;’s are conjugacy classes in K.
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Proposition 11.1.13 Let G be a finite group, K < G a subgroup, and (o,V) a
K-representation. Then we have:

IndSo |G| . o
X "K€) = IDilx” (Dy), (11.21)
K- IC] ;

where x (C) denotes the value y (c) of the character x at each ¢ € C.

Proof. If ¢, ¢’ € C, then

G|
HgeG:g 'lcg=C} = ar (11.22)
Indeed, G acts transitively on C by conjugation (c — g~ 'cg, for all ¢ € C and
g € G), and the stabilizer of ¢ coincides with its centralizer, whose order is
|G|/|C|; see Lemma 10.4.2. Therefore, by Frobenius character formula, for ¢ €

C we have

Xlndgo(C): Z Xa(tflct)

teT:
t~letek
71

-G X aw b

keK teT:

t~letek
1
(g=1h) = > X7 o)
geG:
g’lcgeK

by (11.22)) = — x° (k
(by (11.22)) |K|Z|C|Z (k)

G
= |Dilx% (D)
K- 1Cl &

O

Corollary 11.1.14 For a permutation representation (7, L(X)) (cf. Example
11.1.6), formula (11.21) becomes:

A X
x (€)== ICNK].
ICI
Exercise 11.1.15 Deduce the fixed point character formula (Proposition
10.4.6) from Frobenius character formula.

In the last part of this section, we illustrate two fundamental results that con-
nect tensor products (cf. Section 10.5) and induced representations.
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Theorem 11.1.16 Let G be a finite group and K < G a subgroup. Let (0, W)
be a G-representation and (o, V') a K-representation. Then the map

¢: W (X)IndZV — Indf[(ResgW) (X) V] (11.23)

defined by setting
[p(w ® Ng) =0(g Hw & f(g),

for all weW, fe Indg\/, and g € G, is an isometric isomorphism of G-
representations, so that, in particular,

¢ € Homg (¢ ® Ind§o, Indf[Resgd ® o).

Proof. The space W Q) Ind,?V is spanned by all products w ® f where w € W
and f € V[G] satisfies f(gk) = o (k~")f(g), for all k € K and g € G. Let us
set, as usual, » = Ind%o. The space Ind$[(Res$W) & V] is made up of all
functions F € (W ) V)[G] such that

Fgk) =[0(k) @ o (k" HIF(g), (11.24)

for all k € K and g € G, and it is spanned by all functions of the form
M(@)Fpe, for ge G, w e W, v € V, where 1| = Ind,?[(Resﬁ@) ® o] is as
in (11.2) and F,g, is given by (11.5). First of all, observe that ¢(w ® f) €
Ind,G([(Reng) QX V1. Indeed, ¢p(w ® f) € (W Q) V)[G] and satisfies (11.24):
[¢(w ® f)I(gk) = 0(k'gHw ® f(gh)
=[Gk H®ck HI(0(g Hw ® f(g)
=[0G ") @ ok )] (@ f)) ().

Let us show that the map (11.23) is G-equivariant: for all g, go € G we have

(@ {[0(9w] ® [L()f1) (g0) = 0(g; " 9w @ f(g " g0)
= [p(w ® /g " g0)
= (9w ® f)I(go),

that is, ¢ intertwines & ® A and A;. Now we prove that the map ¢ is surjective.
Forw € W,v € V, and k € K we have

[p(w ® f)Ik) =0k Hw @ f,(k) = 0k Hw @ o (kYo = Fygy (k)

and [¢(w ® ﬁ))](g) =0= Fw®n(g) if IS G \ K, so that ¢(w & ﬁ)) - Fw®v~
Since the functions of the form A;(g)F, &, span Indg[(Reng) & V], we con-
clude that ¢ is surjective. Since

dim [W %) Indgv] — dimWdimV|G/K| = dim {Indg[(Res,(gW) R V]}
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it is also injective, so that it is an isomorphism. We leave it to the reader to
check that ¢ is indeed an isometry. 0

Corollary 11.1.17 Let G be a finite group, K < G a subgroup, and xo € X =
G/K be the point stabilized by K. Let (0, W) (respectively, (A, L(X))) be a
representation (respectively, the corresponding permutation representation) of
G. Then the map

oW ® L(X) — Ind{ResSW
defined by setting
[p(w ® FI(8) = f(gr0)0 (s Hw,

forall f € L(X), w € W, and g € G, is an isometric isomorphism.

Proof. Apply Theorem 11.1.16 with o0 = (¢ the trivial representation of K.
In this case IndgV = L(X) (see Example 11.1.6, in particular (11.14)) and
(ResSW) RV = (ResiW) ® C = ResSW. O

In the last corollary, we have shown that Ind$Res¢W is isomorphic to
W @ L(X). This is the first elementary result that connects induction and
restriction. Sections 11.2, 11.4, and 11.5 are devoted to deeper results of this
kind. In particular, Mackey’s lemma in Section 11.5 examines the structure of
ResglndIG(V, where V is a K-representation and H < G is another subgroup.

Another property of the induction operation is additivity.

Proposition 11.1.18 Let G be a finite group and K < G a subgroup. Let
(01, V1) and (03, Vo) be two representations of K. Then

ind§ (o1 P p2) ~ Ind§ (o)) P Indf (o).
Proof. We leave it to the reader to check that the map
®: (Ind$V; @ IndgVs) — Indg(V) @ V),

defined by [®(fi + f2)](g) = fi(g) + f2(g), for all f; € IndgV,-, i=1,2 and
g € G is a bijective map in Homg(Ind§(p;) €D Ind§(02), Ind§ (01 B p2)). O

Exercise 11.1.19 Let G be a finite group and K < G a subgroup. Let (o, V)
be a K-representation. Consider the tensor product L(G)@V, its sub-
space V spanned by {4 ® v — 8, ® o(k)v : g€ G,k € K, v € V}, and the G-
representation (y, L(G) Q) V) given by

Y88y ®v) =3dgy @0
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for all g, ¢ € G and v € V. Show that V is y-invariant and that Ind,?V =
[L(G) Q@ V1/V as G-representations.

The above yields a classical, more algebraic, definition of an induced represen-
tation; see the monograph by Alperin and Bell [12].

11.2 Frobenius reciprocity

This section is devoted to the first fundamental result, due to Frobenius, that
relates the operations of induction and restriction for group representations. We
assume all the notation in Section 11.1; in particular, we suppose that (6, W)
is a G-representation (with dy = dimW) and (o, V) is a K-representation. For
a more detailed analysis of Frobenius reciprocity, we refer to [137, 140, 37].

Theorem 11.2.1 (Frobenius reciprocity) For each T € Homg(W, Ind,G(V)
AN
define T: W — V by setting, for every w € W,

Tw = [Tw](lg). (11.25)

A
Then T € HomK(Reng, V') and the map

Homg(W, Ind$V) —> Homg (ResSW, V)
N

T —> T

\
is an isomorphism of vector spaces. Its inverse is the map L — L where, for
L € Homg (ResSW, V),

\
|:Lwi| (g) = LO(g Hw, (11.26)
forallw e Wandg € G.
N
Proof. First of all, we show that T € HomK(Reng, V):

To(kyw = (TIO0w]) (1)

(T € Homg(W, IndgV)) = [A(k)(Tw)](1g)
(by (11.2)) = [Tw]k ™)
(by (1L.1)) = o®[Twl(ls)
= o(b)Tw

forallk e Kand w e W.
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Conversely, if L € Homg (Reng, V) then from (11.26) we deduce that
\ \2
[Lw} (gk) = Lok HO(g™Hw = o (k" HLO(g Hw = o (k™) [Lw} (®.

Vv
forallw e W,k € Kand g € G, so that Lw € Ind,G<V. Moreover, if gg € G we
have

[Ze@w} (80) = LO(gy 0 (9w = LO[(g 'go) H]w
= [Zw} (g 'g0) = [X(g)Zw} (80),
and this shows thatz € Homg (W, IndgV). Finally,

[(T) u)] (@) = TO(g w = [TO(g Hwl(le)

= [MegH(Tw)] (16) = [Twl(g)

(Z) w = |:Iv4wi| (1) = Lw,

A \
for all w € W and g € G, that is, (T)Y = T and (L)" = L. It follows that the
AN \

and

linear maps 7 + T and L — L are one inverse to the other, and therefore are
isomorphisms. O

From Theorem 11.2.1, Lemma 10.6.1.(i), and Lemma 10.6.2 we deduce the
following:

Corollary 11.2.2 Suppose that W and V are irreducible. Then the multiplicity
of W in IndgV equals the multiplicity of V in ResgW.

Corollary 11.2.3 Suppose that W and V are irreducible, and that W is con-
tained in IndgV with multiplicity m. Then

dimW > mdimV.
In particular, if dimW = 1 one has dimV = 1 and m = 1.

Proof. Reng contains m copies of V and dimReng = dimW. 0

From the point of view of character theory, Frobenius reciprocity may be
formulated in the following form:


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.012
https://www.cambridge.org/core

11.2 Frobenius reciprocity 411

Proposition 11.2.4

1
1G]

Res%0

1
G
—(x?, x"%Y o) = —(x X7V LK)

K]
Proof. Although this may be deduced from Corollary 11.2.2 (see Exercise
11.2.5), we reproduce the easy proof based on Frobenius character formula. Let
Cj, j=1,2,..., nbe the conjugacy classes of G and suppose that C; N K =
]_[;21 D; ; (with D; ; C C; a K-equivalence class) as in (11.20). Then we have:

1 Ind§ TG\
ndgo C C Indgo C:
G —(x* X" 6y = G 2 Z| X" (Cp)x%e ()
(by(1121) = szz]lx (Di)x° (D; )
j=1 i=1
= L(XReSgQ, X7 ) LK)
K| O

Exercise 11.2.5 Deduce Proposition 11.2.4 from Proposition 10.2.18 and
Corollary 11.2.2.

Exercise 11.2.6 With the notation as in Theorem 11.2.1, show that the map
A

T — /|G/K]|T is an isometry with respect to the scalar product in Exercise

10.6.10.

Exercise 11.2.7 (The other side of Frobenius rec1pr0c1ty) For each T €

Homg(Ind§V, W) define T e Hom(V, W) by setting To = Tf,, forallvo eV
(fy is as in (11.5)).

(1) Show that ;‘ € Homg (V, Res,((;W).
A *

(2) Show that (T*)° = <T> .

(3) Show that the map

Homg(Ind$V, W) — HomK(V Res¢W)
T — T

is an isometric isomorphism of vector spaces and that its inverse is

< <
the map L+ L defined by setting Lf =, 0(t)Lf(¢) for all L €
Homg (V, Reng) and f € IndgV.
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We now examine Frobenius reciprocity in a particular case: from now on,
the K-representation (o, V) is one-dimensional and we shall identify it with
its character x = x“. We then denote by Indg(C the representation space of
A = Ind%x (see also Example 11.1.9).

We denote by WX:X the y-isotypic component in Reng, that is,

WEX ={w e W : 0(kyw = x(k)w for all k € K}. (11.27)
Note that when y = tx is the trivial K-representation, then
wE« = WK = {w e W : 0(k)w = w for all k € K}
is the subspace of K-invariant vectors in W.

Proposition 11.2.8 Suppose that W5X is nontrivial. With each u € W5X we
associate a linear map T,,: W — L(G) defined by setting

[T,w](g) = m(w,e(g)u)w, (11.28)

forallw € W and g € G. Then:
() for all u € WX we have T, € Homg(6, Ind$ x);
(i) if (8, W) is irreducible and ||\ullw = 1 then T,,;: W — Ind,(g(C is isomet-
ric.
Proof.
(i) Letu € WXX and define a linear functional L: W — C by setting Lw =
(w, u)w, for all w € W (that is, in the notation of (10.53), L = £~ !(u)).

Then L € HomK(Reng, X):

LO(kyw = (B (k)w, )y = (w, Ok u)w = x (k) (w, u)w = x (k)Lw,

Vv
for all w e W, k € K. Since T,, = ‘Gd/—GK‘L, from Theorem 11.2.1 we
deduce that T, € Homg(9, Ind$ x ).
(i1) Suppose that {u; :i=1,2,...,dp} is an orthonormal basis in W

with u; = u. Then, for every w = Zil o;u; € W, a; € C, we have
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(cf. (11.3)):
1 S
ITuwllpge, = K] |G/K| 2 w(w, o (gu)w
_dy S
=G Z @y Y {ui, o (Q)ur)w (g, o (Qurhw
l] 1 geG
dy
(by(10.24)) = ol
i=1
= [lwll-
This shows that 7}, is an isometry. U

11.3 Preliminaries on Mackey’s theory

In the present and next two sections, we use all the notation of Section 11.1.
We also suppose that H is another subgroup of G and that (v, U) is an H-
representation. We set A = Indgv. Moreover, we assume that S is a set of
representatives for the set H\G/K of all H-K double cosets in G, so that

= ]_[HsK, (11.29)

seS

with 15 € S (this is the representative of HK). For each s € S, we set
G, =HnNsKs". (11.30)

Clearly, G is a subgroup of H while s~ G,s is a subgroup of K. We start with
a simple but useful Lemma.

Lemma 11.3.1 Let h,h; € H, k, ky € K, and s € S. Then we have
hsk = hysky < 3x € G, such that hy = hx and ky = s~ 'x~ ' sk.

Proof. We have hsk = h;sk; if and only if skk; lg=1 = =h~h,. By (11.30), this
holds if and only if #; = hxand k; = s~ 'x~ sk withx = A~ h (= skkl_ls’l) €

G,. O
Remark 11.3.2 From the lemma above it follows that
|H||K|
|HsK| = .
|G|

Indeed, for each g € HsK there exist exactly |G| pairs (h, k) € H x K such that
g = hsk. Observe also that H\G/K can be interpreted as the set of H-orbits on
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X = G/K: if xp € X is the point stabilized by K, then these orbits are
{Hsxy : s € S}.

Moreover, the subgroup G, can be identified with the stabilizer in H of the point
$X0.
We leave it as an exercise to check the above statements.

For all s € S, we denote by (o, Vi) the representation of Gy on V, =V
defined by setting

0,(x) = o (s 'xs) (11.31)
for all x € G,. We also define

Sp = {s € S : Homg, (Resgsv, 0y) is nontrivial}. (11.32)

11.4 Mackey’s formula for invariants
In this section, we expose a series of results of Mackey on the space of inter-
twining operators between two induced representations. The particular case of
the commutant of the representation obtained by inducing a one dimensional
representation will be analyzed more closely in Chapter 13. See also [140] and
[37].
We assume the notation from the previous section.

Definition 11.4.1 We denote by V = V(G, H, K, v, o) the set of all maps
F: G — Hom(U, V) such that

F(hgk) = o (k" )F(gv(h™")
forallge G,he H,andk € K.
Lemma 11.4.2

(i) Forse Sy and T € HomG‘T(ReslG{xv, oy) define L7: G — Hom(U, V)
by setting
o(k"HTv(h™") ifg = hsk € HsK
Lr(g) = ) (11.33)
0 otherwise.
Then Ly is well defined and belongs to V.
(i1) Let F € V. Then F(s) € Homg, (Resgsv, o) foralls € S.
(iii) Let F € V. Then F = ZSE S Lr(s) and the nontrivial elements in this
sum are linearly independent.
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Proof.

®

(i)

(iii)

(iv)
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The map

V — Djes, Homg, (Resgsv, o)

11.34
Fr— Bses, F (s) ( )

is an isomorphism of vector spaces.

It suffices to show that L is well defined. Indeed, if hsk = hyskq, then,
by Lemma 11.3.1, hy = hx and k; = s~ 'x~ sk with x € G, so that

o(kyHTv(hY) = ok s xs)Tv(x ')

(by (11.31)) = ok Ho,()Tv(x'h™h)
(T € Homg, (Resg v, 05)) =o (k" HTvx)w'hh
=o(k HTv(h™).
For all x € Gy, by definition of V, we have
F(s)v(x) = F(x"'s)
=F(s- s_lx_ls)
= o (s 'xs)F(s)
= 0,(x)F (s)

that is, F(s) € Homg, (Resg, v, ;).
Clearly, F is determined by its values on S: indeed if g = hsk, with
heH, ke K,ands € S, we have

F(g) = F(hsk) = o (k" )F(s)v(h™") = L (g).

Moreover, this vanishes on the cosets HsK with s ¢ Sy. As a conse-
quence, F' =} s Lr(s) and the nontrivial elements in this sum are
linearly independent because they are supported on different double
cosets.

Surjectivity of the map follows from (11.33). Indeed, T is the image of
L. Injectivity is a consequence of (iii). U

For F € V define the operator £(F) € Hom(Indf,U , IndgV) by setting

[EF)fIQ) =Y F(r ') f(r), (11.35)

reG

forall f € Ind%U and g € G.Itis then immediate to check that & (F) f € Ind%V.
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Also, for T € Homg(Inng , IndgV) define the map Fy: G — Hom(U, V)
by setting

1
Fr(gu = E[Tfu](g) (11.36)

for all u € U and g € G, where f, is as in (11.5) (but with K, V now replaced
by H, U, respectively).

Theorem 11.4.3 We have £(F) € HomG(Inng , IndgV) forall F €V and the
map

£:V —> Homg(IndSU, Ind$V)

is an isomorphism of vector spaces. The corresponding inverse map is given by
T — FT.

Proof. LetF €V, f € Inng and go, g € G. Then we have

[L(9)&(F)f1(g0) = [E(F)f1(g " g0)
=Y F( g 'g0)f(r)

reG
(settingg=gr) =Y F(g'g0)f(g"'q)

qeG

= ZF(q_lgo)[M(g)f](Q)

qeG

= [E(F)A1(8)f1(80)

thatis, L(g)é (F) = £(F )\ (g). This shows that £ (F) € Homg(Inng, IndgV).
Letnow h € Hk€K,g€ G,u e U and T € Homg(Ind$U, Ind%V). Then
we have

1
Fr(hgkyu = H[Tfu](hgk)

(T € Homg(Ind$U, Ind%V)) =o(k™") { ﬁ[TM(h")fu](g)}
1
(by (11.6)) =0k {H[va(h“)u](g)}

= ok HFr(gv(h .

This shows that Fr € V.
We now prove that & is a bijection. Let T € HomG(Inng , Ind,(gV) and F €
V. Since the functions A;(g)f,, g € G and u € U, span IndeU (cf. Proposition
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11.1.2), we have that £(F) = T if and only if

EFI(Qfu = TA()fu (11.37)
forallge Gandu € U.
‘We have
[Th1(2)f)(g0) = [M&)T f.1(g0) (T € Homg(IndU, Ind$V))
= [Tf1(g " g0)
= |H|Fr(g 'go)u (by (11.36))
and
[E(F)M()fud(g0) = Y F'go)fulg™'r) (by (11.35))
reG

=Y F g g0 (by (11.5) with g = h)

heH
= |H| - F(g 'go)u. (by Definition 11.4.1)

for all u € U, g, go € G. From (11.37) we then deduce that £(F) = T if and
only if F = Fr. O

From Lemma 11.4.2.(iv) and Theorem 11.4.3 we deduce the following:
Corollary 11.4.4 (Mackey’s formula for invariants) The map

Homg(Ind$v, IndSo) — D;es, Homg, (Resgvv, o)

11.38
T — Dses Fr (), ( )

is an isomorphism of vector spaces.

Proof. This map is nothing but the composition of the isomorphisms £~ and
(11.34). (]

By taking dimensions we deduce:
Corollary 11.4.5 (Mackey’s intertwining number theorem)
dimHomg(Ind$ v, Ind$o) = Z dimHomg, (Res v, o)
seS

Note that in the above sum the only contribution to the right hand side comes
from the elements s € Sy. The following is one of the most useful results in
Mackey’s theory.

Corollary 11.4.6 (Mackey’s irreducibility criterion) Suppose H = K and
v =o0. Then Indga is irreducible if and only if the following conditions are
both met:
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(@) (o,V)isirreducible;
(b) for every s € S\ {15}, the Gg-representations ResIG{A_U and o, contain
no common irreducible subrepresentations.

Proof. First of all, note that G;, = K and 0}, = o, so that Mackey’s intertwin-
ing number theorem (Corollary 11.4.5) yields

dimHomG(IndIG(a, Ind,({;a) = dimHomg (o, o) +EiimHomGs (Resgva, oy).
seS\{1g}

We conclude by recalling that from Corollary 10.6.4 it follows that Indga
is irreducible if and only if dimHomG(Indga, Indgo) = 1 and then invoking
Corollary 10.2.6 (see also Problem 10.6.9). ]

Remark 11.4.7 Now we explain the terminology for “invariant” in Corol-
lary 11.4.4. If (6, W) is a G-representation, its invariant subspace is {w € W :
0(g)w = w, Vg € G}, that is, the isotypic component of the trivial represen-
tation (g in 6. If (£, Z) is another representation of G, then, defining a G-
representation (n, Hom(W, Z)) by setting

n(Q)T = E(TH(g™H),

for all ge G and T € Hom(W, Z), we have that Homg(W, Z) is exactly the
invariant subspace of 7.

Exercise 11.4.8 Show that, for H = G and (v, U) = (6, W), Mackey’s formula
for invariants (11.38) reduces to Frobenius reciprocity (Theorem 11.2.1). More
precisely, show that the maps (11.25) and (11.26) and their properties may be
deduced from (11.33), (11.35), and (11.36). Examine the connections between
the case K = G and the other side of Frobenius reciprocity in Exercise 11.2.7.

Exercise 11.4.9 Deduce Lemma 10.4.14 from Corollary 11.4.5, taking into
account Remark 11.3.2.

Remark 11.4.10 We now examine the case in which 0 = x and v =
are one-dimensional (see Example 11.1.9). We have U =V =C and Sy =
{seS: Resgylp = Xs}. Moreover, in the map (11.38), we have Fr(s) =
ﬁ[TW] (s) € C, and the intertwining number theorem (Corollary 11.4.5) is just
the formula

dimHomg(Ind$ v, Ind$ x ) = |So.

Finally, in the case H = K and ¢ = Y, the representation Ind,G( x is irreducible
if and only if Res’éxx # s forall s € S\ {1} (equivalently, Sy = {15}).
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Exercise 11.4.11 Suppose that H = K and v = o. Define a multiplication
operation in V = V(G, K, K, 0,0) (cf. Definition 11.4.1) by setting [F; *
B8 =Y, ¢ Fi(g'@F(g1) for all i, F, € V and g € G. Also define the
map F +— F* by setting F*(f) = [F(g~")]*, forall F € V, g € G.

(1) Show that V is an involutive algebra.

(2) Show that if £: V — Homg(Ind$o, Ind%o) is as in (11.35), then we
gave £(F] x F,) = £(F))&(F,) and £ (F*) = £(F)*. Taking into account
Theorem 11.4.3, deduce that £ is a x-isomorphism.

(3) With the notation in (10.49) and (11.5), show that [£ (F)A(t)f,]1(g) =
IK|-F(t ‘g, foral FeV,veV,t €T and g € G.

(4) Deduce that Tr[£(F)] = |G| - Tr[F(15)].

Exercise 11.4.12 Let &: V(G, H, K, v, o) — Homg(Ind$v, Ind%s) and
£: V(G,H, H,v,v) — Homg(Ind%v, Ind$v) be as in (11.35).

(1) LetF, F, € V(G, H, K, v, o) and define F: G — Hom(Indv, Ind§v)
by setting

|H|

F _ 1
(€3] T4

Z[Fz({l& N Fi(g1),
g1€G

~

forall g € G.Show that F € V(G, H, H, v, v) and £ (F,)*&(Fy) = &(F).
(2) Given two finite-dimensional vector spaces U and V and T, T; €
Hom(U, V), set

(h, I2) = Te(T;'Th).

Hom@.v)
Taking into account Exercise 11.4.11, deduce that

H?

(E(F1), S(FZ»HOH](IndzU,IHdiV) = m Z(Fl (g)’ Fz(g»Hom(UJ/)
geG

1
=|HP) 7 F©: B Homwy:
seS s

11.5 Mackey’s lemma

In Corollary 11.1.17 we have examined the composition Ind o Res. The follow-
ing famous lemma, due to Mackey, considers the inverse composition, namely
Res o Ind. It essentially constitutes a representation theoretic analogue of the
decomposition (11.29).

We assume the notation from Section 11.3.
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Theorem 11.5.1 (Mackey’s lemma) The map

Res§Ind{V — P, s Indgv Vs

11.39
F > @sewa ( )

where f; € Indg&VS is defined by setting f;(h) = F (hs) for all h € H, is an iso-
morphism of vector spaces. Moreover, the subspace Z; of ResglndgV isomor-
phic to IndIG{A_VS is given by

Z, = {F € V[G] : F(hs'k) = 8, yo (k™" )F(hs), YVh e H,k € K and s' € S},
that is, it is made up of all functions in IndgV that vanish outside HsK.
Proof. By definition of IndgV and Z;, it is clear that
Ind$V = @zs. (11.40)
seS
Suppose that F € Z; and f; : H — V is as in the statement. Then, if x € G, we
have

fs(hx) = F(hxs) = F(hss_lxs) = U(s_lx_ls)F(hs) = O'S()C_l)fs(/’l)

so that f; € Indg}/s. Vice versa, given f € Indg}/s consider the map F;: G —
V, defined by Fy(hs'k) = 8, yo (k™' f(h)fork € K, h € Hand s’ € S. We claim
that F; is well defined: indeed if sk = hysk;, by Lemma 11.3.1 we have h; =
hx and k; = s~ 'x~ sk with x € G, so that

o (k) f(hy) = o (kDo (s~ xs) f ()]
= o (k")[oy(x) f(h)]
=o(k ) f(hx™")
=o (k™) f(h).

Moreover,
Fy(hs'k) = 8, yo (k™) f(h) = o (k™" )Fy(hs),

so that F; € Z;. This shows that the map F' — f; is an isomorphism between
Zs and Inng_Vs; since H acts on both spaces by left translation, we deduce that
this map is also an intertwiner. Recalling (11.40), this ends the proof. 0

Exercise 11.5.2 Show that the isomorphism in Corollary 11.4.4 may be
deduced from the isomorphism in Exercise 11.2.7.(3), from Mackey’s lemma
(Theorem 11.5.1), and Frobenius reciprocity (Theorem 11.2.1). Deduce also
the explicit form of the isomorphism (11.34).
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Theorem 11.5.3 (Mackey’s tensor product theorem)

Ind%v ® Ind%o ~ @ Indgs [Resgjv ® ax] .
seS

Proof. We have:

Ind§jv ® Ind{o ~ Indf; [v ® Resf;(Indfo)] (by Theorem 11.1.16)

~ Ind |:v ® (@ Indgvas>:| (by Mackey’s lemma)

seS

~ Ind$ {@ Ind¢ [Resgv ® ax]} (by Theorem 11.1.16)
seS

~ @ Indgs [Resng ® o],
seS
where the last equivalence follows from Proposition 11.1.5 and Proposition
11.1.18. (]

11.6 The Mackey-Wigner little group method

In this section we present a powerful method to construct irreducible represen-
tations (sometimes exhausting the whole dual) for a class of finite groups. We
actually examine a particular case that will suffice for our subsequent purposes.
For a more general treatment, we refer to our monograph [34] (see also [31]).

Let G be a finite group and suppose that A < G is an Abelian normal sub-
group. We assume the notation in Section 2.3.

There is a natural action of G on the dual of A: if x € Aand g € G we define
the g-conjugate 8y € Aof X by setting

% (a) = x(g 'ag) (11.41)

for all a € A. It is easy to check that 81 (82y) = £182y for all g;, g» € G and that
léy = x, so that G-conjugation is indeed an action on A. The stabilizer of an
element y € A is the subgroup

K, = Stabg(x) ={g€ G : % = x},

which is called tEe inertia group of x. Note that A < K, since A is Abelian.
We say that x € A has an extension to K, if there exists a one-dimensional rep-
resentation x of K, such that x(a) = x(a) for all a € A, that is, Resf* X =x.
Now consider the quotient group K, /A. Given ¢ € I?X/\A we define its inflation
to K, as the irreducible representation v of K, given by setting v (h) = ¥ (hA)
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for all & € K, (compare with (11.15)). Clearly, this is just the composition of
the canonical homomorphism K, — K, /A with : K, /A — GL(V,;), where
Vi is the representation space of .

Theorem 11.6.1 Let x € Aand suppose that x has an extension X to K,,. Then

Indy x = P dy(X@ V). (11.42)

yek, /A

where, as usual, dy denotes the dimension of ¥ € K, /A. Moreover, the G-
representations

nd¢ X ®@¥)., ¥ ek /A, (11.43)
are irreducible and pairwise inequivalent.

Proof. From (11.23) we deduce that
Indfxx = Indfx (X ®u) = Indfx [(Resfx )7) ® LA] =X® IndfoA =7,

where 14 denotes the trivial representation of A and A is the inflation of the reg-
ular representation A of K /A (cf. Example 11.1.8). Since A = @ _g—3dy ¥/,
X

we have A = @ mmdﬂ’ from which (11.42) immediately follows.
Now suppose that S is a complete set of representatives for the double K,
cosets in G (with 1 € §) and, as in (11.30) and (11.31) (with H = K = K, ),

set Gy = K, NsK, s~ ! and

(X @ Y)s(x) = (X ® Y)(s ' xs),

1

forall x € Gyand s € S. Since s 'as € A for all a € A, we have ¥ (s”lasA) =

¥ (A), and therefore
(X ® ¥)s(a) =“x(@y(A)
for all a € A, so that (recalling Proposition 10.2.15.(i))
Resf"(i ® V), ~ dy'x.

In particular, for s # 15 the Gy-representations Resgf X ® W) and (¥ ® W)s
cannot have common irreducible subrepresentations because these would lead
to common subrepresentations between their restrictions to A, but *x # x
because s ¢ K, . From Corollary 11.4.6 we deduce that Ind,% (X ® V) is irre-
ducible.
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Finally, denote now by u the representation Indgx (X ® ¥) and by Z its rep-
resentation space. If f € Z and a € A then, for all g € G, we have:

@ flg) = fla'e)=fg-g'a'e = (X @¥)(g 'ag)f(g) =) (@) f(g).

It follows that, in the notation as in Theorem 11.5.1 (withv =0 = ¥ ® ¥) we
have: Z;, = {f € Z: n(a)f = x(a)f,Va € A}. Indeed, Z,, is the space of all
f € Z supported on K, . Moreover, in the decomposition

Res{ Indf (¥ @ V) = @D Indg/ (¥ @ V),
seS

71, is the representation space of ¥ ® E (because G, = K, ). This means that
the action of G on the x -isotypic component of Resflndgx (X ® V) corresponds
exactly to ¥ ® ¥, and this implies that the representations in (11.43) are pair-
wise inequivalent, because different representations come from different ¥s. In
other words, Ind,% (X ® ¥) uniquely determines 1. O

Theorem 11.6.2 (The little group method) Suppose that every x € A has an
extension X to its inertia group K, . Define on A an equivalence relation = by
setting x1 =X xa if there exists g € G such that 85y = x». Let X be a complete
set of representatives of the corresponding quotient space A / ~. Then

ézilndgx(i@)@:x ex,wel(/x/\A]. (11.44)

More precisely, the right hand side in (11.44) is a complete list of all irreducible
G-representations and, for different values of x and \r, the corresponding rep-
resentations are inequivalent.

Proof. From Theorem 11.6.1 it follows that the representations in the list are
irreducible. Moreover, from (11.42) and transitivity of induction (cf. Proposi-
tion 11.1.5), for any x € X we deduce that

Ind§ = @ dyIndg (¥ @ ). (11.45)

ek, /A
Suppose that 7 is a complete set of left (in this case, also right and dou-
ble) cosets of A if G. Set A = Ind§x and denote by Ind{C the correspond-

ing representation space (cf. Example 11.1.9). For r € T and g € G, we have
[A(*)x](g) # O only if g = at € At =tA and

@A®)x] (@) =Xt 'a ' =%x1""g-g7'a"g)
= (a)x(t™'g) = x(a) [M(1)X] ().
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Thus,

Ma) [M)X] =% (@ MO,

and (11.17) now implies that

Res$IndS x ~ GB’X, (11.46)
teT

which is clearly a particular case of (11.39). It follows that if x;, x» € X are
distinct, then two irreducible representations of the form Ind%l (X1 ® ¥1) and
Ind,%2 (X» ® ¥r2) asin (11.44) cannot be equivalent because, by virtue of (11.45)
and (11.46), their restrictions to A contain inequivalent representations (the
G-conjugates of x; and y», respectively). The inequivalence of two represen-
tations of the form Ind,% (X ® V1) and Ind,% (X ® V), with the same x but
Y| # Y, has been already proved in Theorem 11.6.1.

Now suppose that (8, W) is a G-irreducible representation. Then Resf@
decomposes into the direct sum of characters of A. If £ € A is contained in
Resﬁ@ then there exists w € W, w # 0, such that (a)w = &(a)w. For any
g € G we have:

O@I0(w] =0(g- g aghw = 0()0(g™ aghw
= £(g 'ag)f(Qw = E (@O (Rw],
that is, Resf@ contains all the g-conjugates of & and, in particular, an element

x € X. By Frobenius reciprocity, 6 is contained in Indf x . Keeping in mind
(11.45), this implies that 6 equals one of the representations in (11.44). [l

11.7 Semidirect products with an Abelian group

In this section we apply the little group method to an important class of semidi-
rect products (cf. Section 8.14), namely we suppose that the normal subgroup
is Abelian.

Theorem 11.7.1 Let G be a finite group and suppose that G = A x H with A
an Abelian (normal) subgroup. Given y € A, its inertia group K, coincides
with A x Hy, where H, = Staby(x) ={h e H : hy = x}. Moreover, any x €
A may be extended to a one-dimensional representation Y € A/Nﬁx by setting

X (ah) = x(a) VaeA, he H,. (11.47)
Finally, with the notation used in Theorem 11.6.2, we have:

G={IndS,, (X ®V): x €X. ¥ € Hy}.
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Proof. Fora,a; € A and h € H we have
(@) = x(h'a 'arah) = x(h'a "h)x (W 'ah)x (k™' ah)
= x(h'arh) ="y (ar)

thus showing that the inertia subgroup of x coincides with A < H,. Let x € A
and let us show that the extension of x defined by (11.47) is a representation.
By definition of H,, we have that x is invariant by conjugation with elements
in H, so that, if a;, a, € A and hy, hy € H,, we have
X(aithy - axhy) = X(athach;' - hiln) = x(aihiaah;")
= x(a)x(a2) = X(aih) X (azh>).

Finally, the last statement is just an application of Theorem 11.6.2. U
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Fourier analysis on finite affine groups
and finite Heisenberg groups

In this chapter we study the representation theory of two finite matrix groups,
the affine group (or ax + b group) and the Heisenberg group, with entries in a
finite field or in the finite ring Z/nZ.

We consider specific problems of Harmonic Analysis: our main results (taken
from [15]), consist in a revisitation of the Discrete Fourier Transform and of the
Fast Fourier Transform from the point of view of the representation theory of
the Heisenberg group. Other sources are the monograph by Terras [159], our
book on the representation theory of wreath products of finite groups [34], and
[142]. The results of Section 12.1 will play a fundamental role in Chapter 14.

We closely follow Notation 1.1.17, that is, we use Z, when we want to
emphasize that our arguments are based only on the structure of the additive
Abelian group of the integers mod 7, while we use Z/nZ when the whole struc-
ture of a finite ring is used, that is, multiplication enters the picture. We think
that this distinction is important in view of possible generalizations of some of
our arguments, for instance to more general Abelian (or even noncommutative)
groups, and to other rings.

12.1 Representation theory of the affine group Aff(F,)

Let g be a power of a prime number and denote by IF,, the field with g elements
(as in Chapter 6). Recall, cf. Example 10.4.5, that the (general) affine group (of
degree one) over IF, is the subgroup Aff(IF,) of GL(2, ;) defined by

AFf(F,) = {(g ’1’> ta €T, bqu}.

426
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Note that Aff(IF,) acts doubly transitively (cf. Exercise 10.4.16.(5)) on F, =

{ (T) 1x € IFq} by multiplication:

(g lf) (T) - (aij)- (12.1)

We begin with some elementary algebraic properties and use the notion of
a semidirect product of groups (cf. Definition 8.14.2). Consider the following
Abelian subgroups of Aff(IF,):

A:{(S ?):aeFZ}EF(’; and U={<(1) ’;):bem,}gm,. (12.2)

Lemma 12.1.1

-1
. . a b . {a b a' —a'b
(i) The inverse of <0 l) € Aff(F,) is (O 1) = ( 0 ) >

(1) the subgroup U is normal and one has
Aff(Fy) =U XA =F, xFy; (12.3)

(iii) the conjugacy classes of the group Aft(IF,) are the following:

10
a={lo 1)}
.« Ci = <0 1).beIFq},

o« C, = <g 1;) :bEIFq},whereaG]FZ,a#l.

Proof.

(i) This is a trivial calculation. From this, one easily deduces the identity

-1
u v\ {a b\ u v _fa (1 —a)+bu
(6 1) )65 = “TT) s

forall u,a € IE‘Z ando, b € F,.
(i) The normality of U follows from (12.4), after taking a = 1. Since

a b\ (a 0\ /1 a'b
0 1/ \o 1/J\o 1
for all a € IE“Z and b € F,, we deduce that Aff(IF,) = AU. Then (12.3)

0 1
(iii) This is a case-by-case analysis by means of (12.4).

1 0
follows from the fact that ANU = { ( ) } = {1 Aff(]Fq)}.
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Since Aff(IF,) is a semidirect product with an Abelian normal subgroup (cf.
(12.3)), we can apply the little group method (Theorem 11.7.1) in order to get a
complete list of all irreducible representations of Aff(IF,). As usual, ]I:’; (respec-
tively Iﬁ;‘;) will denote the dual of the additive group I, (respectively of the
multiplicative group F7).

From Lemma 12.1.1.(i1) and (12.4), after identifying A with the multiplica-

tive group I (via the map ( O) > a) and U with the additive group F,

a

0 1
. 1 b . . .

(via the map ( 0 1) > b), it follows that the conjugacy action (cf. (11.41))

of A =T, onﬁzﬁ[is given by
“%(b) = x(a 'b) (12.5)

forall x € U, beF,, anda € F:.
Denote by xo = 1 the trivial character of U.

Lemma 12.1.2 The action of A on U has exactly two orbits, namely {xo} and
Fy \ {xo0}. Moreover, the stabilizer of x € U is given by

if x # Xo

1
Staba() = L4
A if' x = o
Proof. Itis clear that x is a fixed point. From now on, let x € U be a nontrivial
character. For a € I, let us set

—1 .
o “x ifaely
X0 ifa=0,

that is, % *(x) = x(ax) for all x € IF,. We claim that the map a > “%* yields
an isomorphism from I, onto IE/‘;. Indeed, it is straightforward to check that
@by (x) = Y *(x)’x*(x) for all a, b, x € F,. Moreover, if a #0 we have
“X* # xo since the map x +> ax is a bijection of IF,. This shows that the homo-
morphism a — “* is injective. Since |IF,| = |]F/‘;|, it is in fact bijective. As a
consequence, we have that {*x : a # 0} = {%™* : a # 0} coincides with the set
of all nontrivial characters. O

Theorem 12.1.3 The group Aff(IF,) has exactly g — 1 one-dimensional rep-
resentations and one (q — 1)-dimensional irreducible representation. The first
ones are obtained by associating with each ¥ € A the group homomorphism
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W Aff(F,) — T defined by

a b
V] = 12.
(0 1) ¥ (@ (12.6)
forall ( 0 l;) € Aff(F,). The (q — 1)-dimensional irreducible representation
is given by
7 =1Ind)" "y, (12.7)

where x is any nontrivial character of U. Moreover, the character x™ of w is
given by:
5 g—1 ifa=1landb=0
X" (a )= 1 ifa=landb#0 (12.8)

0 1
0 otherwise.

Proof. This is just an application of the little group method (Theorem 11.7.1).
Indeed, by Lemma 12.1.2, the inertia group of the trivial character xo € U is
Aff(IF,). This provides the g — 1 one-dimensional representations simply by
taking any character ¢ € A. Moreover, the inertia group of any nontrivial char-
acter y € UisU since, by Lemma 12.1.2, Stabs (x) = {14}.

Finally, from (11.18) with 7 = A, and using again (12.5), we immediately

get
- (a b) B {Zadﬁx(alb) ifa=1

0 1 0 otherwise.
Then (12.8) follows from Corollary 7.1.3. O
We now give a concrete realization of .

Proposition 12.1.4 Fix x € IE"; \ {xo0} and set

[nﬁ (g l)f} () = x(bx)f @), (12.9)

«~ (a b
forall f € L(F}), <0 ]

sentation of Aff(F,) and

> € Aff(F,) and x € IF;. Then (mt, L(IF;)) is a repre-

2t~ —1In dAff(]F P
Proof. From Definition 11.1.1 it follows that the representation space of 7 is

= |F: Aff(F,) — C: f(gu) = xu)f(g), ¥g € Aff(F,),u € U} .
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Then for f € W and ( b) € Afi(IF,) we have

01

76 D=716 D6 )]G 3)

so that the map W > f&—) /€ L(Fy), where f(x) = f(g ?) for all x € F7,

is a well defined isomorphism of vector spaces. Moreover,

a b\ ~|/x O ~(a 'x —a'b
606 )= )
= x(=bx"Nf(a "x)
= x(bx~") f(a" ). O

Corollary 12.1.5
Resj:ff(]F 2 @ v.
weX
Proof. If € A (X F}), then r € L(F?) satisfies

(5 )| o= vt =v@we

forall a, x € F}. O

Exercise 12.1.6 Check that 7%, defined by (12.9), is an irreducible representa-
tion of Aff(IF,) without using the theory of induced representations.

Corollary 12.1.7

Res Aff(]F) @ X.

x€U\{xo}

Proof. Since m = Indgfm") x for any nontrivial character x € U and dim 7 =
q — 1 equals the cardinality of the set of all nontrivial characters of U, the state-
ment follows from Frobenius reciprocity. O

Exercise 12.1.8 Recalling the notation in (12.6) and (12.8), directly prove the
following:

(1) Resp" W = yg and Resy " "W = .
(2) Deduce (by using Frobenius reciprocity and Corollary 12.1.5) that

Aff(F, ) Aff(F,)

Ind;, =®,a¥ and Ind, Y=mdWv.


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.013
https://www.cambridge.org/core

12.1 Representation theory of the affine group Aff(IF,) 431

(3) Show a connection between (12.8) and the character formula in Exam-
ple 10.4.7, taking into account Exercise 10.4.16.

Exercise 12.1.9 Consider I, as a subfield of Fy», m > 2; see Section 6.6.

(1) Denote by m, (resp. myn) the (¢ — 1)-dimensional irreducible repre-

sentation of IF, (resp. the (¢™ — 1)-dimensional of F,). Prove that
AffFgn) g
IndAff(]FZ) ﬂq = qm ﬂqm.

Hint: the restrictions of the one-dimensional representations of
Aff(IF4») cannot contain 7.

(2) For§ € ]F/‘-q:, set &% = Resgsz and denote by E the corresponding one-
dimensional representation of Aff(IF,~). With the notation in Theorem
12.1.3, prove that

o . Aff(Fgn)
Hint: Examine Res NTANCE

AFF(F )

See [140] for a detailed analysis of the commutant of Ind AffE) T

We end this section with a brief treatment of the automorphism group of
Aff(IF,). First, we recall some elementary facts of group theory; see the mono-
graphs by Robinson [129], Rotman [132], and Machi [103], for more details.

Let G be a finite group and denote by Aut(G) its automorphism group.
With each g € G we associate the inner automorphism given by: &,(h) =
ghg™!, for all h € G. The inner automorphisms form a subgroup of Aut(G),
denoted Inn(G). If g € G and & € Aut(G) then @ 0 § 0 ™! = £,(,); in partic-
ular, Inn(G) is normal in Aut(G).

A subgroup N is characteristic if it is invariant with respect to every automor-
phism of G: @(N) = N for all « € Aut(G). Clearly, a subgroup is normal if and
only if it is invariant with respect to every inner automorphism and therefore a
characteristic subgroup is also normal. Two particular characteristic groups are:
the center Z(G) = {g € G : gh = hg for all h € G} and the derived subgroup
G’, which is the subgroup generated by all commutators, namely, the elements
of the form ghg™'h™!, g, h € G. Recall that if N is normal in G then the quotient
group G/N is Abelian if and only if G’ < N, and that, if G’ < H < G, then H
is normal in G. Finally, given g € G, the inner automorphism &, is trivial if and
only if g € Z(G). As a consequence, Inn(G) = G/Z(G).
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Exercise 12.1.10 Verify all the statements in the last two paragraphs.
Exercise 12.1.11

(1) Prove that the center of Aff(IF,) is trivial while its derived subgroup
isU.
(2) For u e ]FZ and v € [F, denote by &,, the inner automorphism of

. . . b
Aff(F,) associated with the element (u v), that is, &,, (a ) =

01 0 1
(a (1 —a)v + bu

0 | ) for all a € IFZ and b € IF,. Prove that for all

choices of (g i’) € Aff(F,), witha # 1 and (é T) € U withc # 0,

there exists &, , such that

a b 1 ¢ 1 1
(0 D) en wa 5. ()= )

(3) Deduce the following fact: for each nontrivial o« € Aut(Aff(F,)) there
exists &, , € Inn(Aff(IF,)) such that:

11 1 1
fupoa(d)=A and a,,DO"‘(o 1)2(0 1).

(4) Suppose that g = p", p prime number, and denote by o the Frobe-
nius automorphism of F, (cf. Section 6.4). With the notation in (3),
let us set § = &,, o ov. Prove that there exists 0 < k < n — 1 such that

a b\ o¥(a) oF(b) a b
ﬂ(o 1>_< 0 ) )forall (O 1>€Aff(IB‘q).

Hint: First of all, consider the restrictions 8|4 and 8|y. Then apply 8 to
(12.4) witha=b=1and o = 0.
(5) Deduce that Aut (Aff(]Fq)) = Aff(F,) x Aut(F,).

12.2 Representation theory of the affine group Aff(Z/nZ)
In this section we examine the representation theory of the group

Aff(Z/nZ) = {(g i’) ca e UZ/nT), b e Z/nZ} ,

that is, the affine group over the ring Z/nZ. As far as we know, most of the
results presented here are new. We use the notation in Chapter 1. Clearly, for
n = p prime we have Aff(Z/nZ) = Aff(IF,).
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First of all, in order to generalize the arguments in the proof of Lemma 12.1.2,
we study the action y of U(Z/nZ) on Z/nZ given by multiplication:

y(a)b = ab,

for all @ € U(Z/nZ) and b € Z/nZ. From the results in Section 1.5 it follows
that it coincides with the action of Aut(Z,) on Z,. This action has been exten-
sively studied in [4]. We limit ourselves to report some basic results, which
form an interesting complement to Gauss’ results in Proposition 1.1.20 and
Proposition 1.2.13. We first introduce the following notation: for n € N, we
denote by D(n) the set of all positive divisors of n. Moreover for r € D(n) we
set A(r) ={0 <k <n-—1:gcd(k,n) =n/r} (cf. (1.6)), and regard A(r) as a
subset of Z/nZ. In particular, A(n) = U(Z/nZ) and A(1) = {0}.

Theorem 12.2.1 The decomposition of Z./nZ into the orbits of y is
Z/nZ = ]_[ A(r). (12.10)

reD(n)

Moreover, the stabilizer of = € A(r) is

UZ/nZ) ={a € U(Z/nZ) : a =1 mod r} (12.11)
and
UZ/nZ)

Proof. For each r € D(n) let
Orb(n/r) = {ag modn:ac L{(Z/nZ)}
be the orbit containing n/r, Clearly, if gcd(a, n) = 1 then also ged(a, r) = 1,
so that ged(an/r, n) = ged(a, r)n/r = n/r, and this yields
Orb(n/r) C A(r). (12.13)

The solutions a € Z of the congruence equation a” = % mod n are given by
Proposition 1.2.13 (and its proof): selecting 1 as a fixed solution, they are:

14jrn  j=o0.1,.... %~
r

Among these numbers, we must select those belonging to U/(Z/nZ), and this
proves (12.11).
Now consider the map

® : UZ/nZ) = An) — U(Z/rT)
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givenby O(a) = b,ifa =b+ jrwithO < b <r — 1and j > 0, thatis, b is the
remainder of the division of a by r. Clearly, it is well defined: if gcd(a, n) =
1 then gcd(b, r) = 1. Indeed, gcd(b, r)|la and r|n force gcd(b, r)| ged(a, n).
Moreover, it is straightforward to check that it is a homomorphism, namely
O(a1az) = O(a;)O(az) mod r. Let us prove that it is surjective. Let b €
UZ[¥Z), thatis 0 < b < r — 1 and gcd(b, r) = 1. Consider the integer

a:b‘i‘PlPZ"'PmV,

where py, pa, ..., pn are the (distinct) primes that divide n but not b. Now, if
pis a prime and p|n then we have two possibilities:

e if p|bthen pt pyps- - pur and therefore p cannot divide a;
o if p{ bthen p|p;p; - - - pn and therefore again p cannot divide a.

In conclusion, p does not divide a and we have proved that gcd(a, n) = 1. As
clearly, b = ®(a), this ensures that ® is surjective. Finally, from (12.11) we
deduce that U, (Z/nZ) = Ker® and this implies (12.12). In particular,

2y = 22

@(r)’

where ¢ is the Euler totient function (see Definition 1.1.18). Then we have:

@(r) = |A(r)] (by (1.8))
> |Orb(n/r)| (by (12.13))
|U(Z/nZ)]
=—" by (10.44
UZ/n)] (by (1044
= (),
which forces the equality in (12.13), and (12.10) follows. ]

We recall (cf. Definition 1.1.6 and Exercise 1.1.5) that the greatest common
divisor gcd(m, n, k) of three integers m, n, k is the largest positive integer that
divides each of m, n, k and it equals the smallest positive integer that may be
written in the form um + vn + wk, with u, v, w € Z; in fact {um + vn + wk :
u, v, w € Z}is the principal ideal in Z generated by gcd(m, n, k). Compare with
Section 1.1. See also the monographs by Apostol [13] and Nathanson [118]. In
the following, we consider the action of Aff(Z/nZ) on Z/nZ, in analogy with
(12.1), as well as the subgroups (cf. (12.2))

A= {(g ?) ae U(Z/nZ)} and U = {(é i’) ‘bhe Z/nZ} .
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Lemma 12.2.2

®

(ii)

Proof.

®
(ii)

The subgroup U is normal and one has
Aff(Z/nZ) 2 U x A =7, x U(Z/nZ), (12.14)

the conjugacy classes of the group Aff(Z/nZ) are listed as follows:

G

o C, = {((1) l17) :be A(r)}, where r € D(n);

01
where a € U(Z/nZ), a # 1, and d € D(gcd(a — 1, n)).

° Ca,d: {(a b) bEZ/nZ and ng(a_l,n,b):d},

See the proof of the corresponding statement in Lemma 12.1.1.
By (12.4), for a = 1 the computation of the conjugacy orbits reduces
to the computation of the y -orbits in Theorem 12.2.1 and, this way, we
determine the orbits C,, r € D(n).

Now suppose that a € U(Z/nZ), a # 1, and b € Z/nZ. Again by
(12.4), we have to determine those ¢ € Z/nZ such that the equation

v(l—a)+ub=c (12.15)

has solutions u € U(Z/n7Z) and v € Z/nZ. First of all, note that if we
think of a, b, ¢, u, v as integers, then this equation may be rewritten in
the form

o(l —a)+ub+kn=c and gcd(u,n) =1, (12.16)

with v, u, k € Z (k serves as another unknown). By the properties of the
gcd, equation (12.16) has a solution only if gcd(1 — a, b, n)|c. Since we
can switch the role of b and ¢ in (12.15) (because u is invertible mod n),
we conclude that this equation has a solution only if ged(1 — a, b, n) =
ged(1l —a, ¢, n).

Now suppose that ged(l —a, b, n) = ged(1 — a, ¢, n); we want
to show that (12.16) has a solution. Set r = gcd(l —a,n), so
that ged(b, r) = ged(1 — a, b, n) = ged(1 — a, ¢, n) = ged(c, r). Then
there exist v, k € Z such that » = v(1 — a) + kn. With this position,
(12.16) becomes:

ub+r =c and gecd(u,n) = 1.
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Moreover, in the last equation » may be replaced by any of its mul-
tiples hr, h € Z, because this corresponds to the replacement of v, k
by vh, kh, respectively. Therefore, to solve (12.16) it suffices to solve
ub = ¢ mod r, which, multiplied by *, yields the equivalent equation

nb  nc
u— = — mod n and gecd(u, n) = 1.
r r

By Theorem 12.2.1 the last equation has a solution because
b
ecd (") = ge0 (20, 21) = geatt. 1) = gt = ged (1),
r r r r r r
g

Since Aff(Z/nZ) is a semidirect product with an Abelian normal subgroup
(cf. (12.14)), we can again apply Theorem 11.7.1 (the little group method) to
geta complete list of all irreducible representations of Aff(Z/nZ). As usual,
Zn /nZ (respectively U (Z /nZ)) will denote the dual of the additive group Z/nZ
(respectively the multiplicative group U/(Z/nZ)). After identifying A with the

multiplicative group U (Z/nZ) (via the map <g ?) > a) and U with the addi-

tive group Z/nZ (via the map <(1) le) > b), it follows from (12.4) that the
conjugacy action (cf. (11.41)) of A on U= Z//n\Z is given by
% (b) = x(a'b) (12.17)

for all y € ﬁ, beZ/nZ,and a € U(Z/nZ). For 0 < k < n — 1, denote by x;
the character of U given by: xi(b) = exp Z”kai, forall 0 < b <n—1, so that
(12.17) becomes: “x; = X4-1k-

Lemma 12.2.3 The orbits of the action of A on U are:
Q ={xx: k€ AW)}, reDn).
Moreover, the stabilizer of xn)r € 2, is the group U,(Z/nZ).

Proof. This is an immediate consequence of Theorem 12.2.1. O

Now we may apply the little group method.
Theorem 12.2.4

Af(Z/nZ) = {nw = Ind}T ) (G ® W) i 7 € D). Y € u,(Z/nZ)] .
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More precisely, the right hand side is a complete list of irreducible, pairwise
inequivalent representations of Aff(Z/n7Z.). Moreover,

dimrm,y = @(r),

and Aff(Z/nZ) has % irreducible, pairwise inequivalent representations of
dimension ¢(r).

Note that
. 2 (n)
Y (@immy)= Y %-w(rf:go(n) > o)
reD(n) 1//6U,(/Z\/nZ) reD(n) ¢ reD(n)
(by Proposition 1.1.20) = pn)n

(by (12.14)) = |Aff(Z/nZ)|,

in agreement with Theorem 10.2.25.(iii).

12.3 Representation theory of the Heisenberg group H;(Z/nZ)

This section is based on [142]. A recent application of the material in this sec-
tion is in [24].

The Heisenberg group over Z/nZ is the matrix group

1 x z
Hy(Z/nZ)= {0 1 y| :x,y,z2€Z/nZ
0 01

Exercise 12.3.1 Show that Hs(Z/nZ) is isomorphic to the direct product
Z/nZ x Z/nZ x Z/nZ endowed with the multiplication

(6, 2) - (w0, w) = (x+u,y+o,x0+w+z), (12.18)
for all x, y, z, u, v, w € Z/nZ. In particular, check that

x5, ,2) 7 = (=x, =y, —z+x), (12.19)
x5, 2 W, 0,w) = (U—x,0—y, 0 —7+xy —x0), (12.20)

x,y, 2, v, w)(x,y, z)_l = (u,v, w + xv — yu), (12.21)
and
x,y2)=0,y,2)(x,0,0)=(0,0,2)-(0,y,0)- (x,0,0). (12.22)

In what follows, we use the notation in Exercise 12.3.1 rather than the matrix
notation.
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Proposition 12.3.2 The conjugacy classes of Hy(Z/nZ) are:

n
Cobe= , b, k ged(a, b, k=0,1,..., —— —1¢,
a.b, {(a ¢+ kged(a, b, n)) scd(a, b, n) }

a,beZ/nZandc=0,1,...,gcd(a,b,n)— 1.

Proof. By (12.21), the conjugacy class containing a fixed element (a, b, ¢) €
H3(Z/nZ) is

{(a,b,c+ xb—ya):x,y € Z/nZ}.

We argue as in the proof of Lemma 12.2.2(ii). We fix an element m € Z/nZ and
study the equation xb — ya = m in the unknowns x, y € Z/nZ. This is equiva-
lent to

xb—ya+kn=m (12.23)

in the unknowns x,y,k € Z (we think of a,b,m as integers). Clearly,
(12.23) has a solution if and only if gcd(a, b, n)|m. Therefore, two elements
(a, b, c), (u,v, w) € H3(Z/nZ) are conjugate if and only if a = u, b = v, and
¢ = w mod gcd(a, b, n). O

Proposition 12.3.3 The Heisenberg group is the semidirect product
Hy(Z/nZ) = 72 %y L, (12.24)

where Z,zl ={0,v,w):v,w e Z,} and Z,, = {(x,0,0) : x € Z,} are viewed
as additive groups, and ¢ is the Z-action on 72 given by

¢:(v, w) = (v, W + xv),
forallx € Z,, and (v, w) € Z,% (here x, v, w are viewed as elements in Z./nZ).

Proof. This follows from (12.21) and (12.22). Just note that, in particular,
(x,0,0)(0, v, w)(x, 0, O)_l = (0,0, w + xv). O

We next apply Theorem 11.7.1, with
G =Hy(Z/nZ), A=7? and H =7,

To this end, we need some preliminary results. Recall that the elements of A
are the characters x;,, s, =0,1,...,n— 1, given by

2mi
X5 (0, W) = exp <—(sv + tw)) , (12.25)
n

for all u, v € Z,; see Section 2.3.
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Proposition 12.3.4 The orbits of H on A are:
Ry = {Xss 1 5 =k mod ged(t, n)},

for0 <t <n—1and0 < k < gcd(t, n) — 1. Moreover, the stabilizer of ;. €
R does not depend on the choice of s and it is given by

n
H)(u = {(x, 0,0) e H:x=0mod m} = chd(fﬁn).

Proof. The action of H on Ais given explicitly by:

=00 (v, w) = x50, W — xD)

|:271i :|
=exp | —I[sv +t(w —xv)]
n

{2711' }
=exp | —I[(s —tx)o +tw]
n

= Xs—tx,t (U , w)

Then x, , and x,,, belong to the same H-orbit if and only if t;j =1, =1
and there exists x € Z such that s; — tx = s, mod n. By Proposition 1.2.13
this equation has a solution if and only if s; = s, mod gcd(z, n). Finally, we
observe that the stabilizer of x,, is made up of those x € H such that xt =0
mod n. U

In more explicit form,

n
Rii=3xss:s=k+ jgedt,n),0<j< —— —1
k.t {X,z s + jged(z, n) J scd(n. 1) }

and

n
H, ={{j——,0,0):0<j<gcdin,t)—1}.
X {(chd(t,n) ) J =< ged(n, 1) }

Moreover, for a given ¢ with 0 <t < n — 1 we have the following particular
cases:

o Ift = 0thenged(0,n) =nand Ry0 = {xx0}.k=0,1,...,n— 1: now each
orbit consists of a single element and its stabilizer is H,, , = H.
o If gcd(?, n) = 1 then we have exactly one orbit of n elements, namely Ry, =

{Xs :s=0,1,...,n— 1}, and the stabilizer is trivial: H, , = {(0, 0, 0)}.
According to the preceding analysis, we can choose

X={x,:0<t<n—10<k<ged®t,n) —1}
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as a set of representatives of the quotient space A, / = (cf. Theorem 11.6.2). By
(11.47) and (12.22) we deduce that the extension of these characters to A < H,,,
is given by

X (%, 3, 2) = xir (0, 2), (12.26)

for all (x,y,z) € A x H,,,. We also need a parameterization of the characters
of the groups H,,, = Zgcq(,n): they are given by

kit

. () ex 2mi hi
ged(e,n),n{J) = €Xp ged(z, n) )

h,j=0,1,..., gcd(z, n) — 1. Their inflation to A x H,,, is given by

I x ged(t, n) 2mi
1pgcd(z,n),h(xa Y, 7)) = wgcd(z,n),h T = eXp Thx s

for all (x,y,z) € A x H,,, (so that
needed to apply Theorem 11.7.1.

m |x). We now have all necessary tools

Theorem 12.3.5

HyZE) = {xn = 55" (627 ® Vieatmn) °
0<t<n—1,0<h k<ged(t,n)— 1]. (12.27)

More precisely, the right hand side is a complete list of irreducible, pairwise
inequivalent representations of Hy(Z/nZ.). Moreover,
n

dimmy 5 = ———
MTkeh = 0 cd(, n)

and, for each d € D(n), the group H3(Z/nZ) has exactly d*¢(n/d) irreducible,
pairwise inequivalent representations of dimension 3. In particular, it has n?
one-dimensional representations (case d = n) and ¢(n) irreducible represen-
tations of maximal dimension n (case d = 1).

As for Aff(Z/nZ), note that

>y i (dimry, 5)° = ) (g)z'dzw(n/d)

deD(n) 0<t<n—1: k,h=1 deD(n)
ged(t,n)=d
(by Proposition 1.1.20) =n’
= |H3(Z/nZ)| ,

in agreement with Theorem 10.2.25.(iii).
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Proposition 12.3.6 Fix 0 <t <n—1 and 0 <h,k<d—1, where d =
gcd(t, n). Then a matrix form of my .y, is given by the map

n__
d 1

Hy(Z/E) 3 (5,9,2) = a3, = (Measens(e. % 9)

r,s=

where Ty pirs(x, y,2) = 09f 54 (x + 5 — 1) and

2mi
Iy p;rs (X, Y, 2) = €xp <T [ky +t(z—ry)+h(x+s— r)]) , (12.28)
otherwise.

Proof. If (x,y, z) € H3(Z/nZ) we may compute the remainder of x modulo 7,
namely the integer 0 < r < 7 — 1 given by the Euclidean division: x = g% + r.
Therefore (x,y, z) = (1, 0,0)(¢5. v,z — ry), where (¢5.y.z—ry) € A x Hy,,
and

1]

H3y(Z/nZ) = ]_[(r, 0,0) (A x Hy,,) (12.29)
r=0

is the decomposition of H3(Z/nZ) into left cosets of A x H,, ; see (10.49).
Moreover, if 0 <r,s < 3 — 1 then
(10,007 (x,3.2)(5,0,0) = (x+5—r,y,2—ry)

belongs to A x Hy,, if and only if 5|(x + s — r). If this is the case, we have

P — (x+s—r)d
(X ® Yan) c+s—ry,2— 1) = xe:(, 2 — )Wan <T> .

Then (12.28) follows from (11.19), taking into account the explicit formulas
for xz: and ¥ 5. O

We now study some particular cases of (12.28).

« Fort = 0 we get the n?> one-dimensional representations, given by:

2mi
My 0,n(x, ¥, 2) = exp T(ky + hx) |,

for (x,y,2) € H3(Z/nZ),0 < k,h <n— 1.
o Suppose that x = 1 and y = z = 0. Then the number 1 4 s — r is divisible by

n

% in the following two cases: if 1 + s — r = 0, and therefore the correspond-

no_

ing entry is equal to 1, and if s = 5 — 1, r = 0, so that the entry is equal to
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exp( % h). Therefore,

0 1 0 0
0 0 1 0
y,:n(1,0,0) =
: : |
exp(Zh) 0 0 -+ 0

e For y = z = 0 we have (x, 0,0) = (1, 0, 0)* and therefore:

X

0 1 0 --- 0
0 0 1 0

My n(x, 0,0) = : RRCIUNREEE I (12.30)
: : |
exp(3Zh) 0 0 -+ 0

« Suppose that x = 0. Then 5|(s — r) if and only if s = r, so that the matrix is
diagonal and the r-th coefficient is

2mi 2mi 2mi
exp e [ky +t(z —ry)] | =exp T(ky +17) | exp —rtyT .

Therefore

Iy .1(0,y, 2) = exp [%(ky + lZ)j|

1 0 0 e 0
0 exp(—ty) 0 e 0
0 0 exp (—2ty%) :
: : : 0
0 0 0 coexp[— (& = 1)y ]

(12.31)

In particular, if also y =0, then the matrix is scalar: I, ;(0,0,z2) =
exp (z%itz) L.

« Finally, we observe that we can use (12.22) to reduce the computation
of I, n(x,y,z) to the cases (12.30) and (12.31), because Iy, ;(x,y,2) =
r,n(0, ¥, 2) i n(x, 0, 0).
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Exercise 12.3.7 Prove the following explicit expression for the character x ;.
of the representation my ; :

n 2mi
Xk (X, Y, 2) = 1n/d(x)1n/d(y)3 exp [T(hx +ky + fZ)] , (12.32)

where
1 if g |x

0 otherwise.

1,4(x) = {

Exercise 12.3.8

(1) By means of Proposition 10.2.18 and (12.32) prove that

Hy(Z/nZ.
Resy "y n = @ Xe

0<{<n—1:
¢=hmod d

and

Hs(Z/nZ)
RCSA Tkth = @ Xsits

0<s<n—1:

s=k mod d

where x,(x) = exp (%Ex) for all 0 < x <n — 1 (characters of H =
Z,) and x;, is as in (12.25).
(2) By means of Frobenius reciprocity, deduce that

IndZB(Z/”Z)XZ ~ @ Tkt hr.0)»

0<r<n—1
0<k<ged(t,n)—1

where h(t, £) is the remainder of the division of £ by gcd(¢, n), and

Hy(Z/nZ)
IndA3 st ™~ @nk,f,hv
0<h=<d-—1

where k is the remainder of the division of s by d.

12.4 The DFT revisited

The connection between classical Fourier analysis and the continuous Heisen-
berg group has been well studied and we refer to the expository paper [76],
and Folland’s monograph [62]. In one of our main sources, namely [15], this
connection is extended to the finite case and our purpose is to give a clear expo-
sition of these facts; see also [142]. We focus on the key point: by means of suit-
able realizations of the irreducible representation g 1 9, the Heisenberg group
may be seen as a group of unitary transformations of L(Z/nZ), and the Fourier
transform intertwines two different such realizations.
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For the moment, we fix a positive integer n and we set x (k) = exp (%”k),
for k € Z. Also, to simplify notation, we set G = H3(Z/nZ). Moreover, in the
notation of (12.27), we set m = 71,0 and we denote by V; its representation
space. From (11.16), and (12.18) with u = 0, it follows that V,; is made up of
all functions f: G — C such that

fy+v, a0+ 24+ w) = x(=w)fx,y,2), (12.33)

forall (x,y,z) € Gand v, w € Z/nZ. Indeed, in (12.25) we have xo (v, w) =
x(w), in (12.26) and (12.27) the subgroup H,,, is trivial, and, finally, 7 =
Indfx(),l. From (12.33) and the identity (x, y, z) = (x, 0, 0)(0, y, z — xy), it fol-
lows that f € L(G) belongs to V, if and only if it satisfies the condition:

f()C, ys Z) = X(_Z + x)’)f(x, O’ O)v (1234)

for all (x,y, z) € G, so that it is determined by its values on the subgroup H. In
other words, in (11.17) 7 = H (actually, this is a particular case of (12.29)).
Finally, we observe that from (12.20) with v = w = 0 it follows that

[r(x, 3, 2)f1u,0,0) = f(u—x, =y, =z + xy). (12.35)

We now translate 7 into an equivalent representation on L(Z/nZ) showing
its relevance to the DFT on a cyclic group. We need a series of notation
and identities. First of all, invoking (12.34) we can define the linear operator
U: V, — L(Z/nZ) by setting

[Uf]x) = f(x,0,0), (12.36)
for all f € V; and x € Z/nZ. Its inverse is given by
[U7' ]y 2) = x(=z+x0)f (), (12.37)

forall f € L(Z/nZ) and (x, y, z) € G. Itis immediate to show that U (and there-
fore U~") is an isometric isomorphism; just recall the definition of scalar prod-
uct in an induced representation (11.3). Then we set

7y, 2) = Un(x, y, 2)U™! (12.38)

for all (x,y,z) € G. Clearly, 7% is a unitary representation of G on L(Z/nZ),
equivalent to 7. But another description of 7* will reveal its importance. We
introduce three unitary operators T (translation operator), My, (multiplier oper-
ator), and S; on L(Z/nZ) by setting:

(T flw) = fu—x),  [Myflw) = x(=yuw)f@), [S.f1w) = x(2)f (W),

forall f € L(Z/nZ)andx, y, z, u € Z/nZ. Note that T has already been defined
in Section 2.4.
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Lemma 12.4.1 We have the following commutation relation:

M, = S;yM,T,, (12.39)
forall x,y € Z/nZ.
Proof. Let f € L(Z/nZ) and x, y, u € Z/nZ. Then

[TM, f] () = [Myf] (u — x) = x(—yu + xy)f(u — x)
= x(=yu+xy) [Tof1(w) = x (xy) [MyTof] ) = [SeuM,Tof ] ). O

The Fourier transform intertwines 7, and M,: from Exercise 2.4.7 (see also
Lemma 4.1.1) it follows that

FT,=MF  and  FM,=T.F. (12.40)

We use the normalized Fourier transform, see Section 4.1. Note also the
analogous identities for the inverse Fourier transform: F 1T, =M_.F " and
}'"My = 7}}'".

Theorem 12.4.2

(i) The irreducible representation n* defined in (12.38) may be expressed
in the form:

7t (x, v, 2) = S.M, Ty, (12.41)

(x, ¥, 2) € G. Moreover, it is a faithful representation of G as a group of
unitary operators on L(Z/nZ).

(ii) The map J: G — G defined by setting J(x,y, ) = (—y, x, 7 — xy), for
all (x,y, z) € G, is an order four automorphism of G.

(iii) The G-representation m° = m® o J is equivalent to w* and the equiva-
lence is realized by the Fourier transform:

Frt(x,y,2) =7"(x, 5, 2)F, (12.42)
forall (x,y,2) € G.
Proof.
(1) Forall f € L(Z/nZ), (x,y,2) € G, and u € Z/nZ, we have:

[7°(e, 3, f ] ) = [Un (x, 3, DU f] (w)
(by (12.36)) = [ (x,y, 20U f] (u,0,0)
(by (12.35)) = [U7"f](u —x, —y, —z +xy)
(by (12.37)) = x(z — uy)f(u — x)
= [S:M, T, f] (w).
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Moreover, if (x,y,z) € Kern? then m¥(x, v, 2)80 = 8y, that is, x(z —
uy)8,(u) = 8o(u) for all u € Z/nZ. 1t follows that x =0 =y = z.

(i) This follows from easy calculations. For instance, J2(x,y,z) =
(—x, =y, 7) yields J* = Idg.

(ii1) First of all, note that from (12.41) and (12.39) we deduce that:

T[b(x’ y,z) = ﬂn(—y, X, 2= xy) =S yM Ty = S;T_yM,.
Therefore, using the identities in (12.40) we get:
Fri(x,y,z) = FSM,T, = S,T_,FT, = S.T_,M,.F = n°(x, y, 2)F.
g

Note that, in the proof above, we have also obtained the following explicit
form of m*:

[7%(x, y, 1) = X (z — uy) f(u — x). (12.43)

In other words, G may be seen as the group generated by the translation opera-
tors T, and the multiplier operators M,; then the operators S, enter the picture by
virtue of the commutation relation (12.39). The automorphism J switches the
role of x and y, giving a different realization of G as a group of unitary opera-
tors. The Fourier transform intertwines the translation and multiplier operators
and therefore also the different realizations of G. That is, J corresponds to the
conjugation by F, in formule 7” = Fr*F~!. Note also that the order of J as
an automorphism of G coincides with the order of F as a unitary operator; see
Proposition 4.1.2. We may also express all of this by saying that the diagram
in Figure 12.1 is commutative

G — % (L(Z,/nT))

b
Jl \ \L}-(')"Fl
#

G —"\(L(Z/nZ))

Figure 12.1. The commutative diagram showing that the Fourier transform F
intertwines the representations 7” and 7r*. Here, ${(L(Z/nZ)) is the group of unitary
operators on L(Z/nZ), and F(-)F~! indicates conjugation by F.

Finally, note that the J-image of the group Z2 in (12.24) is nothing but
{(u,0,w) : u, w € Zy,).

Exercise 12.4.3 Define 7* by means of (12.41). Then, using the commutation
relations (12.39), prove that 77 is a representation of G and, furthermore, using
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the converse to Schur’s lemma (Exercise 10.2.9) and Theorem 2.4.10, prove
that it is irreducible.

12.5 The FFT revisited

In this section, following again [15], we derive an operator form of the Fast
Fourier Transform by means of intertwining operators between different real-
izations of the representation g ; o. We begin by fixing two integers m, n > 2
and setting G = H3(Z/nmZ). We introduce the subgroups

Ki={(rn,sm,0):0<r<m—-—1,0<s<n-—1}
and
K, ={(sm,m,0):0<r<m-—1,0<s<n-1},

both isomorphic to Z,, & Z,. Clearly, an element (x, y, z) € G belongs to K; if
and only if z = 0, n|x, and m|y, while it belongs to K if and only if z = 0, m|x,
and nl|y. In what follows, we use some notation similar to that in Chapter 5. In
particular, for 0 < u, v < nm — 1 we set

u=s+rm, o=r+sm, with 0<s,5<n—1,0<r7<m-—1.
(12.44)

b as in Section 12.4, but

We also use the notation x (#) = exp(%u) and 7%,
now 7 is replaced with nm. Then we define Z; as the space of all f € L(G) such

that:
fu,v,w) = x(ssm—w)f(s,7,0) (12.45)

for all (u, v, w) € G, where u, v are as in (12.44). Finally, we define the Weil-
Berezin map W, : L(Z/nmZ) — L(G) by setting

1 m—1
Wi f](x,y,2) = m—ﬁx(xy ~2) g fln+x)x(€ny),  (12.46)

forall f € L(Z/nmZ) and (x,y, z) € G.
Proposition 12.5.1

(1) Inthe notation of Example 11.1.6, L(G/K)) is the space of all f € L(G)
such that:

flu, v, w) = (5,7, w— ssm) (12.47)

Sorall (u,v, w) € G, where s, s, r, T are as in (12.44).
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(ii)

(iii)

Proof.

®

(ii)

Z, is a subspace of L(G/K,) and it is invariant with respect to the left
regular representation A of G.

Denote by A the restriction of the left regular representation of G to Z,
and endow this space with the norm of L(G/K1) (recall (11.3)). Then
the Wi-image of L(Z/nmZ) is exactly Z, and W is an isometry that
intertwines % with Ay: for all (x,y,z) € G

Wimh (x, v, 2) = A (x, y, 2)W;. (12.48)

A function f € L(G) is right K-invariant if and only if
fu+rn, o+ sm, w4+ usm) = f(u, v, w), (12.49)

for all (u, v, w) € G and (rn, sm, 0) € K;. Moreover, in the notation of
(12.44), each element of G may be written uniquely in the form

(u,v, w) = (5,7, w — ssm)(rn, sm, 0).
Therefore
(7w):0<5<n—-1,0<7<m—-1,0<w<mn-—1}

is a set of representatives for the left cosets of K in G and our assertion
is a particular case of (11.7) and (11.17); see also Example 11.1.6.

If f satisfies (12.45), then it also satisfies (12.47). Indeed, (12.45), with
s = r = 0 and w replaced with w — ssim, yields

fG.7, w— ssm) = x(ssm—w)f(5,7,0), (12.50)
and therefore, for arbitrary u, v, w,

[0, w) = x(s5m — w)f (5.7, 0) (by (12.45))
= f(5,7, w — ssm). (by (12.50))

It follows that Z; < L(G/K;). Note also that if f € Z; then
flu,v,w) = x(—w)f(u,v,0), (12.51)

because both sides are equal to x (—w)x (ssm) f (s, 7, 0). Moreover, it is
easy to check that Z; is exactly the set of all f € L(G) that verify both
(12.47) and (12.51). Finally, by means of (12.20), we deduce that if f
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satisfies (12.51) then

[ACe, y, ) fl(u, 0, w) = f(u—x,0—y, w—2z+ Xy —x0)
= x(—w)x@—xy+x0)f(u—x,0—-y0)
= x(—w)f(u—x,v —y, —z+xy —xv)
= x(—w)[A(x, y, 2)f1(u, v, 0).

That is, the space of all functions satisfying condition (12.51) is A-
invariant. Therefore, also Z; is A-invariant, because it is the subspace
of all functions in L(G/K)) satisfying (12.51).

(iii) For f € L(Z/nmZ) and assuming (12.44), we have:

m/n[Wi fl(u, v, w) = my/n[W, f15+ rn, 7+ sm, w)

= x(—w + 57 + Ssm + 7rn)

m—1
DY fln+ m+ ) EF+ smn)
£=0
m—1
= x(—w + SF+ ssm + 7rn) Zf((ﬁ + rn+5)x (€rn)
=0
m—1
t=LC+r) = x(—w +§‘r‘+s~sm)2f(m + Sy (Fn)
=0

= my/nx(—w + Ssm)[W; f1(5, 7, 0).

Therefore, by (12.45), the image of W; is contained in Z;. Moreover,
for f1, o € L(Z/nmZ) we have:

1 -
Wifi, Wifal = — 3 WALy, W A1, )

(x,y,2)€G

m—1
e Y Y Y A+ 0BG

n2m?
z€Z/nmZ Ly, €,=0 x€Z/nmZ

> x(tiny)x(Cany)

YEZL/nmZ

1 m—1
by@7) =—3 Y fln+0fEn+x)

0,=0x€Z/nmZ

= (f1, f2)L@/mmz)-
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It follows that W is an isometry. Finally, for (x, y, z), (&, v, w) € G and
f € L(Z/nmZ) we have:
[A1Gx, y, W fl(u, 0, w) = Wlf] (u—x,0—y, —z+xy+w —xv)

= ——=x(z—w+uv —uy)

mf
m—1

Y fln+u—x)xEn@ —y))
£=0

(by (1243)) = mfx( w + uv)

m—1

Y [T, Y, D f1En + w)x (o)
=0

= [Wlnﬁ(x, v, z)f] (u, v, w). 0

In Exercise 12.5.9 we outline a different proof of the fact that Wj is an inter-
twining operator, also showing how to derive its expression.

Now we concentrate on K. First of all, we change the notation in (12.44):
forO < u,v < nm— 1 we set

u=7r+sm v=5+rn, with 0<s5,5<n—-1,0<r7<m-—1.

(12.52)
Then we define Z, as the space of all f € L(G) such that
flu, 0, w) = x('rn — w)f(7, s, 0) (12.53)

for all (u,v,w) € G, where u,v are as in (12.52). Moreover, we define
W, : L(Z/nmZ) — L(G) by setting

n—1
f (xy—z);f(tm—X)x( tmy),  (12.54)

for all f € L(Z/nmZ), (x,y, z) € G. Finally, we define M: L(G) — L(G) by
setting M f = f o J, where J is as in Theorem 12.4.2(ii), that is,

MfI(x, y,2) = f(=y, x,z2—xy)

forall f € L(G) and (x,y,z) € G.

(Waf1(x,y,2) =

Proposition 12.5.2

(1) Z,is a subspace of L(G/K3) and it is the M-image of Z,.
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(i) If we set ha(x,v,2) = MAi(x, y, )M, that is,
M (x,y, 2) = Ma(x, y, DM, (12.55)

then A, is a representation of G on Z, equivalent to Ly (by means of
(12.55)). Moreover,

(A2, 3, Dflu, 0, w) = f(y —u, 0 +x, w — 72— yv),

forall (x,v,2),(u,v,w) € Gand f € Z,.

(iii) Endow the space Z, with the norm of L(G/K;) (recall (11.3)). Then
the Wy-image of L(Z/nmZ) is exactly Z, and W, is an isometry that
intertwines m° with h>. Moreover, if F is the Fourier transform on Zy,
then

Wr = MW, F~ L. (12.56)
Proof.

(i) The proof that Z, < L(G/K;) is the same of that in Proposition
12.5.1(ii); see also Exercise 12.5.3. Moreover, using the notation in
(12.52), for all f € Z; we have:

MF1F+ sm, 5+ rn, w) = f(=5 — rn, 7+ sm, w — 7s — ¥rn — Ssm)

(by (12.51)) = x(—w +7rn) f(—5 — rn, 7+ sm, —7s — Ssm)
(by (12.49)) = x(—w +7Frn) f(—5,7, —Ts

= x(—w +7rn)[Mf1(F,5, 0),

sothat M f € Z,.
(i) From its definition and the fact that M is an isometry between Z; and
Z, it follows that A, is a G-representation on Z,. Moreover, for all
(x,» 2), (u,v, w) € G, we get
[M)»l(x, ¥, z)M_lf](u, v, W)= [kl(x, v, z)M_lf](—v, U, W — uv)
(by (12.20)) = [Mflf](—v —X, U—Y, W—UL —Z+Xy—Xit)
=fu—y,0o+x,w—z—yv).

(iii) For all (x, y, z) € G, we have:
MW F 7" (x,y, 7) = MW (x, 3, 2)F ! (by (12.42))

= M (x,y, )W F ! (by (12.48))
= A (x, y, MW, F~! (by (12.55)).
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Therefore, it suffices to prove directly (12.56). Indeed, for every f €
L(Z/nmZ) we have:

(MW F £](x 3. 2) = [WiF ' f](=y. %2 — xp)

X(=2) e~
(by (12.46)) = NG ZX::[J-‘ '£] (en — y)x (enx)
X(_Z) m—1 nm—1
= ; ng F)x (uen — y))x (nx)
B X(_Z) nm—1 m—1
= v ng f(u)x(—uy);x(é(X+ u)n)
B X(_Z) nm—1
by@7) =" 2:(; fa)x(—uy)
u=—xmod m
X0y — 2)
(u=—x+1tm) = Ry o ;f(tm — X)x (—tmy). .

Exercise 12.5.3

(1) Let G be a finite group, J an automorphism of G, K C G a subgroup,
and set [M f](g) = f(J(g)), for all g € G and f € L(G). Prove that the
M-image of L(G/K) is L (G/J~'(K)).

(2) Prove that Z, < L(G/K;) (cfr. Proposition 12.5.2.(i)) by showing that
J UK =K.

As a direct consequence of (12.56), we get immediately the first formulation
of the main result of this section.

Corollary 12.5.4 The Discrete Fourier Transform on Zy, has the following
factorization:

F =W, 'Mw;. (12.57)

In other words, the diagram in Figure 12.2 is commutative.

We now introduce some notation in order to give a second version of (12.57).
We define the linear operators C,: Z; — L(Z/nZ x Z/mZ) and Cy: Z; —
L(Z/mZ x Z/nZ) by setting

[Ci A1) = fi(5,7,0) and (G117, 5) = fi(F, 5, 0),

forall fieZ;, j=1,2,0<5<n-—1and 0 <7 <m— 1. From (12.45) and
(12.53) it follows that C; and C, are isomorphisms of vector spaces. Then we
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L(Z/nmZ) 2 7,
: iM
L(Z/nmZ) 22~ 7,
Figure 12.2. The commutative diagram representing the factorization (12.57) of the

Fourier transform F. Compare it with the diagram in Figure 12.1: note that, in both
cases, the DFT is connected with the action of the automorphism J.

set
ﬁ/l = Cl W] and Wz = CZWZ.

That is, [W, S1165.7) = Wy £f11(5, 7, 0), and similarly for Ws. Finally, we define
M: L(Z/nZ x Z/mZ) — L(Z/mZ x Z/nZ) by setting

[MfIF.5) = x ) f(=5. ).
Proposition 12.5.5

(i) We have M= C2MC1_1, that is, the diagram

7 — S L@ZnZ x TmZ)
‘| v
7 —% L(@/mZ x T/nT)

is commutative.
(ii) The Discrete Fourier Transform on Z.,,, may be factorized in the form:

F =W, 'MW, (12.58)
Proof.
(i) For f € L(Z/nZ x 7./mZ) and (7, 5) € Z/mZ x Z/nZ we have:

[C:MCT ] F.5) = [MC; ] (7,5, 0) = [C) ! f] (=57, =57)
(by (1251)  =xGNS(-5D.

(ii) From the definition of VNVI, Wz, from (i) and from (12.57) it follows that

WZ_IMW/'] = W2_1C2_'A7IC1W1 = WZ_IMWI = F. 0


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.013
https://www.cambridge.org/core

454 Fourier analysis on finite affine groups and finite Heisenberg groups

In other words, also the diagram in Figure 12.5 is commutative.

L(Z/nmZ) L L(Z/nZ x Z]mZ)

A s

L(Z/nmZ) —— L (Z/mZ x Z/nZ)

Figure 12.3. The commutative diagram representing the factorization (12.58) of the
Fourier transform F. Compare it with the diagram in Figure 12.2.

In order to give the third and final factorization of the DFT, we introduce the
following five operators
Dy: L(Z/nmZ) —> L(Z/nZ x Z/mZ.)
Dy: L(Z/nmZ) —> L(Z/mZ x Z/nZ)
Ry: L(Z/nZ x Z.JmZ) —> L(Z/nZ x Z.]mZ.)
Ry: L(Z/mZ x Z./nZ) —> L(Z/mZ x Z./nZ)
T:L(Z/nZ x Z/mZ) — L(Z/mZ x Z/nZ)

defined by setting

[DifIG,7) = f(rn +5)

[D2f1(F,5) = f(Sm +TF)

[R1fil(s5,7) = x (5P fi (5, =7)

[Ry2](F, 5) = x (=57) fo(—T, —5)

[TAIFS) = x (=57 [i(5,7),
for all f € L(Z/nmZ), fi € L(Z/nZ x Z/mZ), f> € L(Z/mZ x Z/nZ), and
0<5<n-—1,0<7<m-— 1. Finally, we introduce the following notation:
we denote by F; (respectively F, ~1 ) the normalized Fourier transform, cf.
Exercise 2.4.13, (respectively its inverse, the identity operator) on Z/kZ. More-
over, we identify L (Z/nZ x Z/mZ) with L (Z/nZ) @ L (Z/mZ); see Section
8.7 and Section 10.5.

Proposition 12.5.6 We have:
(L, ® Fyu) Dy = /nmR, Wi,
(In ® F; ') Dy = /nmR, Wy,
and

R.MR, = T.
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Proof. Indeed, for f € L(Z/nmZ), (5,7) € 7/n7 x Z/mZ, we have:

m

-1
[, ® Fu) D1 f1G.7) = ﬁ Xz(;wlf]('s‘, Ox(—tnd)

o~

3

-1
_ ﬁ D ften+ Szt

(by (12.46)) = /nmy 5F)[Wi f1(5. =7, 0)
= Jam [RiTL£] G .
Similarly,

n—1

- 1 -
[(1, ® F, ) Dof] G5 = 7 > D2 f1F 1)y (em)

t=0

1 n—1
=7 3 flem + Py ems)
=0

= nmy (=5N)[Waf1(=7, =5, 0)
= /nm [RzVT/zf] (7, 5).
Finally, for f € L(Z/nZ x Z/mZ),
[RoMR f] 7. 5) = x (=57) [MR, ] (7. =5)
= [Rif1(5, =7)
= X (=G 7). .

Finally, we are in position to present the third version of (12.57), which is an
operator version of the matrix factorizations in Section 5.5; see, in particular,
the Vector Form in Exercise 5.5.1.

Theorem 12.5.7
Fum =Dy 1, ® F,)T (I, ® Fy) Dy. (12.59)

Proof. From Proposition 12.5.5.(i1) and Proposition 12.5.6, noting also that
Rl_1 = R;, we get:
]: = WZ_IMWI
= Dgl Un ® fn)RZ M -Ry (I, ®.Fm)D1
=D, Uy ® F)T (I, ® Fy) Dy 0
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The factorization (12.59) is equivalent to the commutativity of the following
diagram:

LZ/nmZ) 2~ L(Z/nZ x Z/mT)
1,®Fy
L(Z/nZ x Z/mZ)
Fm T
L(Z/mZ x Z/nZ)

1,®F,

L(Z/nmZ) 2 L(Z/mZ x Z/nT) .

Clearly, the significance of the machinery developed in this section is not
in the proof of (12.59) (see the following exercise), but in the group theoretic
interpretation of each operator involved and of the various formulas obtained.

Exercise 12.5.8 Give a direct proof of (12.59), based only on the definition of
the operators involved.

In the following exercise, we present an alternative approach to Proposition
12.5.1.(ii). In particular, we show how the machinery developed in Chapter 10
and Chapter 11 may be used to derive the exact form of the Weil-Berezin map
(12.46).

Exercise 12.5.9

(1) Let d be a divisor of mn. Set d; = ged(m, d), m; = m/d,, d, = d/d,,
and d; = ged(n, d), n; = n/ds, dy = d/ds. Prove that d;|ds and give an
example in which d3 > d5.

(2) Arguing as in Exercise 12.3.8, and with the preceding notation, prove
that the multiplicity of my ; ; in the permutation representation L(G/K)
is equal to ds3/d, if h = 0 mod d; and k = 0 mod d3, and, otherwise,
it is equal to zero. In particular, L(G/K;) is not multiplicity-free, in
general.

(3) Show that the multiplicity of mg 0 in L(G/K;) is equal to 1 in two
ways: (i) by using the results in (2); (ii) by showing that the space of
K,-invariant vectors in L(Z/mnZ) with respect to the representation 7

is one-dimensional and it is spanned by the function ¢ = ﬁ ern:_ol Srn-
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(4) Use Proposition 11.2.8 and (3) to prove Proposition 12.5.1.(iii), in par-
ticular to get the expression for Wy in (12.46) (that is, W) = T,,).

12.6 Representation theory of the Heisenberg group H;(I,)

This section is based on Chapter 18 of Terras’ monograph [159]; see also the
exposition in [34]. Some details are similar to those in Section 12.3 so that they
are omitted and/or left as exercises.

LetIF, be a finite field, ¢ = p” with p a prime number. The Heisenberg group
over [F, is the matrix group

1
Hy(Fy) = 0 ix,y,z€F,
0

S = =
—_ N

Clearly, all the identities in Exercise 12.3.1 still hold. In particular, we shall
denote the elements of H3(IF,) by (x,y,2) e F; x Fy x F, = IF; with the mul-
tiplication as in (12.18).

Exercise 12.6.1

(1) From (12.21) deduce that the conjugacy classes of H3(IF,) are:
e C, =1{(0,0, w)}, w € F, (q one-element classes);
o Cup ={w, 0, w): weF,},u,0ely (u,0)# (0,0)
(¢*> — 1 classes of g elements each).
(2) Prove also that

Hy(F,) = Fg x4 Fy,

where ]F; ={0,v,w):v,w e F,;} and F;, = {(x,0,0) : x € F} are
viewed as additive groups and ¢ is the F-action on IF; given by

¢x(v, w) = (v, w +xv)
with x, v, w € F,.

Using the notation from Theorem 11.7.1 (with G = H3(F,),A = IE‘; and H =
F,), given x,; € X(cf. (7.4)), we have

iy itr#0
o g ift =0.
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Indeed, from

©00y (0, w) = Yo (v, W — xD)

= Xprinc(s0 + t(w — xv))

= Xprinc((s — 1x)0 + 1w)

= Xs—tx (0, W)
we deduce that *:0-0) s. = Xs. if and only if either + = 0 (in this case, the ~
equivalence class of each x; ¢ reduces to the element y; ¢ itself, and therefore

H, ,=H),ort #0and x =0 (sothat H, , = {1x}).
According to the preceding analysis, we can choose

X ={xs0:5€F}U{xos:1€Fy1#0}

as a set of representatives of the quotient space A, / =~ (cf. Theorem 11.6.2).
Then, for every s, u € F, if we denote by v/, € H3(IF,) the character defined
by

ws,u(xa Y Z) = Xprinc(sy + ux)

recalling that H, , = H (so that A x H, , = H3(IF;)) and that ¥, € I{(F\q)
denotes the inflation of x, € H3(IF,)/A = H= IF';, we have

Hy(F,) , ~ PR
IndA;fH;)m (X0 ® X)X, ¥, 2) = (Xs.0 ® Xu)(X, ¥, 2)

= Xs.00, 2) xu(x)
= Xprinc(sy + ux)
= Ysu(x, ¥, 2)

so that

HE) o~ o —
IndSopf | (360 ® Xa) = Vs

On the other hand, if # # 0, then H,, = {1y} (so that A x H,, = A) and we
may set

7= Indy g (o) = Indy ™y, € A3(F). (12.60)
From Theorem 11.7.1 we deduce that I-?(E) consists exactly of the g* one-

dimensional representations v, ,, s, u € If,, and the ¢ — 1 representations 7,
1 € I, of dimension [H3(F,) : A] = |H| = |Fy| = ¢.

Exercise 12.6.2 Use (12.60) to show that a matrix realization of 7;, € ]FZ, is
given by

Ux,y,2) = Xprinc(tZ)D(ty)W(x)»
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for all x, y, z € IF,, where D(ty) is the g x g diagonal matrix

1 0 0 o --- 0

0 x(—ty) 0 o .- 0
D(ty) = 0 0 x(—aty) 0 --- 0

0 0 0 0 - x(—a92ty)

« being a generator of the cyclic group F, and W (x) being the g x g permuta-
tion matrix defined by

W) = 8(j+x),

foralli, j € IF,.
Hint: Use equation (12.22) and observe that S = {(i,0,0) : i e F,} = H =T,
is a system of representatives for the left cosets of A = IFLZI in G = H3(F,). Use
the identities
(_iv Oa 0)(()’ 07 Z)(j’ 07 O) = (] - iv Oa Z)
(_i7 Oa O)(O’ y7 O)(,j) Ov O) = (j - iv yv _iY)
(—i,0,0)(x,0,0)(j,0,0) =(j—i+x,0,0)

foralli, j, x,y, z € F,. To get the matrix D(ty) seti, j =0, 1, «, Q. a2,


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.013
https://www.cambridge.org/core

13

Hecke algebras and multiplicity-free triples

In this chapter we develop the basic theory of finite multiplicity-free triples.
This is a subject that has not yet received the attention it deserves. As far as we
know, the only book that treats this topic is Macdonald’s [105]. The classical
theory of finite Gelfand pairs, which constitutes a particular yet fundamental
case, was essentially covered in our first monograph [29]. Other references on
the material of this chapter include [139, 140], [37], [152], and [25].

13.1 Preliminaries and notation

Let G be a finite group and K < G a subgroup. We assume all the basic nota-
tion in Section 11.1 and Section 11.3 (the latter with H = K). In addition, we
suppose that x is a one-dimensional representation of K. We consider the rep-
resentation space Indg(C of Indg X as a subspace of the group algebra L(G) (see
Example 11.1.9) and we define ¥ € L(K) by setting

1 —— 1
= —yk)= —y (k! 13.1
Y (k) |K|x() IKIX( ) (13.1)

for all k € K. Then, regarding L(K) as a subalgebra of L(G), we define the
convolution operator P: L(G) — L(G) by setting Pf = f x ¥, that is,

1
(PA1&) = 17 > fEx
kekK

forall f € L(G)and g € G.
Proposition 13.1.1 The function  satisfies the identities

vxy=v and Y*F=1. (13.2)
460
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Moreover, P is the orthogonal projection of L(G) onto Indg(C. In other words,
IdSC={f*y:felG)={felG): fxy=f) (13.3)

Proof. The first identity in (13.2) follows from (10.36) and, together with the
first formula in (10.34), ensures that P is an idempotent. The second identity
follows immediately from the analogous properties of characters (cf. Propo-
sition 10.2.15.(i1)). This, together with the second formula in (10.34), implies
that P is self-adjoint. This shows that P is an orthogonal projection. Moreover,
from (11.16) we deduce that

1 1

(PA1() = 1/ ¥1(8) = 1 > flehx k) = F® D 1= f(
keK kekK

for all f € Indg(C and g € G, that is, Pf = f (and, in particular, RanP 2O

Indg(C). Finally, let us show that the range of P is contained in (and therefore
equals) IndgC. Indeed, for all f € L(G), g € G and k; € K we have

1
PAI(gk) = o > flgkikx (k)

keK
1
ky = kik = ko) x (ki 'k
(ky = kik) T > Flgka)x ;')
k2€K
= x (kDIPf1(9),
that is, Pf satisfies (11.16) and therefore Pf € Indg(C. We conclude that
RanP = Ind{C. g

Let now J C G denote the set of all irreducible G-representations contained
in Indg x. For (8, Wy) € J, denote by my > 0 its multiplicity in Indgx , that is,

Ind{x ~ @) myo. (13.4)
0el

From Corollary 10.6.6 we deduce that Indg x is multiplicity free (thatis, my = 1
forall 6 € J)if and only if Endg(Indg x ) is commutative, and, if this is the case,
Corollary 10.6.7 ensures that

Endg(Ind$C) = C’. (13.5)
Finally, note that now (11.30) becomes G, = K N sKs~!, and (11.32) becomes

So={seS: xx) = x(s'xs), Vx € G,}. (13.6)
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13.2 Hecke algebras

Definition 13.2.1 The Hecke algebra H(G, K, x ) associated with G, K, and x,
is

H(G, K, x)={f€L(G) : f(kigka) = x (kika)f(g), forall g€ G, ki, ky e K}.
Note that, in the notation of Definition 11.4.1, we have
H(G. K, x) =V(G, K, K, x, x)-

Remark 13.2.2 When x = ix (see Example 11.1.6), the Hecke algebra
H(G, K, x) equals the subalgebra of all bi-K-invariant functions

L(K\G/K) = {f € L(G) : f(kigk2) = f(g), forall g € G, ki, k> € K}.
Note that, under the isomorphism (11.13), L(K\G/K) corresponds to the sub-
space L(G/K)X of all functions in L(G/K) that are invariant under the action
of K, that is, that are constant on the orbits of K on G/K.

Theorem 13.2.3 H(G, K, x) is an involutive subalgebra of L(G). Moreover,

(i) H(G, K, x) is contained in IndIG<(C and in fact

HG K ) ={Yxf*xy: feLG}={fel(G): f=VYx*[fxy}

(i1) The map

H(G, K, x) — Endg (Ind§C)
f > Tf |Indg(C

(13.7)
is a x-anti-isomorphism of algebras and
KerT; 2 [Indg(C]l = KerP
(see Proposition 13.1.1), for all f € H(G, K, x).
Proof. We leave it to the reader the easy task to check that the vector space

H(G, K, ) is closed under convolution and involution, thus showing that it is
an involutive subalgebra of L(G).
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(i) Suppose that f =1 *x f * ¢, that is, f = ‘,(1‘27* f xx. Then for all
ki, k, € K, g € G, we have

1

fkigky) = |K|2[7* J*X1(kigk2)
1 - -
= kP > xkagkr) fG x (k1)
rekz’lg’lK
keK
1 - I
(u=kyrand h =kk) = W Z x Gagu) f(u™ " h)x (h=ks)
‘i
1 - -
= kP > X Gn)x (gu) fu hyx (=) x (k)
ueg 'K
hek

1 -
= WX(/Q) S R x1(8) - x (k2)

= x (k) f(@x(ka),

so that f € H(G, K, x).
Vice versa, if f € H(G, K, x) then, for all g € G and k;, k; € K, we

have:
1
[V f 5 9)(8) = T 30 f 708
1 I -
= kP > x@IfO k)X (k)
rEg"K
koeK
1 I -
(setting k1 = gr) = 13 D X ) f O gka)x ;)
k[,szK
(feHG.K ) =/

It is now easy to check that H(G, K, ¥) is contained in Indg(C:
indeed, if f = ¥ * f % ¢ then

Pf=fxb=vxfxyxdy=vxfxy=f (138

and we can invoke (13.3).
(i) Let f € H(G, K, x). Then if f’ € KerP we have

Tof = f s f=Ff *0xfxp=[Pflxf*y =0,

so that f* € KerTy. This shows the inclusion KerP C Ker7y.
Also, if f” € Indg(C we have

PITpf )y =P(f"x ) =P(f" sy x )= f"*Yxfxip=f"xf=Tpf"
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that is, Tf(Indg(C) C Ind,G<(C. It follows that the restriction of the anti-
isomorphism (10.33) to the subalgebra H(G, K, x) yields the desired
anti-isomorphism (13.7). O

The following is a useful computational rule.
Lemma 13.2.4 For all fi € H(G, K, x) and f, € L(G) we have

Ui x ¥ * o y1(lg) = [fi * f21(1g). (13.9)
Proof. Indeed, from (13.8) we deduce fi * ¢ *x f> % ¥ = f1 * fo * ¢ so that

fixy* foxy](de) =[fi * f2*¥1(1e)
=Y Ak (YY) = [¥ x fi x H16) = [fi * A116)-
heG keK

O

Definition 13.2.5 The Curtis and Fossum basis of H(G, K, x) is the set {a; :
s € Sy} of functions in L(G) defined by setting

L TN o if o —
a:(g) = {7)((k1))((k2) if g = kysk, for some ki, k, € K (13.10)

0 if g ¢ KsK
forall g € G.

Note that (13.10) is well-defined: indeed, if k;sk, = kssks then by Lemma
11.3.1 there exists x € G, such that k; = k3x and k, = s~ 'x~Lsky, and therefore

XUk x (ko) = x Uea)x () x () x (s~ 'x7"'s) = x (k3) x (ka),

because s € Sy (see (13.6)). See also Lemma 13.2.6 below.
Clearly, for each f € H(G, K, x) we have:

=K1Y f(s)a,. (13.11)

SES()
Moreover, for s, t € Sy

5 1
MG
Indeed, for s # t the supports of a, and a, are disjoint, so that these functions

are orthogonal. For s = ¢t we have: deKsKlaS(g)|2 = KK 1

KF = G (see Remark
11.3.2). From (13.11) and (13.12) we deduce that
|Gyl

fls) = m(f, as)L(G)- (13.13)

(ag, ar)L6) = (13.12)
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Note also that changing the double cosets representatives will multiply each
basis element by some root of 1 (if ¥ = tk, such aroot is just 1). Finally, a,, =
Y and, more generally, a,(kysky) = |K|¥ (k) (kp), for all ky, ky € K.

Lemma 13.2.6 For all s € Sy we have

_IK|
|G|

Proof. Let s € Sy. First of all, observe that

Yok 8 x .

Ay

1 - -
[+ 06Y1(©) = T 30 XGOBG XKD (13.14)

teg 'K
keK

for all g € G. Moreover, 8,(t~'k) # 0 only if "'k = s and this forces
g=gt-t =g s -k'eKsk
so that if g ¢ KsK then the above convolution is 0. Let g = kysk, with k1, k; €
K. Then (13.14) becomes (setting t = ks~ ')
1
[ 5 8 % Yl kasky) = —— > x(kiskoks~1)x (k1)

2
|K| kekK

1 -
(=shaks™) = D x )X ()x (s~'xska)

x€Gy

X kDX k) Y X )x (x)

xeG;

x (k1) x (k2)

1
KPP
_IGJ
IK|?
= a,(k1sk>). O

(x () = xs(x))

For all r, s € Sy there exist complex numbers (., f € Sp, such that
ar s = oy (13.15)
teSy

The numbers [, I, 5,1 € Sy, are called the structure constants of the Hecke
algebra H (G, K, x) relative to the basis {a : s € Sp}.

Lemma 13.2.7 The structure constants are given by the following formula:

w =Kl Y ad@ag '),

ge(KrK)N(tKs—'K)

forallr, s, t €.
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Proof. On the one hand, from (13.10) and (13.15) we have

1
r s )= — rst 13.16
lar * ag] () Tl (13.16)

for all r, 5,1 € Sp. On the other hand, just computing the convolution, we get:

la, % aJ(t) =Y ar(g)as(g™'1)

geG
1 (13.17)
= Z ar(g)as(g_ t)-
ge(KrK)N(tKs~'K)
Comparing (13.16) and (13.17), the lemma follows. ]

13.3 Commutative Hecke algebras

Definition 13.3.1 Let G be a finite group, K C G a subgroup, and x a one-
dimensional K-representation. We say that (G, K, y ) is a multiplicity-free triple
provided the Hecke algebra H(G, K, x ) is commutative.

Moreover, we say that (G, K) is a Gelfand pair provided that (G, K, ix) is a
multiplicity-free triple, that is, H(G, K, )(Z L(K\G/K)) is commutative.

Theorem 13.3.2 The following conditions are equivalent.

(a) (G, K, x) is a multiplicity-free triple;

(b) the induced representation Indg X decomposes without multiplicity;

(©) dimWQK’X < 1 for each irreducible G-representation (0, Wy) (cf. Defi-
nition (11.27)).

Moreover, if these equivalent conditions are satisfied, with the notation of
Remark 11.4.10 (with H = K and v = x ) and (13.4), we have

dimH(G, K, x) = [J| = |Sol.

Proof. From Corollary 10.6.6 it follows that (G, K, x) is a multiplicity-free
triple if and only if Ind$ x decomposes without multiplicity; see also (13.5).
Moreover, from Frobenius reciprocity (Theorem 11.2.1) this is equivalent to the
fact that x has multiplicity at most one in the restriction to K of each irreducible
G-representation. Finally, if Indg x is multiplicity free, we may invoke Remark
11.4.10, (13.5), and (13.6) to conclude that dimH.(G, K, x) = dimC’ = |J| =
1So!. O

Now we examine a series of sufficient conditions for the commutativity of
the Hecke algebra. An anti-automorphism of G is a bijective mapt : G — G
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such that:

1(g182) = 1(g2)T(g1)

for all g, g2 € G. It is involutive if > = idg, where idg is the identity map
on G. Clearly, t(1g) = 1 and (g~ = t(g)~! for all g € G. Note that the
map inv: G — G, defined by inv(g) = g~! for all g € G, is an involutory anti-
automorphism, while if t is as above, then g — r(g’l) is an automorphism
of G.

Let 7 be an anti-automorphism of G. We define a linear map

L(G) — L(G)
o= r
by setting

f7(®) = f(z(g) (13.18)

forall f € L(G), g € G.

Given an algebra A, a bijective linear map ¢: A — A such that ¢(a;a;) =
p(ax)p(ay) for all ar, a; € A, is called an anti-automorphism of A. If in addi-
tion, ¢? = id4, where id is the identity map on A, then one says that ¢ is
involutive.

Lemma 13.3.3 Let t be an (involutive) anti-automorphism of G. Then the map
f = fTis an (involutive) anti-automorphism of L(G).

Proof. Tt is clear that the map f +— f© is a linear isomorphism. Let fi, f>, f €
L(G) and g € G. We have

(fix L)@ = (fix L)(T(@®) = Y fi(t(@h) Hh™)

heG

= Zfl (r[rfl(h)g]) H (1’ [Tﬁl(h)il])

heG
=3 @ ) £ (2 (g)
heG
= (f5 * 1) (®.
Moreover, if 7 is involutive, so is the maps f — f7. Indeed,
L)1) = Lf1(x(®) = f(*(8) = f(g). O

The next proposition is just a generalization of the following well known and
easy fact: if A is a subalgebra of the full matrix algebra M,,(F), n € N where
F is any field, and each matrix A € A is symmetric, then .4 is commutative.
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Proposition 13.3.4 Let T be an anti-automorphism of G and A a subalgebra
of L(G) such that f* = f forall f € A. Then A is commutative.

Proof. For all fi, f> € A we have:
fixfh=*xf) =f*f=fxf O

Remark 13.3.5 In Proposition 13.3.4, the anti-automorphism f > f* may be
replaced by any anti-automorphism ®: L(G) — L(G).

Corollary 13.3.6 Let t be an anti-automorphism of G. Suppose that
ff=f  foral f € H(G,K, x). (13.19)

Then (G, K, x) is a multiplicity-free triple.
Moreover, condition (13.19) is satisfied if:

(1) (Bump and Ginzburg [25]) ©(K) = K, x* = x, and for every s € S
there exist ki, ky € K such that t(s) = kysky and x (k) x (ky) = 1;

(i) (symmetric Gelfand pairs) x = ik, T = inv, and g~' € KgK forall g €
G.

Proof.

(i) In this case, it is immediate to check that the elements in the Curtis-
Fossum basis (Definition 13.2.5) satisfy a} = a;, for all s € Sy.
(i) This is just a particular case of (i). O

Exercise 13.3.7 Assume the notation in Proposition 10.4.12 with X = G/K.
Prove that (G, K) is a symmetric Gelfand pair (i.e. satisfies the conditions in
(ii) of Corollary 13.3.6) if and only if the orbits of G on X x X are symmetric,
that is, for all x, y € X, the pairs (x, y) and (y, x) belong to the same G-orbit.

A group G is said to be ambivalent if g~! is conjugate to g for all g € G.

Exercise 13.3.8 Denote by G the diagonal subgroup of G x G, that is, G=

{(8,8):8€ G} =G.
(1) Provethat L(G) = ®,.5M° (see Theorem 10.5.9) is the decomposition
of L(G) into irreducible G x G-representations.
(2) Deduce that (G x G, G) is a Gelfand pair.
(3) Prove that the Gelfand pair (G x G, G) is symmetric if and only if G is

ambivalent.

Exercise 13.3.9 (Weakly symmetric Gelfand pairs) Suppose that there
exists £ € Aut(G) such that g’1 = K&(g)K, for all g € G. Show that (G, K) is
a Gelfand pair; see [53].


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.014
https://www.cambridge.org/core

13.4 Spherical functions: intrinsic theory 469

Exercise 13.3.10 (Aff(IE‘q), U) is a Gelfand pair: this follows immediately
from Exercise 12.1.8. Use the characterization of the automorphisms of Aff(IF,)
in Exercise 12.1.11 to deduce that it is not weakly symmetric.

13.4 Spherical functions: intrinsic theory

In this section we introduce and develop the theory of spherical function (asso-
ciated with a multiplicity-free triple) in an intrinsic way, that is, we consider
and analyze all the properties of spherical functions without appealing to their
explicit form as matrix coefficients (this will be treated in Section 13.5).

Let (G, K, x ) be a multiplicity-free triple.

Definition 13.4.1 An element ¢ € H(G, K, x) is called a spherical function if
it satisfies the following conditions:

P(lg) =1 (13.20)

and, for all f € H(G, K, x) there exists A4 s € C such that

¢ xf=hp . (13.21)

Condition (13.21) may be reformulated in the following way: ¢ is an eigen-
vector of the convolution operator Ty, for every f € H(G, K, x ). Moreover, by
means of (13.20) and (13.21) we get A4 r = [¢ * f](15). As a consequence,
the following equivalent formulation of (13.21) holds (recall that, by definition
of a multiplicity-free triple, the Hecke algebra H(G, K, x ) is commutative):

¢ f=1[¢x*fl(le)p =[f*dl(lg)p = f* . (13.22)

Now we give the basic functional identity satisfied by all spherical functions;
it involves the function v defined in (13.1).

Theorem 13.4.2 A function ¢ € L(G), ¢ # 0, is spherical if and only if it sat-
isfies the functional identity

Z P (gkh)yr (k) = ¢(g)p(h), (13.23)
keK
forall g, h € G.

Proof. Suppose that ¢ € L(G), ¢ # 0, satisfies (13.23). Choose & € G such
that ¢(h) #£ 0; writing (13.23) in the form ¢(g) = ﬁZkeK P (gkh)y (k)
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we get
1 —— ]
[pxY1(®) = — > d(gkiki)y oy (k")
¢(h) k,kyeK

1 -

kik =k = — koh k

(kik = ky) ¢<h>k§(¢(g WY * Y (k)
1 -

by (13.2 = — ko h) Y (k

(by (13.2)) ¢<h>k2§<¢(g )Y (k)

(by (13.23)) = ¢(g)

for all g € G, showing that ¢ * ¢y = ¢. Similarly, one proves that ¥ x ¢ = ¢.
As a consequence, ¥ x ¢ x ¥ = ¥ x ¢ = ¢, that is, (cf. Theorem 13.2.3.(i))
¢ € H(G, K, x). Then, taking h = 15 in (13.23) we get

$(@p(16) =Y _ d(eh)v k) = [¢ * ¥1(8) = p(g)

kekK

for all g € G, and therefore (recall that ¢ # 0) ¢(1) = 1. Finally, for all f €
H(G, K, x) and g € G, we have

[ * £1(g) = [ f * Y(g)
=" ¢(kh)f(h ) (k)

heG keK

(by (13.23)  =¢(®) Y _d(f(h™")

heG

= [¢ * f1(1c)¢(g)

so that also (13.22) is satisfied. It follows that ¢ is spherical.
Conversely, suppose that ¢ is spherical. For all g € G, define F, € L(G) by
setting

Fy(h) =" ¢(gkh)y (k),

kekK

forall h € G. For f € H(G, K, x) and g, g, € G we then have

[Fex flg) =Y Y plgkgih) f(h™ )y (k)

keK heG

(by (13.22)) =g * f1(16) )_ d(gkg ¥ (k) (13.24)

kekK

= [¢ = f1(1c)F(g1).
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For all g € G, we also define J, € L(G) by setting

Joh)y = f(hkg)Y (k)

keK

for all h € G. We claim that J, € H(G, K, x). Indeed,

[V dex vl = Y k) f(ky " iy kg (k)Y (k)

k,k],szK

(ks =ky'k) = Y [V [lUiksg)yr(kky Yy (k)

k,k3 ek

= Z fhks )y * Y1k )

k3 ek

=Y f(hksg)yr(ks)

k3 ek

= J(h).

This shows that i * J, % y = J,. Moreover, for g; € G we have

[¢ T 1(16) = Y _(h™") D f(hkgy)yr(k)

heG kekK

(hk=1) =Y [Z w(k-l)mkr—l)} fagn)

teG Lkek

=Y ¥ x ¢l )ftg)

teG

=Y ¢ )f(tgn)

teG
= [¢ * f1(g1)
(by (13.22)) = [¢ * f1(1c)9(g1).

It follows that, for g, g1 € G,

[Fex flg) =Y Y ¢(gkgihyyr () f(h™")

heG keK
(kgth=1) =Y ¢(e) Y yER " ke1)
teG keK
= [¢ % Jp,1(2)
(by (1322)) =g *J,1(1)$(2)

(by (13.25)) = [¢ = f1(1c)e(81)P(Q).

471

(13.25)

(13.26)
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From (13.24) and (13.26) we get

(¢ * [1(1e)Fy(g1) = [¢ * f1(1c)e(g1)P(8),

and taking f € H(G, K, x) such that [¢ * f](15) # O this yields
> b(gke) ¥ (k) = Fy(g1) = ¢(g1)b(3).
keK

which is exactly (13.23) with 4 replaced by g;. In order to complete the proof,
we are only left to show the existence of such an f. Since ¢ # 0, we can find
f1 € L(G) such that [¢ * f1](1g) # 0. Then, keeping in mind (13.9), we have
that f = ¥ * f1 x ¥ € H(G, K, x) satisfies [¢ x f](15) # 0. O

Definition 13.4.3 A linear functional ®: H(G, K, x) — C is multiplicative if

O(f1 * o) = P(f1)P(f)
for all fi, f» € H(G, K, x).

Theorem 13.4.4 Let ¢ be a spherical function and set

() =Y f@p™) =/ *l(lc) (13.27)

geG

for all f e H(G,K, x). Then ® is a linear multiplicative functional on
H(G, K, x). Moreover, any nontrivial linear multiplicative functional on
H(G, K, x) is of this form.

Proof. Let ® as in (13.27). For fi, f> € H(G, K, x), by means of a repeated
application of (13.22), we get:

Q(f1 * f2) = [(fi * f2) x ¢1(16)
= [fi * (2% P)l(1g)
= [[/f2 * ¢1(1c) f1 * ¢1(16)
= [fi x 1) f2 * ¢1(16)
= ®(f1)P(f2).
This shows that @ is multiplicative. Conversely, suppose that ® is a nontrivial
multiplicative linear functional on H(G, K, x ). We extend & to a linear func-

tional on the whole L(G) by considering the map f, — ® (¢ * f5 * ¢) for all
f>» € L(G). By Riesz theorem, we can find an element ¢ € L(G) such that

QY x frry) =Y H@pE") (13.28)

geG
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for all f, € L(G). From (13.9) we deduce that if f; € H(G, K, x) then

O(f1) = [fixele) = [fi * ¥ *x o * Y¥1(1c).
Therefore, setting ¢ = ¢ * ¢ x ¥ € H(G, K, x), we then have

Q(f1) = [¢* fil(lg) (13.29)

for all f1 € H(G, K, x). With this position, (13.9) also yields
QW foxyy)=[dx¥ x rxYlle) =[P * f21(1g) = Z¢(h)fz(h71)
heG

for all f, € L(G), and therefore in (13.28) the function ¢ may be replaced by
the function ¢. Since ® is multiplicative, for f; € H(G, K, x) and f, € L(G)
the expression

D(fy Y fox ) =[x fi 5 % fox ¥1(1g)
(by (13.9))  =1[¢* fi  £1(l¢)
= _[¢ * il fo(h™")
heG
must be equal to
DD x o) =Y DS (k™).
heG

Since f, € L(G) was arbitrary, we get the equality [¢ x f1](h) = D(f1)p(h),
so that, in particular, ¢ satisfies condition (13.21). Taking 4 = 15 and choosing
f1 € H(G, K, ) such that ®(f}) # O (recall that ® is nontrivial), and keeping
in mind (13.29), this gives ®(f}) = [¢ * f1]1(1g) = ©(f1)¢d(15). It follows that
¢(1g) = 1. In conclusion, ¢ is a spherical function. O

Corollary 13.4.5 The number of distinct spherical functions is equal to |J|, the
number of irreducible G-representations contained in Indg X-

Proof. We have H(G, K, x) = C’ (see (13.5)) and every linear multiplicative
functional on C” is of the form C/ 5 A — A(#), for a fixed 6 € J. O

In the following we use the notation in (10.9).

Proposition 13.4.6 Let ¢ and p be two distinct spherical functions. Then the
following holds.

(i) ¢(g™") = p(g) forall g € G, that is, * = ¢;
() ¢gxu=0;
(ii1) (Ag(g1)@, Ac(g2)) ) = 0 for all g1, g» € G, in particular ¢ and
are orthogonal: (¢, ) gy = 0.
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Proof.
(i) By definition of a spherical function, one has
¢* x ¢ =[0" x pl(1c)p = D°¢.
As a consequence, since (¢* * ¢)* = ¢* x ¢, we have
(6" % 91(g) = [¢* * dl(g) = [¢* * $1(16) - d(g™") = lplI*p(g™")

and therefore we must have ¢ = ¢*.
(i) By commutativity,

(¢ * nl(1e)g(g) = [¢ * nl(g) = [ * @](g) = [ * ¢1(1c)u(g).

Therefore, if ¢ # u, necessarily [¢ * u](lg) = [ * $](1g) = 0 and
this also yields ¢ * u = 0.
(iii) Let g1, g» € G. Then

(A(81)¢. Aa(g2)m) = (¢, Aa(sy ' gm) = D (e [(g'82)~'h]

heG
= ¢ (h'g7'g2) = [ * w187 ' g2) = [¢ * (7' g2) = 0.
heG
where the last equality follows from (ii). U

Theorem 13.4.7 For each spherical function ¢ define Uy = (Ag(g)9 : g € G),
the subspace of L(G) spanned by all translates of ¢. Then

Ind{C = P U;.
¢

where the sum runs over all spherical functions, is the decomposition of Indg(c
into irreducible G-representations.

Proof. Each subspace Uy is clearly G-invariant and contained in IndgC (recall
Theorem 13.2.3). Moreover, by virtue of Lemma 13.4.6.(iii), if ¢ and p are dis-
tinct then the spaces Uy and U, are orthogonal. Finally, we can invoke Corollary
13.4.5 to conclude that each Uy, is irreducible and that the sum P » Up exhausts
the whole Ind§C. O

The space Uy is called the spherical representation associated with the spher-
ical function ¢.

13.5 Harmonic analysis on the Hecke algebra 7 (G, K, x)

The first purpose of this section is to present a different realization of spherical
functions as matrix coefficients associated with spherical representations.
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Suppose again that (G, K, x) is a multiplicity-free triple. Let J be as in
(13.5) (but now my = 1 for all 6 € J). For each 6 € J choose a vector w’ e
WHXX of norm one (recall (11.27)). Such w? is unique up to a scalar multiple
of modulus one (usually called a phase factor); see Theorem 13.3.2. More-
over, we are in the multiplicity free case of Theorem 10.6.3: for each 6 € J
we may choose Ty € Homg(Wp, Indg(C), which is also an isometry, so that
Homg(Wy, Ind$C) = (Ty) and

Ind$C = @ T, W, (13.30)
oeJ

is an explicit orthogonal decomposition. Clearly, our choice of w? and (11.28)
in Proposition 11.2.8 may be used to get an explicit form for Ty = Te:

[Tywl(g) = d_9<w (9w’ (13.31)
0 8) = |G/K| , U8 Wo :

for all w € Wy and g € G. Again, Ty is defined up to a phase factor. Note that
now the map (13.7) is a *-isomorphism because the algebras involved are com-
mutative.

Proposition 13.5.1 Let (13.30) be an explicit decomposition of Ind$C into
irreducible, inequivalent G-representation. Then for f € H(G, K, x) the fol-
lowing hold:

(1) the decomposition of IndgC into eigenspaces of the convolution opera-
tor Ty is given by (13.30);

(ii) if Ap(0) denotes the eigenvalue of Ty associated with the subspace TyW,
then the map

H(G,K, x) — C’
f —> Ar,
is an algebra isomorphism.

Proof.

(i) By Theorem 13.2.3.(ii) and multiplicity freeness of Ind,(g X, the convolu-
tion operator Ty intertwines each irreducible representation 7o W, with
itself so that, by Schur’s lemma, it is a multiple of the identity on each
irreducible space.

(i) If fi € H(G,K, x), f € Ind$C,and f = 3",_, fo with f € TyWp, then
Th(f) = X ges k7 (0) fo. Therefore Ty,.p, = T, Ty, yields

)\'fl*fl = )\'fl )‘fz
for all f1, f» € H(G, K, ). O
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An explicit expression of Ay will be given in Proposition 13.5.4.
For each 0 define ¢’ € L(G) by setting

¢”(g) = (w’, 6w’ )w, (13.32)
forall g € G.
Theorem 13.5.2 The function ¢° is spherical and it is associated with Wy,

that is, in the notation of Theorem 13.4.7, we have Uy = TyWy. Moreover, the
spherical functions satisfy the following orthogonality relations:

|G
(@, ")) = 5 o (13.33)
for@,pel.
Proof. By (13.31) we have ¢/ = ‘G/ K T,w? and therefore, by Proposition

11.2.8, ¢? belongs to the subspace of Indg(C isomorphic to Wy, namely to
Ty W, in (13.30). Now we use the functional identity (13.23) to show that ¢?
is a spherical function. We need to prove a preliminary identity. First of all,
we choose an orthonormal basis {u; : i =1,2,...,dy} for Wy in the follow-
ing way. Let Resg0 = x @ (,m,n) be the decomposition of Resg# into irre-
ducible K-representations (the n’s are pairwise distinct and each of them is
distinct from y; m, is the multiplicity of n). We suppose that u; = w? and
that each u;, 2 < i < dg, belongs to some irreducible W;,. Then by (10.24) we
have

Z(ul,H(k)ul)w0<9(k)u,,u]) = |K|81:81;- (13.34)
kekK

Since (k)u; = x (k)u; we have (k) =
may be written in the form

\Kl (u1, 0(k)u;) and therefore (13.34)

keK

<Z Y (k)0 (ks u,k = 8181,

and this yields

> w0 ku; = 8 (13.35)

keK
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foralli=1,2,...,dy. We are now in position to check (13.23):
D6 (kg () =Y (w’, 0(gkhyw yw, ¥ (k)
keK keK

dy
= Y (0w’ uhw, Y OKRu, wi)w, (k)

i=1 keK

dp
=Y (00w’ wiw, Oy, Y Y kDO u)w,

i=1 keK
(by (13.35)) = ¢’ ()¢’ (h),

where equality =, follows from 6(kh)u; = Z?L (O (kh)uy, u;)w,u;: recall that
{u; :i=1,2,...,dy} is an orthonormal basis. Finally, (13.33) is a particular
case of (10.24). O

Remark 13.5.3 Suppose that (G, K, x) is a multiplicity-free triple. Then
(G, K, x) is also multiplicity-free. Indeed, H(G, K, x) = H(G, K, x), that is,
the functions in H(G, K, ) are the conjugates of the functions in H(G, K, x).
Moreover, if {¢? : @ € J} are the spherical functions with respect to x then their
conjugates {¢? : 6 € J} are the spherical functions with respect to x (this may
be deduced, for instance, directly from Definition 13.4.1). Finally, from (11.18)

Indg

it follows that %% = ynd¢x and therefore 6 € G is contained in Ind% x if
and only if its conjugate 6’ (cf. Section 10.5) is contained in Indgf. Indeed, W
equals the spherical function with respect to x associated with 6’.

Moreover, from (13.32) it follows that ¢ is not a matrix coefficient of
6 but of 6. This happens because ¢’ belongs to the sub-representation of
Ind%C < L(G) isomorphic to @ but, by Theorem 10.5.9, the restriction of the

’

left regular representation A to Mfy | is isomorphic to 6, that is, Wy ~ sz 1
The spherical Fourier transform is the linear map
F:H(G,K, x) — L(J)
defined by setting, for f € H(G, K, x) and 0 € J,
[FFIO) =) f(2¢"(9).

geG

From the orthogonality relations (13.33) we immediately deduce the inversion
formula:

1
f=1G > dy Ff(0)9"

bel


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.014
https://www.cambridge.org/core

478 Hecke algebras and multiplicity-free triples

and the Plancherel formula:

(fi. Plue) = — Zdé)ffl (O)F f2(6),

| el

for all f, fi, f» € H(G, K, x). In particular, || f||Z, = ﬁ Y pes dol FF(O)I2
Finally, the convolution formula

F(fr* f2) = (FfOF f2)

follows from the inversion formula and (10.35).
Now we are in position to give an explicit formula for the eigenvalues A (0),
6 € J, in Proposition 13.5.1.(ii).

Proposition 13.5.4 Forall f € H(G, K, x) we have
Ap=FFf.

Proof. Let f € H(G, K, x) and 6 € J. It suffices to compute A;(6) for the
eigenvector ¢/:

[Tr¢%1(g) = [f * $°1(g)

(by (1322))  =1[f*¢"1(16)¢"(g)
=) e’ e’ (9)
heG
(by Proposition 13.4.6.(1)) = [}'f](G)qbg (9. 0

Proposition 13.5.5 The operator Ey : IndG(C —> L(G) defined by setting

EafZ@f*qﬁ

for all f € IndSC, is the orthogonal projection from Ind$C onto TyW.

Proof. First of all, note that, for g € Gand f € Indg(C, we have:

[Eof1(g) = | G Zf(hw (h'g)
heG

Z f(p? (g~ h) = 9| (f. 269" L(c)-

|G| heG

where Ag is as in (10.9). Therefore, for n € J \ {6} and & € G,

dy
— (A", 16(&)d" )16y =0

[Esrc(h)o"] () = G
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by Proposition 13.4.6.(iii), that is, €@ T,W, C KerEy. Similarly,

neJ,n#o
dg

[Eorc(m)¢’] () = | G| —(r6(m¢’, 16(9)9 )
= |G| (8%, A6(h ' 9)¢%) 16)
— dy 0
= |G|[¢ # ¢ 1(h™'g)

(by (13.22)) = |G| [¢” x ¢°1(1c)p° (h'g)

@" 4" (1) = 1976y = IGl/ds) = ra(¢’ ().
We then conclude by using Theorem 13.4.7. U

We now show that the spherical function ¢’ and the character x? may be
expressed one in terms of the other.

Proposition 13.5.6 For all g € G we have:

x"(&) = qu Tgh) (13.36)
|G| heG
and
07 (g) = [x7 * ¥1(9). (13.37)

Proof. Clearly, (13.36) is just a particular case of (10.25), keeping into account
(13.32). On the other hand, using the bases in (13.35) we have

(X7 *¥1(g) = ZZ (0/(gk="ui, i)y (k)

keK i=1
dy
=D (0@ ) Yk Ok i, ;)
kekK i=1 kekK
(by (1335)) = ¢"(g. 0

In what follows, for f € L(G) and 6 € J we set

=Y x"@f@= "1

geG


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.014
https://www.cambridge.org/core

480 Hecke algebras and multiplicity-free triples

and, similarly,
¢"() =) ¢’ @f(@) =" 1.
geG

‘We use the Curtis-Fossum basis in Definition 13.2.5.
Proposition 13.5.7 (Curtis-Fossum) Let 6 € J. Then the following hold:

(i) The spherical function ¢° can be expressed as

¢’ = > 1G,l¢" @) ay.

SES()

(i1) The orthogonality relations for the spherical functions may be written
in the form:

R G
3 1GI6 @@ = b
0

SES()

pEJ

(iii) The dimension dy is given by
Gl

dyg = —.
© T Y s, IGl - 198 @)

Proof.

(i) This is an immediate consequence of (13.11) and (13.13).
(i1) From (i) and (13.12) we have:

(0. ¢ ) = Y_IGsI*¢” @) ¢” @)lasli gy = Y _IGi|¢" @) ¢* (@)
s€Sy s€Sy
Then we may invoke (13.33).
(iii) It follows immediately from (ii). ]

Remark 13.5.8 When x = ix and (G, K) is a Gelfand pair, it is customary to
use the isomorphism (11.13) to define the spherical functions as K-invariant
functions on X (see Remark 13.2.2). That is, for 0 € J we define ¢? € L(X)
by setting ¢? (x) = ¢?(g) if gxo = x. Then the orthogonality relations become:
er x @? (x)m =68, %. We refer to [29] for an extensive treatment of this
case.

Exercise 13.5.9 Prove that, in the setting of Exercise 13.3.8, the spherical func-
tion in M? is equal to %Xg.

Exercise 13.5.10 Let G be a finite group and suppose it acts doubly transi-
tively on a set X. Denote by K the stabilizer of a fixed element xy € X. Show
that (G, K) is a symmetric Gelfand pair, that L(X) = Wy & W (cf. Proposition


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.014
https://www.cambridge.org/core

13.5 Harmonic analysis on the Hecke algebra H(G, K, x) 481

2.1.1) is the decomposition into spherical representations, and that the corre-
sponding spherical functions are given by ¢ = 1 and

if x = xg

1
¢mm={ 1

—Tom otherwise

for all x € X.

Exercise 13.5.11 From Exercise 12.1.8 we deduce that (Aff(]Fq),A, 1//) is a
multiplicity-free triple for any character ¢ € A. By means of (13.31) and/or
(13.37) applied to (12.8), show that the spherical functions are given by:

¢nCzb)_ ¥(a) ifb=10
0 1) LW (a) otherwise,

_qu

and ¢¥ (g l;) — Y(a), forall (g b) € Aff(F,).

—_—
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14
Representation theory of GL(2, IF,)

This chapter is devoted to the representation theory of the general linear group
GL(2, F,). It contains an exposition of all the results in Piatetski-Shapiro’s
monograph [123]. We have added some more details and reinterpreted the
whole theory in terms of our “multiplicity-free triples” developed in the pre-
ceding chapter. Section 7.3, on generalized Kloosterman sums, also plays here
a fundamental role. In the final sections, we present a complete set of formu-
las for the decomposition of induced representations Indizm and of inner tensor
products.

14.1 Matrices associated with linear operators

First of all, we need to study the conjugacy classes in GL(2, IF). For this pur-
pose, we recall some basic facts of linear algebra over an arbitrary field I and,
subsequently, we concentrate on the finite case. If the field [F is algebraically
closed, we shall make use of the Jordan canonical form, while, in the general
case, our standard tool will be the rational canonical form.

Let [F be a field and denote by 90, (IF) the algebra of all n x n matrices with
entries in F. Then the multiplicative group GL(n, F) = U (N, (IF)), consisting
of all invertible matrices, acts on 91, (IF) by conjugation. The action of an ele-
ment A € GL(n, F) on 9,,(IF) is then given by:

B+ ABA™!

for all B € 9,,(F). The orbits under this action are the conjugacy classes of
M, (F) and the choice of a suitable canonical element in the conjugacy class of
a matrix B € I, (IF) is called a canonical form for B.

482
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14.2 Matrices associated with linear operators 483

We identify the n-dimensional vector space F" with the vector space
IM,,1 of n-dimensional column vectors. Also we fix an (ordered) basis Y =
(Y],YQ, ey Yn) of [F".

Let L: F* — F" be a linear operator. Then the matrix C = C(L; Y) =
(ci,j)zj:l representing the operator L with respect to the basis Y is defined

by
L(Y;) = Z cijYi
i1

forall j=1,2,...,n.

Vice versa, with each B € 901,,(IF) we associate the linear operator Lg: " —
" defined by setting Lg(X) = BX for all X € F".

Let also X = (X1, X3, ..., X,,) denote the canonical (ordered) basis of F",
that is,

1 0
0 1 0
Xx=|9].x=|9],.... x,=]0
0 0 1

Then, for j=1,2,...,n, the vector Lg(X;) equals the j-th column of the
matrix B. In other words, the matrix C(Lg; X) representing Lg with respect
to the canonical basis is the matrix B itself.

Let A = A(Y) € GL(n, F) denote the change of basis matrix, that is, the
unique invertible matrix A such that¥; = A7'X i, equivalently, X; = AY;, for all
j=1,2,...,n. Then the matrix C = C(Lp; Y) representing the linear operator
Ly in the basis Y is given by C = ABA~'. Indeed, if

BY; = Lp(Y)) =Y cijYi,
i=1

then

n n n
ABAT'X; = ABY; =AY ¢ Y; =) ¢ AV =Y ci X = CX;
i=1 i=1 i=1
forall j=1,2,...,n.

This shows that finding a canonical form C for B corresponds to choosing a
suitable basis Y in F” such that C = C(Lg; Y).
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14.2 Canonical forms for 91, (")

We now describe a canonical form for matrices in 9%, (IF).
We denote by F[A] the F-vector space of all polynomials with coefficients in
I and indeterminate A.

Let B = <“ ﬂ) € M, ().
y 6

Given t(A) = A" +ayu A+ -+ ah +ag e F[A] we set t(B) =
ayB" + a,_ B + -+ a B + apl € M (F), where I € M, (F) denotes the
identity matrix.

The characteristic polynomial ¢ = qp € F[\] of the matrix B is defined as

g(%) = det(AI — B) = det (A —¢ N p 5) =22 — Mo+ 8) + (a8 — By).
% _
Exercise 14.2.1 Show, by a direct calculation, that g(B) =0 € M, (F)
(Cayley-Hamilton theorem). Moreover, given A; € F show that g(A;) = 0 if
and only if A, is an eigenvalue of B (i.e. there exists an eigenvector Y € F? \ {0}
such that BY = A;Y).

The minimal polynomial p = pg € F[A] of B is the monic polynomial of
least degree such that p(B) = 0. We clearly have two cases:

(a) deg(p) =1. Then p(A)=Xx —X; for some A; € F and p(B) =0
implies that B = A,/ is a scalar matrix.
(b) deg(p) = 2. Then p(1) = g()) and B is not a scalar matrix. We further
distinguish three subcases:
(by) p(A) has two distinct roots in [F: there exist A1, Ay € F, Ay #£
A2, such that p(A) = (A — A1)(A — Xp), equivalently, B has two
distinct eigenvalues. Let Y;, > € F? be two corresponding eigen-
vectors: BY; = A1Y; and BY, = A,Y,. Then Y] and Y, are linearly
independent: if «1Y) 4+ axY> = 0, with «, ax € F, by applying B
to both sides we deduce that a;A1Y; + apA2Y> = 0 so that

(A — A)Y2 = Ai(arY) + axls) — (1A Y] + azA2)2) = 0.
Since A; # A,, we deduce that oy = 0 and, in turn, oy = 0.
The matrix C = C(Lg; Y) representing Lg in the basis Y =

(11, Y») is then given by
A O
C =
<0 /\2>

that is, C is a diagonal matrix with distinct diagonal terms.
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Note also that the matrices <)(\)1 )? ) and C(Lg; (»,Y1)) =
2

(M 0) are conjugate. Indeed:

0 A
1\ /A 1 A

0 t 0N (O Y (R 03 gy

1 0 0 X/\1 O 0 N
pA) =R — X )2, where A; € F. Then there exists an eigenvector
Y; associated with A1, so that BY; = A,Y;. Moreover, there exists a
vector Y € F? (any vector that is not a scalar multiple of ¥;) such
that (B — A 1)Y # 0, because B — A;I # 0. Then (B — A 1)%Y =
p(B)Y = 0 implies (exercise) that there exists &’ € I \ {0} such
that

(B — MDY =a'Y,. (14.2)

LY equation (14.2) becomes

Setting ¥, =
BY, =M+ 1

and, in the basis Y = (Y1, 1»), the operator Lg is represented by
the matrix C = C(Lg; Y) given by

Mo 1
C_<0 M)’

which constitutes the simplest (non-trivial) example of a Jordan
canonical form.

p(A) =A% +a'A+ B/, where o, B €T, is irreducible over F.
Consider a vector Y; # 0. Then Y, = BY; is not a multiple of ¥;
(otherwise Y; would be an eigenvector) and therefore Y = (Y1, Y»)
is a basis for F2. Since B> + /B + B'I = 0 (cf. Exercise 14.2.1),
we have that BY, = B%Y| = —a/BY; — B'Y; = —B'Y; — a'Ys, so
that, in the basis Y, the operator Lp is represented by the matrix
C = C(Lp; Y) given by

C= <0 _5/> . (14.3)

1 —o

This is the simplest (non-trivial) example of a rational canonical
form.

From the previous case-by-case analysis we immediately deduce the follow-

ing:
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Theorem 14.2.2 Twwo matrices in M, (F) are conjugate if and only if they have
the same minimal and characteristic polynomials. For non-scalar matrices it
suffices that they have the same characteristic polynomial.

Remark 14.2.3 In 91,(F) with n > 2, Theorem 14.2.2 is no longer true and
the full machinery for the rational canonical form and the theory of invariant
factors (or invariant polynomials, or elementary divisors) must be used to get
a parameterization of the conjugacy classes, i.e. in the terminology of linear
algebra, to establish if two matrices are similar.

If the field [ is algebraically closed, the Jordan canonical form may be used
in place of the rational canonical form. See, for instance, Herstein’s book [71].

We now introduce four important subgroups of GL(2, ), namely,

B= <g ﬂ) a, 8 eF* B e IF} (the Borel subgroup)

D= (a ) o, 8 € F*} (the subgroup of diagonal matrices)

U =

N
(=N
-

7 =

) B e IF} (the subgroup of unipotent matrices)

N
o R
)

= ]F*} (the center),

where, as usual, F* denotes the multiplicative subgroup of F consisting of all
nonzero elements.
Clearly, U is Abelian and isomorphic to the additive group of [F:

L B\ (1 B\ _ (1 Bi+5
0 1 0 1) \o 1
for all By, B, € IF; see Section 12.1.
Moreover, U is a normal subgroup of B:

GO6DED -6y )

(1 as”'p’
(")
forall 8, 8’ € Fand @, § € F*.

Recall that given a group G, the derived subgroup (or commutator sub-
group) of G is the subgroup G’ =[G, G] generated by the commutators
lg.h] = g 'h~'gh, with g, h € G. Moreover, setting G =G and G® =
[G* D G&=D] for k=1,2,..., one says that G is solvable provided there
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exists ko € N such that G*) = {15}. Finally, given g€ G and a subgroup
H < G, the centralizer of g in H is the subgroup {h € H : hg = gh} < H. See
also Section 12.1.

Lemma 14.2.4

(1) The centralizer in GL(2, F) of the matrix ()61 0 ) withhy # A, € T,

A2
is the subgroup D.

(ii) The centralizer in GL(2, F) of the matrix ();)] ! ) with Ay € F, is the

Al
. a B
subgroup ZU, which equals {(0 a) raelF* B e IF}

(iii)) B=U % D, i.e. B is the semidirect product of U by D. Moreover, U is
the derived subgroup of B, and B is solvable.

(iv) Setting w = <(1) (1)>, we have the Bruhat decomposition.

GL(2,F) = B[ [ BwU = B] [UwB,

where || denotes a disjoint union. Moreover, every element g €
GL(2, F) \ B may be uniquely written in the form g = uwb withu € U
and b € B.

Proof. The proof is nothing but easy calculations, which we leave to the reader
as an exercise.

For instance, (iv) follows from the fact that if <)Oj ‘? > € GL(2,F)\ B (so

that y € F*) then, as one easily checks,
a B\ B—ay s a\ (0 1\ /1 y7's
y &) 0 y/J\1 0/\0 1
(1 ay™ (0 1\ (y 1)
—\o 1 1 0)\0 B—ay's)’
and these factorizations are unique. U

Another important subgroup is

Aff(F):{(Z ’f) :ae]F*,ﬁeIF},

the affine group over F (cf. Example 10.4.5 and Section 12.1).
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Exercise 14.2.5 Show the following:

(1) ZN Aff(F) = {I} and Z - Aff(IF) = Aff(FF) - Z = B;

(2) Aff(IF) is a normal subgroup of B and deduce that B = Aff(F) x Z
(direct product);

(3) Aff(F) =U x A (semi-direct product), where A is the subgroup

{(g (1)> ac IE‘*} = IF*; see Section 12.1.

14.3 The finite case

From now on, we concentrate on the finite case, that is, we consider the group
GL(2, F,), where IF, is a finite field of order g = P, where p is a prime number
and h > 1.

Proposition 14.3.1 GL(2, F,) is a finite group of order
IGL(2, F)l = (¢ — 1)(¢° — @) = q(q + 1)(g — 1)*.

B

Proof. The first row of a matrix (;‘ 8) € GL(2, ;) may be chosenin 7 —1

ways: itis an arbitrary ordered pair (o, 8) € (F, x Fy) \ {(0, 0)}. Then the sec-
ond row (y, 8) is an arbitrary ordered pair in (IF, x F,) \ {(Aa, Ab) : A € F,},
and there are g*> — g such pairs.

Another proof is the following. Consider the projective line P(F,) =
((Fg x F)\ {(0, 0)}) /~, where ~ is the equivalence relation on (F, x Fy) \
{(0, 0)} defined by (x,y) ~ (u, v) if there exists A € IE‘Z such that (x,y) =
(Au, Av). The action of GL(2, F;) on F, x I, fixes (0, 0) and preserves ~, and
therefore induces an action of GL(2, IF,) on IP(IF,;). Moreover, it is easy to check
that this induced action is transitive. The stabilizer of the ~-class of (1, 0) is the
Borel subgroup B. Since |P(IF,)| = ‘12—__1 =¢g+1and |B| = g(g — 1), we ob-

g—1
tain again |GL(2, F,)| = [P(F,)| - |B] = (g + 1)g(q — 1)?; recall (10.44). [

Using the notation (and results) of Section 6.8, we introduce another funda-
mental subgroup of GL(2, IF,). The Cartan (or non-split Cartan) subgroup of
GL(2, FF,) is the subgroup C defined by

€= {@ aafﬁ) o, el (o, B) # (0,0)}

if p =2, where w € F is as in Theorem 6.8.3, and

C= {(Z ”f) :a,,BeIF,,,(o:,ﬂ);é(0,0)}
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if p > 2, where € I is as in Theorem 6.8.1.
In both cases, we have (cf. the just mentioned theorems) a group isomor-
phism

C%F;z.

In the following theorem, we use the elements of C \ Z to parameterize the
conjugacy classes of type (bs) in Section 14.2. Note that

C\Z:{(Z a‘fﬁ> :aqu,ﬁeF;;}

if p=2,and

C\Z:{(Z ’Zf) :ae]Fq,ﬂeF;}

if p> 2.

Theorem 14.3.2 The following table describes the conjugacy classes of
GL(2,F,)

Table 14.1. The conjugacy classes of GL(2, F,).

TYPE RE NC NE NAME C(RE)
A0

(@) 0 1)+ 0 g—1 1 central GL(2,F,)
A 0 .

(by) (01 M) M #A (g—D@—=2)/2 ¢*+q hyperbolic D

(b2) (g i) A#D g—1 ¢* —1 parabolic  ZU

() C\Z a(g—1))2 #—q elliptic c

where

o TYPE stands for type of the conjugacy class according to the classification
in Section 14.2;

o RE stands for representative element: for each (conjugacy) class we indicate
a representative element;

o NC stands for number of conjugacy classes: this equals the number of rep-
resentative elements;

o NE stands for the number of elements in each class;

o NAME stands for the denomination of this type of class;

o C(RE) stands for the centralizer in GL(2, ;) of the representative element.


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.015
https://www.cambridge.org/core

490 Representation theory of GL(2, F,)

Moreover, the two matrices of type (by)

A O A 0
(0 Az) and <0 Al) (14.4)
represent the same class. Similarly, the two matrices of type (b3)
o wf a+ B wp
(ﬁ a+/3> and( 8 a)eC\Z (14.5)
when p = 2, and
a np a  —np
<,3 oz) and <—ﬂ o )eC\Z (14.6)

when p > 2, represent the same class.

Proof. The first row in the above table follows from Section 14.2.(a) and the
trivial fact that any central element is fixed under conjugation.

The second row follows from Section 14.2.(b;), Lemma 14.2.4.(i), and the
fact that the number of elements in each conjugacy class is given by

GLQ.F)l  qlg+Dg—17
D g1 TTe

Moreover, we have already observed (cf. (14.1)) that the matrices in (14.4) are
conjugate. Similarly, the third row follows from Section 14.2.(b,) and Lemma
14.2.4.(ii), noticing also that the number of elements in each conjugacy class
now equals

GL.F)l _aa+ D=1 _
1ZU| (q—1q ’
where the first equality follows from Proposition 14.3.1.

Finally, to get the fourth row, we distinguish two cases according to the parity
of p.

For p = 2 the characteristic polynomial of the representative (2 a—)f ’3)
o

is given by

Ata wp .2 2 2
det( 5 /\+(a+ﬁ)>_k + BAr+ (" +af+ B7w) (14.7)

so that, by Corollary 6.8.4, it is irreducible.
2 2
a°+af + Bw and a+ B wp
1 B B o

have the same characteristic polynomial as in (14.7), we deduce that the matrix

Moreover, since the matrices (


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.015
https://www.cambridge.org/core

14.3 The finite case 491

2 2
<(; aa_)f ﬂ) belongs to the same conjugacy class of <(1) @t a’g +h w)

and (a ; p a;ﬂ ) Since, by Corollary 6.8.4, all irreducible quadratic poly-

nomials over I, are as in (14.7), we deduce that the elements in C \ Z param-
eterize all conjugacy classes of type (bs). Finally, (recall that 8 # 0) we have

x W\ (e wp\  [(xe+yB xwf+y+p)
z uf \B a+p B za +uf zwp + ula + B)

o wp Xy ax + wBz oy + wfu
poa+p)\z u)  \pr+za+p) By+u+p)
if and only if wz = y and x + z = u. As a consequence, the centralizer of any

element in C \ Z is the subgroup C. We deduce that the number of elements in
each conjugacy class is given by

equals

GLQ2, F (g — 1)?

Suppose now that p > 2. The characteristic polynomial of the representative

<§ ’Zf) is given by

A — —
det ( o« —np ) =22~ 2ah+a? —np? (14.9)
-8 rA—«

which is again irreducible by virtue of Corollary 6.8.2.
As in the case p =2, we deduce that the element (Z T’If ) belongs to
7,]’32 _ 0[2

20
Again, since all irreducible quadratic polynomials are as in (14.9), the elements

the same conjugacy class of <(1) ) (see Section 14.2.(b3) or (14.3)).

in C \ Z parameterize the conjugacy classes of type (b3). Moreover, (Z Uﬁ)
o

and ( * 8 —np ) have the same characteristic polynomial, so that they are
— o

conjugate (by <(1) _()n>’ for instance).
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Finally, (recall, once more, that 8 # 0) another simple computation shows

that
X oy\ (e nBY _ (a nB\(x ¥
z u)\p « B « Z u
if and only if nz = y and x = u. As a consequence, the centralizer of an element

in C \ Z is again C and the number of elements in each conjugacy class is again
expressed by (14.8). 0

Remark 14.3.3 From the discussion in Section 14.2 and from the proof of The-
orem 14.3.2, it follows that the representatives of type (bs) may also be taken

0 —zZ .
of the form (1 o+ Z)’ with z € qu \ I,

14.4 Representation theory of the Borel subgroup

As in (12.6), we associate with each ¢ € I@[ the function ¥: Z — C defined
by

W (“ 0) — Y (a) (14.10)
0 «

for all o € ;. It is immediate to check that W is a character of Z.
The representation theory of B may then easily be deduced from Theorem
12.1.3 and the isomorphism

B = Aff(F,) x Z = Aff(F,) x F

that gives (see Corollary 10.5.17)
B = Aff(F,) x Z = Aff(F,) x F.

Theorem 14.4.1 The Borel subgroup B has exactly (q — 1) one-dimensional
representations, namely W X Wy, where V| € AF(E) is one-dimensional and
U, e Z, and q — 1 irreducible (g — 1)-dimensional representations, namely
m X W, where w € ATf(E) isasin (12.7) and ¥ € Z.

Explicitly, these are given by

(W) ®0y) (‘8‘ §>=1/f1<a61)w2<6) for all (g f

) €B, (14.11)
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where V| € Af/f(E) (resp. W, € 2) is the character associated with | € IF‘E;
(resp. ¥, € ]f‘:;), and

a B as™! B! a B
(n&W)(O 6)=7r< 0 1 )lﬂ(é) for all (O 8)63,

where U € Z is the character associated with € F}.

Proof. Each irreducible representation of B is the tensor product of an irre-
ducible representation of Aff(IF,) and an irreducible representation of Z (see
o
0

a B\ _ (as7' BsTV\ (s O
(0 6>_( » )(o 8)6Aff(IFq)Z. -

Remark 14.4.2 Given 1, ¥, € IF‘E; let us set ¥ := wl_llﬁz € IE’T\(”]‘. Then the
irreducible one dimensional representation (14.11) can be expressed by

Corollary 10.5.17). Moreover, for any ( ’g ) € B we have the unique decom-

position

(¥, K W,) (g §> = Y1 (@)P)6) forall (g /;) € B.

As a consequence, we shall rearrange the parameterization of the pairs
(Y1, ¥2) (equivalently, (Y, ¥7)) in ]F; X Fj] and denote by Xy, y, € B the one-
dimensional representation given by

X (g §> = Y1 (a)y2(8) (14.12)

for all (?) g) € B. We deduce from (14.12) that restricting to D all one-

dimensional representations of B provides us with all irreducible representa-
tions of its (Abelian) subgroup D. Also, for simplicity of notation, we shall
identify Res? xy, 4, and xy, y,-

In the following, for every character x of D we denote by “x (cf. (11.41)) the
character of D defined by “x(d) = x(wdw) for all d € D, where the element
w is as in Lemma 14.2.4.(iv). We shall then say that x is w-invariant, provided

“X =X


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.015
https://www.cambridge.org/core

494 Representation theory of GL(2, F,)

» a 0 a 0
Xiﬁl,lﬁz O ) ZXWIJ//Z w O ) w

5 0

= Y1) ¥a(a)

a 0
= X‘/"Za‘/’l O 8
a 0
for all (0 3> eD.

It follows that ., y, is w-invariant if and only if ¥ = .

We thus have

Proposition 14.4.3 Let y € i Then

Xy.y (D) = ¥ (det(b))
forallb € B.

Proof. This is a simple calculation: indeed we have

X (3 ?) =Y (@)Y (8) = Y (ad) = Y (det <g /g))

foralla, § € F and B € F,. 0

14.5 Parabolic induction

In this section we determine the irreducible representation of GL(2, IF,) that
may be obtained by inducing up the characters of the Borel subgroup B. First,
we give a general principle.

Proposition 14.5.1 Let G be a finite group and N < G a normal subgroup.
Then the map (p, U) — (p, U) defined by

P(gN)u = p(gu (14.14)

for all g€ G and u € U, yields a bijection between the set of all G-
representations (p,U) such that Res,?,p is trivial and the set of all G/N-
representations. Moreover, this bijection preserves irreducibility and direct-
Sums.

Proof. Let (p,U) be a G-representation and suppose that Res](\;,p is trivial.
We note that (14.14) is well defined. Indeed, if g;, g» € G satisfy g|N = g2N,
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then gl’lgg € N so that ,o(gl’lgz)u = u, equivalently, p(g;)u = p(g2)u, for all
u € U, showing that p(g;N) = p(g2N). Vice versa, given a G/N-representation
(o,U),let (5, U) be the G-representation defined by

F(gu=o0(gN)u (14.15)

for all u € U. In other words, ¢ is the composition of ¢ with the quotient map
G — G/N. Clearly, Resﬁ& is trivial. Moreover, the map o + ¢ is the inverse
of the map p > p given by (14.14). It is straightforward to check that if p is
irreducible (resp. p = p; @ p2) then p is irreducible (resp. p = p; @ ). [

The G-representation (¢, U) defined in (14.15) is called the inflation of the
G/N-representation (o, U). See also Section 11.6.

Corollary 14.5.2 Let H be afinite group and denote by H' its derived subgroup.
Then there exists a bijective correspondence between the set of all (irreducible)
one-dimensional H-representations and the characters of H/H'.

Proof. We first observe that if (p, U) € H is one-dimensional, then Ker(p) =
{h € H : p(h) =idy} necessarily contains H': indeed H/Ker(p) = p(H) <
T = {z € C: |z| = 1} is Abelian. Then the corollary follows from Proposition
14.5.1 after noticing that H' is normal in H and that H/H' is Abelian so that its
irreducible representations are all one-dimensional, i.e. characters. O

Proposition 14.5.3 Let G be a finite group and H < G a subgroup. Denote by
H' the derived group of H. Let (p, V') be an irreducible G-representation. Then
the following conditions are equivalent:

(@) the subspace V' of H'-invariant vectors is nontrivial;
(b) there exists a one-dimensional representation x of H such that p is con-
tained in Indg X-

Proof. First of all, note that the subspace VH' is H-invariant. Indeed, H’ is nor-
mal in H and therefore for h € H and v € V#' we have

p(W)p(hy = p(h- k™' Why = p(h)p(h™ "W h)o = p(h)

for all i € H’, thus showing that p(h)o € V¥ (observe that, in fact, the H-
invariance of V¥ only depends on the normality of H' in H).

Consider the H-representation (Resg p, VH "y and observe that its restriction
to H' is trivial. By virtue of Proposition 14.5.1 we can identify it with a repre-
sentation of the Abelian group H/H’ and therefore, again by Proposition 14.5.1,
it decomposes as a direct sum of one-dimensional H-representations.
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Thus, if V¥ is not trivial, we can find a character X € H such that
X =< (Resf, p, VI < (Resf,,o, V). By Frobenius reciprocity we have that p <
Ind%x.

Conversely, if p is contained in Indg X, for some character x € H , then, again
by Frobenius reciprocity, Resg p contains x, which, by Corollary 14.5.2, is triv-
ial on H'. It follows that V contains H’'-invariant vectors. O

The space J(V) = V¥ is called the Jacquet module of the G-representation
(p, V) relative to the subgroup H < G.

We now apply the above results in the case where G = GL(2, F;) and H = B,
so that H' = B’ = U (see Lemma 14.2.4).

Notation 14.5.4 From now on, unless otherwise specified, we simply denote
GL(2,T,) by G. Moreover if x is a one-dimensional representation of B, we
use the notation (), V) to denote (Indg x> IndgC). Also, given the correspon-
dence between the one-dimensional representations of B and the characters of
its subgroup D, by abuse of notation (observe that B is not invariant by con-
jugation by w) we also denote by “x the one-dimensional representation of B
corresponding to the character “x € D (cf. (11.41)).

Proposition 14.5.5 Let x be a one-dimensional representation of B. Then
(Resgx, V) ~ (x @ “x, C?).

Proof. First of all note that the space VY < Ind$C is made up of all functions
f: G — C such that

f(gb) = x(b)f(g) forallbe Bandge G (14.16)
(by the definition of an induced representation) and
fu'g)=f(g) forallueUandge G

(by U-invariance). Then, by the Bruhat decomposition (see Lemma 14.2.4),
any function f satisfying these conditions is uniquely determined by its values
at 15 and w:

) = x(b)f(15) forallb € B

f(uwb) = x(b)f(w) forallbe Bandu e U. (14.17)

As a consequence, dimVV = 2 and the functions fy and f; in VY satisfying
follg) =1, fo(w) =0and fi(l1¢) =0, fi(w) =1

constitute a basis for VY.
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Let us determine the corresponding matrix coefficients for the representation
(Res§x, VY). We have

(XD fol(lg) = fob™ ") = x(b)fo(1) for all b € B.

Moreover, for every b € B there exist ¥’ € B and u € U such that b w = uwd
so that

(XD fol(w) = fo(b™'w) = fouwd') = x) fo(w) = 0.
This shows that
XD fo = x(D)fo.

We now consider the action of Bon f;. Let b € B. Then we can find oy, &y € C
such that

X(b)fi = aofo +aifi.
Evaluating this expression at 15 we get
a0 = [XB)fil(le) = fi(b™") = x(B)fi(1g) =0
so that
X(b)fi = i fi.

Since f; is U-invariant, arguing as in the proof of Proposition 14.5.3, the
action of B on fj is given by the action of D = B/U = B/B’. As a consequence,
setting d = bU € B/U we have

[X(@)fil(lg) = fi(d')=0 foralld € D

and
[X(d)filw) = fi(d"'w)
= f(w - wd'w)
= x(wdw)fi(w)
= "x(d)fi(w)
that is, x(d)fi = “x(d)fi, for all d € D. This, in turn, implies ¥ (b)f; =
“x(b)fi1, forall b € B. O

For the convenience of the reader, we now recall from Section 11.4 two basic
facts on the theory of induced representations in the particular case when the
representations that we are inducing are one-dimensional. See also Remark
11.4.10. Let G be a finite group, K < G a subgroup, and S > 15 a system
of representatives for the double K-cosets, so that we have the decomposition
G =]],.s KsK. Let x, & be one-dimensional representations of K. For s € S
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let K, = sKs~' N K and define a one-dimensional representation of K by set-

ting

£(x) = &(s 'xs) forall x € K,.

Then we have Mackey’s formula for invariants (cf. Corollary 11.4.4)

and

Homg(Ind{x , Indg&) = € Homy, (Res x. &)
seS

C  ifResg x =&

Homg, (Res x. &) = {{0} otherwise

In particular, for & = x we get Mackey’s criterion for irreducibility (cf. Corol-
lary 11.4.6): Ind$y is irreducible if and only if

Resg x # x;, foralls € S\ {1g}.

Let again G = GL(2, F,) and, for each ¢ € ]F/‘\;, define a one-dimensional
representation Zf/), of G by setting

X0(g) = Y(detg) forallge G. (14.18)

Theorem 14.5.6 Keeping in mind (14.12) and Notation 14.5.4, we have:

®

(ii)

Let ¥r1, ¥, 61,6 € I/F\’qk. If Y\ # Yy then Xy, y, is an irreducible repre-
sentation of G of dimension q + 1. Moreover, Xy, y, ~ Xz & if and only

if (Y1, v} = (&1, &Y. In particular,
{)’(\Wlﬂﬂz(: )?Wzﬂﬂl) Y # Yo € FZ}
consists of W pairwise nonequivalent irreducible representa-
tions of G.
For each € F}, there exists an irreducible G-representation zlp of
dimension q such that
Xv.y = XA‘; S ZL

Moreover,

~1 . =

{x v e}
is a set of (q—1) pairwise nonequivalent gq-dimensional G-
representations, while

(%) : v e Fy)

is the set of all one-dimensional G-representations.
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Proof. First of all, note that the Bruhat decomposition in Lemma 14.2.4 may
be also written in the form

G:B]_[BwB

yielding a decomposition of G into double B-cosets. Moreover, wBw N B = D,
so that, if x, £ are one-dimensional representations of B, Mackey’s formula for
invariants becomes

Homg (X, £) = Homp(x, &) ® Homp(ResE x,"€)
= Homg(x, §) ® Homp(x,"§). (14.19)

w. w

In particular, for £ = x and & # “x (more precisely, x # “x) we get the
irreducibility of ¥; for x # “x, & # “, and {x, “x} # (£, %} we get the
nonequivalence of the irreducible representations x and 5 Their dimension is
just [G : B] = g + 1. Note that their nonequivalence also follows from Propo-
sition 14.5.5. Finally, we can invoke Theorem 14.4.1 and (14.13).

Now suppose that x = “x. From (14.19) we deduce that dimHomg (¥, X) =
2, so that ¥ decomposes into the sum of two irreducible B-representations.
Moreover, 5@2 is contained in Xy . Indeed, setting f(g) = ¥ (detg), we have

f(gb) = ¥ (det(gh)) = yr(detg) - ¥ (deth) = xy.y(b)f(g) (14.20)

for all g € G and b € B, so that (14.16) is satisfied, and

Xy (&)f1(80) = f(g"'g0) = Xy (&) (80) (14.21)

forall g, go € G. Therefore, there exists a second irreducible representation )’(}10
in X with dim)'(]lb =(¢+1)— 1 =g. Again by (14.19), for different /s we
get nonequivalent representations (this also follows from Proposition 14.5.5).
Finally, if £ is a one-dimensional G-representation, then it is contained in
Indg X, Where y = Resgg. This follows from computations as in (14.20) and
(14.21). Alternatively, Resgé =1, because U is the commutator subgroup
of B so that, by Proposition 14.5.3, & is contained in some Ind$x. In any
case, we have proved that {5(\2, Y e IE";} is the list of all one-dimensional
G-representations. O

As a byproduct, we deduce the following result of a purely algebraic flavor:

Corollary 14.5.7 The commutator subgroup of GL(2, F,) is SL(2, F,).
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Proof. SL(2, F,) is normal and GL(2, F,)/SL(2, ;) is Abelian, because we
have the homomorphism

GL(2,Fy) — F,
g — detg

whose kernel is SL(2, F,). In particular, GL(2, F,)/SL(2,F,) = ]FZ, so that
SL(2,F,) © GL(2,F,), and |GL(2,F,)/SL(2,F,)| =¢q— 1. But, for any
finite group G, the quantity |G/G’| equals the number of one-dimensional irre-
ducible G-representations (see Corollary 14.5.2) and, by Theorem 14.5.6, this
number is exactly |IE‘;| = g — 1. This forces SL(2, F,) = GL(2,F,)'. ]

Remark 14.5.8 From Proposition 14.5.3 and Proposition 14.5.5 it follows that
for any one-dimensional representation x of B, the induced representation
decomposes as the sum of at most two irreducible G-representations. Indeed,
if X =0,®0,® - ® o,, by Proposition 14.5.3 each o; contains a nontriv-
ial U-invariant vector, while, by Proposition 14.5.5, x contains exactly a two-
dimensional space of U-invariant vectors. This fact might be used to get an
alternative proof of the fact that Xy , contains exactly two irreducible repre-
sentations.

Proposition 14.5.9 Let , Y1, ¥ € IFAZ and denote by WV, W, V¥, the corre-
sponding representations of Aff(F,) (cf. Theorem 12.1.3). Then

G =l
Res g, Xy =V O
and, if 11 # V2,
Resgff(Fq)j(\ilfmlfz =VieoWV, @,

where m is the unique (q — 1)-dimensional irreducible representation of
Aff(F,) (cf. Theorem 12.1.3).

Proof. We first note that the space VY (with V as in Proposition 14.5.5) being B-
invariant, it is also Aff(IF,)-invariant, and, moreover, dimVV = 2.1tis also clear
that Resgff(ml)fv,hd,z > Wy @ ;. Indeed, by (14.13) and Proposition 14.5.5, the
B-representation on VY is isomorphic to xy, .y, @ Xy,,y, and Resiff(ml)@,l,wz =
W,. Then, there exists an Aff(IF, )-invariant subspace W such that V = View.
The space W cannot contain a one-dimensional representation of Aff(IF,), oth-
erwise it would contain U-invariant vectors (note that U is the commutator
subgroup also of Aff(IF,)). Therefore, W necessarily coincides with the repre-
sentation space of .

The case | = ¥, = ¢ is analogous. O
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Exercise 14.5.10

(1) From Proposition 14.5.9 and Frobenius reciprocity, deduce that, for all
v e [,

G 20 2l =~
IndAff(]Fq)\y =Xy DXy D @ Xy
X/I]G]FZZ
Vi#EY

(2) From Exercise 12.1.8.(2) and transitivity of induction, deduce that

Indg)((): @5(\2 @ @5(\\2 @2 @ 5(\1//1,102 ’

npe]FAj; We]ﬁj; (Y1, 92}

where {1, ¥} runs over all two-subsets of IF; (in other words, in the
last summand, the representation Xy, y, = Xy,.y, i counted once, but
it appears with multiplicity 2 in the decomposition).

14.6 Cuspidal representations

This section is devoted to a close analysis of the cuspidal representations of G.
The last part heavily relies on the material from Section 7.3. Let G be a finite
group and K < G a subgroup. Consider a one-dimensional K-representation
(x, C) that we identify with its character. As usual, we fix a complete setS € G
of representatives for the double K-cosets in G, so that G = ]_[Se s KsK, and set
K, = KN sKs~!. Also, cf. (11.32), we denote by Sy the set of s € S such that
Homg, (Res,’é X, Xs) 18 not trivial.

For the convenience of the reader, in the following theorem we collect some
results about the Hecke algebra H (G, K, x ) from Chapter 13.

Theorem 14.6.1 Let
H(G, K, x) ={f € L(G) : f(kigka) = x (k1) f(g)x (k2), Vki,ky € K, g € G}.
Then the following hold:

() Endg(Ind¥x) = H(G, K, x);
(i) So={seS: x(s'xs) = x(x), forall x € Ky};
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(iii) every function f € H(G, K, x) only depends on its values on Sy,
namely,

) x k) f)x (ko) if g = kisky with s € So
flg) =

0 otherwise.

Definition 14.6.2 A GL(2, F,)-representation (o, V') whose subspace VU of
U-invariant vectors is trivial is called a cuspidal representation. We denote by
Cusp = Cusp(GL(2, F,)) C GIjZ,\IFq) a complete set of pairwise nonequiva-
lent irreducible cuspidal representations.

Theorem 14.6.3 Let x be a non-trivial character of the (Abelian) group U.
Then Indg X is multiplicity-free and does not depend on the particular choice
of x. Moreover

ndix = | D% [D| D %vw|D| D r| 422

‘/’E]FA; 1#1#*//2611% peCusp

In other words, (G, U, x) is a multiplicity-free triple for every non-trivial
character x € U (c¢f. Chapter 13) and Indg X contains all the irreducible

G-representations of dimension greater than one.

Proof. We present two proofs of (14.22): the first one is of a more theoretical
flavor, the second one relies on the computation of the number of conjugacy
classes of G.

First proof. We first observe that U is a normal subgroup of B and that one
has B = [[,.,, dU = [],cp UdU. From the Bruhat decomposition (cf. Lemma
14.2.4) we then get

G=B||uwB= <]_[ UdU) 11 (]_[ Uu)dU) :

deD deD

As a consequence we can take S := D][wD as a complete set of repre-
sentatives for the double U-cosets in G. Moreover, it is easy to check that
dUd'NU = U and wdUd'w NU = {15} for all d € D. Thus (cf. Theorem
14.6.1.(i1)), we have that

So =Z]_[ wD =8\ (D\ Z). (14.23)

From Theorem 14.6.1.(iii) we deduce that every function f € H(G, K, ) van-
ishes on [ [\, dU.
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Consider now the map t: G — G defined by setting
G3)=G2)
T =
y 8 y o

for all <a lg) € G. It is easy to check that t is an involutive anti-
14

automorphism of G, that is, 7(g1g2) = 7(g2)r(g1) and () = g for all
g1, &2, & € G. We claim that

ff=f forall f e H(G, U, x), (14.24)

where f* € L(G) is defined by setting f*(g) = f(t(g)) for all g€ G (cf.
(13.18)). In order to show (14.24), we recall that every f € H(G, U, x) is sup-
ported in [ [(;{y,» UsU and observe that 7 fixes pointwise the subgroup U.
As a consequence, it suffices to show that 7 also fixes all elements in Z | [ wD.
First of all, it is obvious that 7(z) = z for all z € Z. The remaining part is a
simple calculation:

o= (0 6 D)= (C )¢ 8-

a 0

foralld = < 0 B
By Proposition 13.3.4, the algebra H(G, U, yx ) is commutative and therefore

Indg x is multiplicity-free. By transitivity of induction and (12.7) we have

> € D. The claim follows.

AFf(F,)
Indg x = IndZy, ) Indy, ™ ' x = Indgsye 70 (14.25)
so that also Indgﬁ(mq)rr is multiplicity-free.

The multiplicity of )’Clp and Xy, .y, in Ind x is equal to one by (14.25), Propo-
sition 14.5.9, and Frobenius reciprocity. If p is cuspidal, then Resgff(Fq) p can-
not contain a one-dimensional representation W of Aff(IF,), because otherwise
it would contain also nontrivial U-invariant vectors (recall the proof of Propo-
sition 14.5.9 and the fact that U is the commutator subgroup of Aff(IF,)). Then
Res(A;ﬁ»(Fq) o must be a multiple of 7. Therefore,

1 > multiplicity of a cuspidal representation p in Indgff@q)n
= multiplicity of 7 in Resgﬁ(ﬁq) p  (by Frobenius reciprocity)
>1

implies that all these multiplicities are equal to 1. Finally, from Corollary
11.2.3 and (14.25) it follows that Indg X cannot contain one-dimensional
G-representations.
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Second proof. In Theorem 14.5.6 we have determined:

e g — 1 one-dimensional representations of G (the fgs);

e g — 1 irreducible g-dimensional representations of G (the ?xlb S);

. W irreducible (¢ + 1)-dimensional representations of G (the Xy, y,S).
Since G has 2(qg — 1) + Lz(q_z) + @ conjugacy classes (see Theorem

14.3.2), from Theorem 10.3.13.(ii) it follows that there exist exactly @ irre-

ducible representations missing in the above list: these are the cuspidal repre-

sentations. Moreover (cf. (11.10) and Proposition 14.3.1)

dimIndS x =[G : U] = (¢ + 1)(g — 1)>. (14.26)

Invoking again Theorem 14.5.6 and using the last part of the first proof, we
deduce that the Sa}js and Xy, y,S sumup in Indg x forming a subspace of dimen-
sion

R PN (¢* —1(g—2)
Z dlmx]; + Z dimyy, y, = q(g — 1) + %
yeF; Y1 aely (14.27)
2
+q-2
_gonf a2

Denoting by r, > 1 the multiplicity of 77 in Resgff(Fq) p € Cusp, so that dimp =
rp,dimm = r,(g — 1) (cf. the first proof), by subtracting (14.27) from (14.26),
we deduce

q(¢—1)
Y nla—D=@G-H=—F—,
peCusp
thatis, 3 ccup 7p = 24-D Since this is a sum of L2 integers r, > 1, we
deduce that r, = 1 for every cuspidal representation p. O

Remark 14.6.4 Alternatively, from (14.23) and multiplicity freeness of Indg X
one deduces that

dimEndg(Ind§ x) = |Z| + |[wD| = (¢ — 1) + (¢ — 1)* = q(q — 1).

Since parabolic induction yields

(g—1)g—2) _ qg—1)

-1
+ 2 2

q(g—1)

irreducible representations in Indg X, there are other irreducible re-

presentations in Indg X, and these must be exactly the q(q; D cuspidal repre-

sentations.
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Corollary 14.6.5 A G-representation (p, V) (not necessarily irreducible) is a
cuspidal representation if and only if Resgff(Fq)p = m. In particular, dimp =
q — 1 for every cuspidal representation.

Proof. The “only if” part can be immediately deduced from the proof of the pre-
vious theorem where we have shown that, if p is cuspidal, then Resgfmpq) o=
7 and, in particular, dimp = g — 1. The “if” part is trivial: if (p,V) is a
G-representation and Resgqu) p =m then p is G-irreducible, since 7 is
Aff(IF)-irreducible. Moreover, V cannot contain nontrivial U-invariant vectors
because,

FA(F, i
Resip = Resﬁ ( ")Resgff(Fq)p = Resﬁ Gl = @ X

xel
x nontrivial

where the last equality follows from Corollary 12.1.7. U

We now introduce a special element in B:
-1 -1
by = . 14.28
0 ( 0 1 > ( )

The following property is elementary, but useful: for all b € B \ D there exist
d,, d> € D such that

b =dbyd,. (14.29)
fa B .
Indeed, if (O 8) € B\ D, thatis 8 # 0, then
a B (1 0 -1 —=1\[/—a O
0 8) \0 —s87! 0 1 0 -8/
. a 0
Also note that if d = ( 0 8) € D then
d = wdw = (5 0) eD. (14.30)
0 o

Exercise 14.6.6 From Exercise 14.5.10 and Exercise 12.1.8, deduce that, for
¥ €A,

Ind§y = (ndGx) & | X5 @ 7 @ @ Tow | |
wle]F;:
Yi#EY

where x is any nontrivial character of U.
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Proposition 14.6.7 Let V be a finite dimensional vector space and p: G —
End(V) a map such that:

(a) Resgp is an irreducible B-representation,

() p(biwby) = p(br)p(w)p(by) for all by, b, € B;
(©) p(wdw) = p(w)p(d)p(w) forall d € D;

(d) p(wbow) = p(w)p(bo)p(w).

Then (p, V) is an irreducible G-representation.

Proof. We show that p(g1g2) = p(g1)p(g2) for all g1, g» € G. Note that, this
gives, in particular, that p(g) € GL(V) for all g € G. When gy, g> € B, this fol-
lows from the hypothesis (a) (which also implies that p(15) = Iy). By virtue of
the Bruhat decomposition (cf. Lemma 14.2.4) we have the following remaining
cases:

First case: g1 = b € B and g, = bywb, € BwB. Then

p(g182) = p(bbiwby)
(by hypothesis (b)) = p(bb1)p(w)p(b2)
(by hypothesis (a)) = p(b)p(b1)p(w)p(b2)
(by hypothesis (b)) = p(b)p(b1wb)
= p(g1)p(82).

The case g; € BwB and g, € B can be treated in the same way.

Second case: g = bywb, € BwB and g, = byswb, € BwB. We must further
distinguish two subcases:
First subcase: b,b3; = d € D. Then

p(8182) = p(biwdwby)
(by (14.30)) = p(b1dbs)
(by hypothesis (a)) = p(b1)p(d)p(bs)
(by hypothesis (¢)) = p(b1)p(w)p(d)p(w)p(bs)
(by hypothesis (a)) = p(b1)p(w)p(b2)p(b3)p(w)p(bs)
(by hypothesis (b)) = p(g1)p(g2)-

Second subcase: byb3 € B\ D. By (14.29) there exist d;, d, € D such that

bybs = diboyds. (14.31)
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Then

p(g182) = p(biwd bodrdwby)
(by (14.30)) = p(bidywbowd>bs)
(by the first case for wbyw € BwB) = ,o(blcil )p(wbow),o(asz4)
(by hypothesis (d)) = p(b1d1)p(w)p(bo)p(w)p(dabs)
(by the first case) = p(b1d~1 w)p(bo)p(wd~2b4)
(by (14.30)) = p(biwd)p(bo)p(drwbs)
(by the first case and hypothesis (a)) = p(bjw)p(dbodr)p(wbys)
(by (14.31)) = p(b1w)p(b2b3)p(wbs)
(by the first case and hypothesis (a)) = p(bjwb;)p(bswby).

This shows that p is a representation. Its G-irreducibility follows from B-
irreducibility (hypothesis (a)). O

We now fix x € IE/‘; and consider an indecomposable character v € IE/‘;\Z (cf.
Definition 7.2.1). Let j = j,, be the associated generalized Kloostermann sum
(cf. (7.16)). Set V = L(]FZ). We define a map p: G — End(V) by setting, for
all feVandy € F?,

[P(f10) = v(&)x (' By ) fay) (14.32)

[p(@f10) = =Y v(=yx(ay ™y +y ox™)j(y 2y 'x " det(@) f ()

%
xE]Fq

(14.33)

ifg = ()‘”/‘ ‘:) € G\ B = BuwB (thatis, if y # 0).

Remark 14.6.8 As noted by Terras [159, p. 372], the minus sign in the
right hand side of (14.33) is essential for the definition of p(g) for g € G\
B. Note that Piatetski-Shapiro [123] defines an induced representation by a
right-translation action, namely, given a K-representation (o, V), he defines
(p, Ind,?V) by setting

IndV = (f: G — V : f(kg) = o (k)f(g) forall k € K and g € G} (14.34)

and

lo(g1)f1(g2) = f(g281)
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forall f € Ind,?V, and g1, g» € G (compare with (11.1) and (11.2)). Moreover,
if k(y, x; g) is as in [123, p. 40], our p is defined by

[p@f10) =Y kO™, x5 9)f ()

xe]Fj;
forall f € Ind¢V, g€ G, and y € F:.

Theorem 14.6.9 The above defined map p is an irreducible unitary G-
representation and Resgqu} o = 7 (cf. Proposition 14.5.9).

Proof. The proof is an application of Proposition 14.6.7.
First of all, we prove that

F*
Res§p ~ (ResIFZ2 v> M.
Indeed, using Theorem 14.4.1, we get

[e<mn); )

(by Proposition 12.1.4)
(by (14.32))

—1 —1
o= (7)) s

V(&) x (B8 'y (@' 8y)
e () f10),

forall <g ?) €B,feV,andy € ]FZ. This shows that Resg,o is B-irreducible,

and condition (a) in Proposition 14.6.7 is satisfied.
We also note that, for all y € F7,

[p(w)f1) = = Y v(=x)j(=x"'y" ). (14.35)

N
xely;

Let now by = <O(l)l §1> by = (082 §2> € B. Then
1 2

Biaa  B1B2 +0€152)

biwby =
1o <51062 3182

and det(bywb,) = —a 12615, so that

[p(b1wby) f1() = — > v(=100)x (B18 'y + oy Box™"):

xelF}

J(—ard205 87 Ty FO)
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and

[o(b1)p(w)p(ba) f1(y) = v(8)x (8 By Hlp(w)pba) f1S1e; ' y)
(by (14.35)) = —v(E)x ;' Bry™) Y v(—x)-

xelFy

J=x7y T8 a)[p(b2) F1(x)
==Y v(=x818)x (8 By~ + 85 Box!)-

xelFZ
. -1, —1¢—1 -1
J=xy s ) f(Sa05 ')
(setting z = S0, 'x) = — > v(—z8100)x(B18; 'y + ' oz )-

- *
gequ

=z 'y a8 8D f(2).

This shows that p(bywb;) = p(by)p(w)p(b2), and we have proved condition
(b) in Proposition 14.6.7.

We now consider d = <g (8)) € D so that wdw = (f) 2) (cf. (14.30)).
Then, by (14.35),

[o(w)p(d)p(w)f1y) = = D> v(=x)j(—x""y lp(d)p(w)f1x)

xe]Fj;
==Y v(=x8)j(—x""y Hlpw) [l 5x)
xe]FZ
= Y ved)j(—xy hj(—as Tk T f(2)
x,zeIFj;

(sett = —x" 'z 'wd™") = v(—w) Z |:Z v(tl)j(l‘)j(ylzalaf):| f@)

* *
z€F; | teF}

(by Corollary 7.3.6) = Z V()3 12015/ (2)

ze]Fl-l

=v(a)f(as™'y)
(by (14.32)) = [p(wdw)f1(y)

and condition (c) also is proved.
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-1\, . 0
0 1 ) is as in (14.28), then wbyw = (_1 _1> S0

Hmmﬁm=<

that

[p(wbow) 1) = =Y _v@x (" =y i(=z"y /@)

2l
while, using again (14.35) and (14.32),

[p(w)p(b0)p () f1() = — 3 v(=x)j(=x"'y " p(bo)p(w)f1(x)

xe]F;
==Y w(=0)j(—=x"'y x(=x"Dlp(w)f1(—x)
xe]FZ
= Y v)j(—xy i T Hx (=)
x,ze]F;

(setting w = —x~") =Zv(—z){z j(wyl)j(w(—zl))v(wl)x(w)}f&)

z€F; wely

=— Y v@Jj(—y TG =y Hf),

"
z€Fy

where the last equality follows from Proposition 7.3.4. Thus condition (d) is
proved as well.

We are only left to show that p is unitary. Let fi, f> € L(Fy). If g = <g ’§)

then we have

(p@f1, p(@f) =Y v®)x(™ Bx)fiBa @) (6 Bx )28 x)

xelFy

=) Z HMAG)

ye]FZ

= (i, f2)

where =, follows from the substitution y = Sa~'x and the fact that |v(-)| =
Ix()l =1
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B

.. . o
Similarly, if g = <V s

) with y # 0, then

P@f, p@f) =Y Y vi—yoxy 'y +y e
ye]F;; x,zeIFj;
Jr 72y det(g) fi () (—y 2)-
x(ay=ly=t 4+ y=18z71) j(y 2y~ 1z det(g)) f2(2)

= > A@A@va Hxly s =)

M
x,ZE]Fq

> iy det(9)j(y 2y Tz det(g))

yeFy

(by Proposition 7.3.5) = Y i) @z xly's(! —hs,..

x,z€F}

=<f17f2>‘ O

In the following, we write p, (resp. j,) to emphasize the dependence of the
representation p (resp. the generalized Kloosterman sum) from the indecom-
posable character v.

Theorem 14.6.10 Let i and v be indecomposable characters of FZZ' Then the
following conditions are equivalent.

(a) the representations p, and p, are equivalent;
b)) u=vormw=v;
(©) ju = ju and plz: = vls.

Proof. The implication (b) = (c) follows immediately from the definitions, and
the converse, namely (c) = (b), is Theorem 7.3.7. The fact that (c) implies (a)
is trivial. We are only left to prove (a) = (c). We thus suppose that p, ~ p,.
Then there exists an invertible operator 7T : L(IF;) — L(IF‘;) such that

Tp;/_(g) = pv(g)T
for all g € G. Since, taking into account Theorem 14.6.9,
G G
ReSAff(E,)p//« = ReSAff(IFq)pV =7

and m is Aff(IF,)-irreducible, we deduce that T = )JL(]F;) for some A € C\ {0},
so that

Pu(8) = pv(g)
forall g € G.
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In particular, for all x, § € IFZ and f € L(IF;) we have:
I 0\ 10
Pr\o s) =P \o s

n(8)f(8x) = v(8)f(8x)

so that

and therefore
w(8) =v(d). (14.36)

This shows that /Lhﬁ‘; = th:;. Similarly, from (14.35) and the equality p, (w) =
oy (w) we deduce

D (=) ju(=xy ) = Y v(=x)ju(—x 'y (),

xE]F; XE]FZ
forally e ]FZ, that implies (taking into account (14.36)) that
Ju@) = ju () (14.37)

for all x € ]F;. O

Corollary 14.6.11 The set {p, : v indecomposable character of Fzz} coincides
with the set Cusp of all irreducible cuspidal representations of G.

Proof. Let v be an indecomposable character of FZZ. By Theorem 14.6.9,
Resgfmm pov = 7 (and p, is irreducible) so that, by virtue of Corollary 14.6.5,
py € Cusp (alternatively, keeping in mind dimp, = g — 1, to show that p, is
cuspidal one may refer to the discussion in the second proof of Theorem 14.6.3).
By Remark 14.6.4 (cf. also the second proof of Theorem 14.6.3), there are
exactly @ pairwise nonequivalent irreducible cuspidal representations. On
the other hand, the number of indecomposable characters is g(g — 1): thus, the
pys exhaust Cusp (and, in fact, since p, = py, each cuspidal representation is

listed twice). O

14.7 Whittaker models and Bessel functions

In this section, we expose Piatetsky-Schapiro’s theory of Whittaker models and
Bessel functions. Our approach, however, is based on our theory of multiplicity-
free triples (see Chapter 13): this way, we clarify many intricate points and
simplify calculations.
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Fix a nontrivial character (x, C) € U= IE/?;. By Theorem 14.6.3, the induced
representation (Indg Xs IndgC) is multiplicity free and contains all the irre-
ducible representations of G of dimension greater than 1. Let (p, V) be an
arbitrary irreducible G-representation with dimV > 1, so that, by the above,
dimHomg(p, Indg x) = 1. We fix an operator 7” € Homg(p, Indg X ), which
is also an isometry (so that, 7 is defined up to a complex constant of modulus
1). The subspace TV < Indg(C is called the Whittaker model of p. Note that
it does not depend on 7 and, for all v € V, the function T°v: G — C satisfies

[T*0](gu) = x )T v1(g) (14.38)
forall g e G,v €V, and u € U (by definition of Indg x), and
[T*o](h™"g) = [T* p(h)v1(g) (14.39)

for all g, h € G, v € V (because T” is an intertwiner and, again, by definition
of Ind ). Finally, since 7 is an isometry we have

1Tl ggec = lollv-
In particular, 770 = 0 < v = 0.

Proposition 14.7.1 Let (p,V) be an irreducible G-representation satisfying
dimV > 1. Then

()
Resgjip,)V ~ J(V) @ Vy

where J(V) is the Jacquet module (see Section 14.5) and (7w, V) is the
unique q — 1 dimensional irreducible representation of Aff(IF,).

(ii) Letv € J(V) then
1 By
p(o 1)”_”

forall <(1) llg
(iii) dimV > dimJ(V).

)eu

Proof.

(1) It is an immediate consequence of the following facts: (p, V) is con-
tained in Ind$ x ~ Indgff@q)n so that Resgff(Fq)V contains V,; with mul-
tiplicity one. If (p, V) is cuspidal, then Res(A;ff(]Fq),o ~ g (cf. Corollary
14.6.5) and J(V) = 0 (by definition). If (p, V) is parabolic, we may
invoke Proposition 14.5.9.
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(i1) IfJ(V)isnontrivial, then by Theorem 12.1.3 and Proposition 14.5.9 we
have

either ¥, ® ¥,

G
ReSAff(IE‘q) [P |J(V)] = w

and W is trivial on U.
(iii) This follows immediately from (i). O

The following is an elementary but useful identity.

Lemma 14.7.2 Let (p, V) be an irreducible G-representation with dimV > 1.
Letalsov € V, a € F; and B € Fy. Then we have:

o (§ ) = x5 7).

0 a B\ _ ., a 0\ /1 a7'B
(g 5)=ra ()6 )

(by (14.38) = x(@ B)IT"v] (“ 0). .

Proof.

0 1

Proposition 14.7.3 Let (p,V) be an irreducible G-representation with
dimV > 1 and define a linear map R: V. — L(F}) by setting

0
[Ro](x) = [T"v] (g 1)

forallv €V, x € Fy. Then R is a surjective A-homomorphism (cf. (12.2)) and
its kernel is exactly J(V).

Proof. Suppose that v € J(V). Then, for o € I}, 8 € IF, we have
-1
a B\ a —f a 0
[7%0] (0 1) = [17] [(o 1 > <o 1)}
_ 1 -8 a 0
(by (14.39)) = |:Tpp (O ] )v} (0 1)

(by Proposition 14.7.1.(ii)) = [T*v] (g (1)>

Then, using Lemma 14.7.2, we deduce that

[T70] (g ?)=[Tﬂv] (z /f)=x<a1ﬂ)[m] (g ?)
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a 0
0 1
FZ (since yx is nontrivial). That is, v € KerR, showing that J(V) C Ker(R).

Let us prove that KerR is Aff(F,)-invariant. If o, y € F;, B € Fy and v €
KerR then, taking into account (14.39), we have

y B a 0) yla —y7'B
ey )] @ )= (T )

B a—— -1
(by Lemma 14.72) = x(—a 1 B)[T"v] (V - (1J>

for all B € F,, and this implies that [Tv] < ) = [Rv](a) =0 forall o €

(v € KerR) =0.

Then, by Proposition 14.7.1.(i), the kernel of R must equal either J(V) or
J(V)@® V, = V. Let us show that the second possibility cannot occur. Indeed,
Ker(R) = V implies [T”v](1g) = Oforallv € V. From (14.39) we then deduce
that [T?0](g) = [T*p(g v](lg) =0 for all v € V and g € G, contradict-
ing the fact that 7% is an isometry. The fact that R commutes with the A-
representations on V and L(IF;‘;) is obvious. O

Now consider again an irreducible G-representation (p, V') with dimV > 1.
Since it is contained in Indg x with multiplicity one, by Frobenius reciprocity
Resg,o contains x with multiplicity one. That is, there exists vy € V, ||og|| = 1
such that

p(u)vg = x(u)vg (14.40)

for all u € U. Moreover, if v € V satisfies p(u)v = x(u)v for all u € U, then
v must be a multiple of vy. Clearly, vy is defined up to a complex multiple of
modulus one; Piatetski-Shapiro called it the Bessel vector associated with the
representation (p, V') (and the character x € U ).

We can now apply our theory of multiplicity-free triples developed in Chap-
ter 13. By (13.31), T” may be expressed by means of

— dﬂ
[T*0](g) = G0l (v, (Vo). (14.41)

The Bessel (or spherical) function associated with p (and ) is defined by set-
ting

G/U
GION rruo1ce) (14.42)

9"(8) = (vo, p(vo) =

for all g € G, see (13.32). Clearly ¢ (1) = 1.


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.015
https://www.cambridge.org/core

516 Representation theory of GL(2, F,)

Proposition 14.7.4 The Bessel function ¢” satisfies
p (@ 0)_
(5 1)-0
Proof. On the one hand, for alla € F}, B € F,, we have
-1
ofa BY _ 1 -8 a 0
¢ (o 1>_<”°’p[<0 1 0o 1)|"
_ 1 -8 a 0 v
=\p 0 1 0o, P o 1)%

(by (14.40)) = X(B)¢" (“ O).

foralla € Fy\ {1}.

0 1
On the other hand
o BY |G/U| 0 a B
¢ (o 1)‘\/ a4, ol

(by Lemma 14.7.2) = x(a~1B) |G/—U|[Tpvo] <a O)
d, 0 1

— (2 0
= x(a™'B)p” (O 1)-

If « # 1, letting B vary in F,, we deduce that ¢” (g ?) =0. O

First of all, we determine the Bessel vectors and Bessel functions associated
with parabolic representations. These representations (see Section 14.5) are
obtained as induced representations: if u = Xy, y, (With ¥y # Yry or Yy = ¥rp)
then the representation space of Indgu is

V={f:G— C: f(gh)= u(b)f(g), forallge G,beB}. (14.43)

Now, if | # ¥, then it is irreducible, while if ¥, = ¥, = ¥, we have (see
Theorem 14.5.6.(ii)) Indf i = Xy.y = Xy @ X;,» Where ) is one-dimensional
and Z/l/ is (irreducible and) g-dimensional. Since Indg x does not con-
tain one-dimensional G-representations (by Theorem 14.6.3), for every T €
Homg (Xy .- Indf x ) we have Vzo S KerT.
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Proposition 14.7.5 With the notation above and keeping in mind the Bruhat
decomposition (cf. Lemma 14.2.4), the Bessel vector fy € V is given by

{fo(b) =0 forallbe B

| — (14.44)
So(uwb) = ﬁu(b)x(u) forallbe B,ucU.

Proof. Let f; be a function satisfying (14.44). It is a straightforward computa-
tion to check that f; belongs to V (cf. (14.43)). Moreover, for all u, ¥’ € U and
b € B, we have

fow™"'b) =0 = x(u)fo(b)

and

1 -
fow W'wb) = — x (@B x W) = x(u) fo(u'wb)
NZi

that is, f belongs to the x-component of Resglndg Wu.

In the case ¥ = Y, = v, the one-dimensional representation 5(:2 cannot
contain a y-component, since y € U is non-trivial, while Resgig is trivial
by (14.18) since det(u) = 1 for all u € U. This can be alternatively deduced
by using Frobenius reciprocity and recalling that 5{3 is not contained in Indg
(cf. Theorem 14.6.3).

Finally, by (11.4) and using the Bruhat decomposition, we have

1
(oo fo) = i > lfo@)

geG
1
(by (14.44) = — > [fo(®)I?
| |gerB
1
=5 D) foluwh)®
ueU beB
1
(by (14.44) and |U| = ) = m=rr DO luw®d)l - Ix @)
uelU beB
1 1
= - b . —
B bXI; ®- XUj |x ()l
=1. O

Corollary 14.7.6 Let p = Xy, .y, be a parabolic representation. Then, with the
same notation as in Proposition 14.7.5, we have

dp

Gl D fleuw)x ()

uelU

(T°f1(g) =

forall f €V (c¢f (14.43)) and g € G.
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Proof. Let f € V and g € G. By (14.41) we have

d,
[T* fl(g) = G/l (f, p()fo) Ind%,
_ dp 1
=G TTE Zf(h)fo(g )
(setting h = gt) = |G/U |B| Z f(gHfo(t)
(by Proposition 14.7.5) = |dG| B Z Zf(guu)b)u(b)x(u)
ueU beB
(by (14.43)) = Zf(guw)x(u)
|G uelU D

Corollary 14.7.7 With the same notation as in Corollary 14.7.6, the spherical
function associated with p is given by

1
p —_ —
©"(g) i uEEU So(guw)x (u)

forall g € G.

Proof. Set f = fj in Corollary 14.7.6 and use (14.42). O

It is interesting to analyze a special value of ¢”.

Proposition 14.7.8 With the same notation as in Corollary 14.7.7, we have

(1 5) =1 X Hemone)

forall a € Fy.

Proof. First of all, note that, for x # 0, the Bruhat decomposition yields

CD-6)00)6 )
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so that by Proposition 14.7.5

a 0 _L X 1 1 ax!
M )= o et (14.45)
| .
= ﬁ‘ﬁl(x)lﬁz(—ax“)x(ax—l).

From Corollary 14.7.7, the identity ((1) g) <(1) )16) ((1) (1)> = (Z ?),

and fy (g ?) = 0, we then deduce that

1
" (? g) = ﬁZfo (i ?) x(x)

xeF;
1 S
(by (1445)) = D V@Y (—ax Dy (x —ax)

x
xelfy

1 -
O=—ax") == > YW IxE+y).

x,yEIFj;: |:|
xy=—a

We now examine the Bessel vector and the Bessel function for a cuspidal rep-
resentation (p, V) (cf. Definition 14.6.2). Let {f, : x € ]FZ} be the orthonormal
basis of V = L(IFZ), where

£y = 8, = 1 ify=x (14.46)
Yo ify#x '
forallx, y € Fy.
Proposition 14.7.9

(1) fi is the Bessel vector for p.
(i) The associated intertwining operator is given by:

! TSNy (Ro—1) -1
(T f1(g) = \/qzjv(a)x(ﬁa Df(s™)
ifg= (g ?) € B and by
1
[T fl(g) = ———— Y v[yxdet(g) ' IxGy 1+ y~lax1)

- jly 2 x" det(g) f(x)


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.015
https://www.cambridge.org/core

520 Representation theory of GL(2, F,)

ifg= (;’/‘ ?) €G\B, forall feV.
(iii) The spherical function of p is given by:

¢ (&) = v(®)x(Ba~")du s
ifg= (g ’2) € Band
¢*(8) = —vly det(@) ' Ix @y~ + y 1) j(y 7 det(g))
. (o B
ifg= (y 5) € G\B.
Proof. Let f e V.
(i) From (14.32) we have

o (o §) = xepr s

forall x IP’Z, so that f is a Bessel vector if and only if

X(Bx ) = x(B)fF ()

forallx € Fy and B € F,. Since x is nontrivial, this forces /' = A for
some A € C. In particular, f is a Bessel vector. Note that we have actu-
ally reproved that Resg p contains x with multiplicity one and therefore
that p is contained in Ind{} x with multiplicity one.

(ii) Note that, by (14.41),

qg—1

T? =
(77 f1(9) G/U|

(fs p(@f1)v

&

(by Proposition 14.3.1) = (g™, fi)v

21

3

= \/m[p(g‘l)f](l),

a B\ _ [ Sdet()”!  —pdet(g)”!
y 8 ~ \—ydet(g)™!  adet(g)”!

in particular,
- B Ol_l _’30[—]5—1
“\o 5! '

and that
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Then it suffices to apply (14.32) and (14.33), respectively (and

det(g™") = (detg)™).
(iii) Itis an immediate consequence of (14.41), (ii), and the definition of f;:

indeed, ¢”(g) = [p(¢~")Ai11(1) forall g € G. a
Corollary 14.7.10 Let (p, V') be a cuspidal representation, f € V and x € .
Then

x 0 1
[T7f] ( ) = f(x) (14.47)
1 /¢ —
and
0

% <j§ ) e (14.48)

Moreover, for all B,y € F*,

0 —_. _

o (0 8) =i, (14.49)

Proof. (14.47) is immediate after Proposition 14.7.9.(ii). (14.48) follows from
Proposition 14.7.9.(iii) (or Proposition 14.7.4) and the definition of f;. Finally,
(14.49) is just a particular case of Proposition 14.7.9.(iii). O

Remark 14.7.11 With 8 = —1 and y ! in place of y, (14.49) yields

oL 0 -1\_ 0 vy
J(y)——¢p<y_1 O)— W(_l 0),

—1
-1
where the last equality follows from ( (31 O) — ( 01 )(;) and
% —

©”(g7") = ¢”(g). Analogously, setting y = —1 we get

J(B) = —v(—B)e” (O ﬁ)

Remark 14.7.12 With Piatetski-Shapiro’s definition of an induced representa-
tion (cf. (14.34)), the intertwining operator 77 in (14.41) and the associated
spherical function in (14.42) become

[T"v](g) =

d,
G/U| (0(g)v, vo)

and

©*(g) = (p(g)vo, vo),
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forallv € V and g € G, respectively. Therefore, our spherical functions are the
conjugate of the Bessel functions J,, in [123]: indeed, one has

0
I (_ ' 3) = —j(x)

For the last result of this section, we identify the subgroup

a 0 "
A= {(O 1) :ae]Fq} C Aff(F,)

for all x € IF;.

with ) via the isomorphism (g ?) — a.

Proposition 14.7.13 Let (p, V) be a cuspidal representation of G. Then

[T7f1(e) = Y [T”flla)p"(@'g) (14.50)
acA
and
[p(@)f1@) = flang’(a;'g " a) (14.51)
aj €A

forall f €V, ge G, anda € A.

Proof. (14.50) is an immediate consequence of (14.47) and the explicit expres-
sions in Proposition 14.7.9.(ii) and (iii).
We now prove (14.51). Let g € G and a € A. Then, by (14.47),
[p(e)f1(@) = vq* — 1[T” p() f1(a)
(by (14.39)) = V¢* — L[T" f1(g"'a)
(by (14.50)) = /g — 1 Y _[T”fl(a))¢"(a; "¢ 'a)

a €A

(by (1447)) = > f(a)¢"(a; "¢ a). .
a €A

For another approach, we refer to [86].

14.8 Gamma coefficients

Following Piatetski-Schapiro [123], we introduce another set of functions, con-
nected with the representation theory of GL(2, ;) that may be expressed in
terms of Gauss sums (cf. Section 7.4). We recall (see Section 10.5) that if (p, V)
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is a representation of a finite group G, then, denoting by V’ the dual space of
V, the associated adjoint representation is the G-representation (p’, V') defined
by setting

[0 (9)pl(v) = plp(g™ " o]

forallg € G,v € V and ¢ € V'. Moreover, the associated character is given by
x*'(&) = x"(g7") = xP(g), forallg € G.

Suppose now that (p, V) is an irreducible representation of G = GL(2, ;)
with dimV > 1. We say that w € Iﬁj} is an exceptional character for p if p is
parabolic and

p = ?1/,1,% with | = o = w ! or Y =w= ™!

or

p:ﬂ,withlpzaza)”.

By Proposition 14.5.9, w is exceptional for (p, V) if and only if @ is contained

in Res§ pl;v), that is, o is contained in (Res$p) |y

Proposition 14.8.1 Let o € IE"\; and suppose that it is not exceptional for p.

Then w is contained in (Resg,o), with multiplicity one.

Proof. If w € ]ﬁ; is not exceptional, then @ it is not contained in Res{ p|sv)
and, by Corollary 12.1.5, it is contained in Res§ p|y, with multiplicity one. By
Proposition 14.7.1.(i) it is contained in Resg p with multiplicity one. From the
discussion above we deduce that w is contained in (Res$p)" with multiplicity
one. (]

Lemma 14.8.2 (Definition and existence of I',(w)) Let w € I’F\z and suppose
that it is nonexceptional for (p, V). Then there exists T',(w) =Ty, (w) € C
such that

L) Y I7%0] (g ?)Wziﬁml ((1) g)m

xelFy xelFy
forallv eV.

Proof. Define ¢ and ¥ in V' by setting

o)=Y () ) e

"
xe]Fq
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and
b= 30 (7 5)a

for allv € V. Then

ol )=l @36 D)o

xe]Fj;
-1
(by (14.39) = Y [T70] (’“):) ?)@
xe]Fjl

(setting x = ya) = w(a) Z[T”v] (g (1)) o(y)

yeFy
= w(a)p(v),
so that, for o € A,
[0/ (@)pl(v) = plp(a™" ] = w(@)p()

forall v € V, thatis, o' (a)p = w(a)e.

Similarly,
a 0 —
w[p (0 l)v} = 0@V ©).

so that we also have p’ (@)Y = w(a)y, for o € A, and, by Proposition 14.8.1,
there exists I, (w) € C such that ¢ = I'p(w)e. ]

Corollary 14.8.3 I' ,(w) may be expressed in terms of the Bessel function ¢
(see (14.42)):

0 x\—
r = ° . .
p@)=) ¢ (1 0) w(x) (14.52)
X€]F2
Proof. If vy is a Bessel vector, then Lemma 14.8.2 with v = vy implies
0 0 .
(recall that ¢” (x ) = ‘Gd/—U‘[Tpvo] (x > = 0 for x # 1, see Proposi-

0 1 0 1
tion 14.7.4, and ¢” (1) = 1)

1 __
L (@)[T7 o] (0 (1)) = 3 [770,] (‘1) g) e

"
xE]Fq

which in turn yields the desired identity. O
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We can use (14.52) to define I', (w) also for exceptional characters and cus-
pidal representations.

Definition 14.8.4 Let p be an irreducible G-representation with dimp > 1.
Then the complex-valued function I',(-), defined by means of (14.52), is called
the Gamma coefficient associated with p (and the fixed character x € U).

We recall (see Definition 7.4.1) that for x € IE/‘; and ¢ € ]ﬁj;, the associated
Gauss sum is defined as

g, ) =Y X))

xel,
0 if 1

where we have set ¥ (0) = ity #
1 ify =1

Proposition 14.8.5 Suppose that p is parabolic. Then, with the same notation
as in Theorem 14.5.6, and the beginning of this section, we have

w(—1)

I'(w) = g, x)g(Who, x).

In particular, |T"p(w)| = 1.

Proof. By Proposition 14.7.8 and Corollary 14.8.3 we have:

1
Lpw) =~ ) X+ w(=rs)
xe]F:; r,seIFj;:
-1
- “’(q '3 S e () G Ewmx )
xE]F; r,seIF:;:

_1 - -
= ‘”(q S e Y heeEx )

N M
re]Fq se]Fq

w(—=1) — —_—
= q 8(!”1607 X)g(w2ws X)

Just note that V@, Yo # 1, because w is not exceptional for p so that the sum
>_rer- is in fact the sum ), p (and, similarly, for the sums in s).
Since [g(¥, x)| = /q (cf. Theorem 7.4.3.(vii)), we get |I',(w)| = 1. O

Remark 14.8.6 If we use a different character in place of x, say ¥, we get a
different value of I',(w). Since there exists « € IFZ‘] such that ¥ (x) = yx (ax) for
all x € F, (cf. Proposition 7.1.1), we deduce that, for p parabolic, the Gamma
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coefficient with respect to ¥ is

[y z(@) = @@’ Y1 (@)P2(a)T 4 ().

Proposition 14.8.7 Suppose that p is the cuspidal representation associated
with the indecomposable character v € FZZ' Then, denoting simply by Tr and
N the trace and the norm of the extension ¥ /I, (see Section 6.7), we have

Cl)(—l) _ -
[p(w)=——""— v(iw(t)x(t +1)
telf*,
= —Mg(v—‘(onrr‘, x oN)
q

for every w € IE?;. In particular, |T,(0)| = 1.
Proof. By Definition 14.8.4 we have

=X (0 )

xelfy

(by (14.49)) = =Y " v(=x)j(-x)w(x)

xelF}
| [ _
(by (7.16)) = - D v(=wl) Y xt+Hve)
erFZ ze]It;:

ti=—x

le—m— _
=—= ) vw(=x) Y x@+Dv()
q xeF; teIqu*:
. 1 —_———C - -
(Hilbert Satz 90) = —= Y " v(tD)w(—th)x (t + D)v(t)

teIqu*

_ @D 3 v Owl)x @ +17)
q IEF‘;

— 2D S @t + )
telfs

7
= —w(q_l)g(vfl(a) oTr)™!, x oN).

Since [g(:, )| = /|Fp|=¢q (cf. Theorem 7.4.3.(vii)), we also have
IT'p(w)] = 1. ]
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Remark 14.8.8 As in Remark 14.8.6, if ¥ is another character of I, and
X (x) = x(ax), then, for a cuspidal representation p we have

I, z(@) = v(@)w(@) T, (o).

14.9 Character theory of GL(2, )

In this section we compute the characters of all irreducible representations of
G as well as the Gelfand-Graev character & of Indg X, Where x is, as usual, a
fixed nontrivial character of U.

Proposition 14.9.1 Let & denote the character of Indg X. Then
(-1 g+1) ifg=1g
11
E@=11—-¢ if g is conjugate to <0 1)

0 otherwise,

forall g € G.

Proof. First of all, note that D] [ DUw is a set of representatives for the left
cosets of U in G:

G= (]_[ dU) [T ]]duwu |- (14.53)

deD deD,
uel

Indeed, one just needs to recall the Bruhat decomposition and to note that, for

g= <;‘j ’?) € G\ B (i.e. with y # 0) we have

x 0\ (1 z\ (0 1\ (1 o\ (xz x+xw\ (a B

0 yJ\o 1/J\1 o/J\0o 1) \y yo T \y &
if and only if y=y, 0 =8y, x=8—ady ' = -y 'det(g) and z =
—ay det(g)~!. In other words, any g € G \ B may be written in a unique way
in the form g = duwu,, withd € D and u, u; € U.

First of all we clearly have
. G Gl 2
§(lg) = dimIndg x = T (¢ —D(g—1).

From Frobenius character formula (cf. (11.18)) it follows that
E@= Y x@dled+ > xwu'd'gduw). (1454)

deD: deD,ucU:
d~'gdeU (duw)~" gduwelU
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In particular, if g is not conjugated to an element of U, we have £(g) = 0.
Recalling Theorem 14.3.2, we have that U \ {15} is contained in the conjugacy

class of <(1) 1) We deduce that £(g) = 0 if g is not conjugated to <(1) 1)

11
We are only left to the case when g is conjugated to (O 1). If h=

(oz ’g ) € G, and setting A = det(h), we have
14

aﬂ_]llaﬂ_aﬂ_110+01aﬂ
y 6 0 1)\y 8) \y 6 0 1 00 y §
(10 n SATY —BAT\ (0 1\ [(a B
—\0 1 —yA7l ATl 0 0)J\y ¢
_(1+ysATt 2AT!
T\ =2AT 1T — ATt (14.55)
so that /™! ((1) }) h is not in U if y # 0. Therefore, for the expression of

£ ((1) 1) in (14.54), only the first sum may be different from O (the second

1 1
one vanishes since (duw)™! < 0 1) duw does not even belong to B).
Thus,
—1
1 1 x 0 1 I\ /x O
é(0 1>_ 2 X[<0 y) (0 1><0 yﬂ
x,yelFy
1 xy
-2k )
x,ye]F(’;
=Y xt'y
x,yelFy;
=@-1) x®
xe]Fj;
= l —_ q’
where the last equality follows from the orthogonality relation
0=0(u =) xM=1+) x. (14.56)
xelF, xelF*

O
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In Table 14.2 (where in the first column there are the irreducible representa-
tions and in the first line the representatives of the conjugacy classes), we give
the values of the characters of the higher dimensional representations of G on
each conjugacy class, as well as the cardinality of the corresponding irreducible
representations (here, x, y € F) and z € F2\F,).

Table 14.2. The character table of GL(2, ).

x 0 x 0 x 1 0 —zZ ]
0 x Oyy#x 0 x 1 z42 1

20 e ¥ (xy) ¥ () ¥ (2) g—1
Xy, aved) ¥ (xy) 0 —¥(22) g—1
~ (g+1) Y1 ()Y (y) (g=1)(g—2)
Xide g (a0 +iOvnte) V1OV 0 =t
P (@— v 0 —v(x) —v(z) —v(E) LD

In order to compute the characters of z}/ and Xy, y, we need the following
remarks:

1 . . .
(a) A ()(; x) h € Bifand only if 4 € B. The proof follows the same lines

as in (14.55).
(b) Anelement (uw)~'duw, withu € U andd € D \ Z, belongs to B if and
only if u = 1¢. Indeed, an element in Uw is of the form

w=o D0 )= (1)
(? é) (tl) _1ﬁ>=(? —1/3)

sothatifd:(g (y))eD\Z(x,yeJF*,x;éy)then
—1 _ O 1 X O ,3 1
wrtaw=(7 ) 3 (7o)

~ (s )

S \Ba—-y) x)°

(c) An element in C\ Z is not conjugate to any element in B (see table
in Theorem 14.3.2) because its eigenvalues (as a 2 x 2 matrix) are not
inF,.

and its inverse is
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(d) G=B[][(],cy uwB) is the decomposition into left B-cosets (cf.
(14.53) and the Bruhat decomposition).

Proof of the character table. The first row follows from (14.18).
From (d) and Frobenius character formula, it follows that the character of
Xy, evaluated at g € G equals

D X (W guw) + x5 (9)15(8)- (14.57)

ueU:
wu~' guweB

X

By (c), thisisequalto Oif ge C\ Z. If g = <0

O> € Z, then it is equal to
X

@+ DX (;; 3) = (@ + D Y.

g 8) € D\ Z, then all terms but the one

corresponding to # = 14 in the summation in (14.57) are equal to zero, so that
(14.57) is equal to

From (b), it follows that if g = (

0 0
X1 (g y) + X <3 x) = Vi) + 1 ()Y ().

. . 1 . .
From (a), it follows thatif g = (g x)’ then all terms in the summation (14.57)

0 i) = Y1 ()Y (x).

The values of the character of S(\l/lj may be found in the same way, setting
Y1 = Y in the previous formulas and using the identities

x
are equal to zero, so that xy, v, (

Xvw = Xy + Xy, and Xy = ¥ (det(g)).

In order to compute the character of a cuspidal representation, we use (14.51),
which yields the matrix coefficients of p, in terms of the spherical functions.
Indeed, if {f; : x € ]FZ} is as (14.46), then the character of p, has the following
expression:

D (ou(@fe £ =) [pu(@ 1)
xE]F; xe]FZ

(by (1451 and A= F) = > ™ (a"'g'a).

acA

(14.58)
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x 0 .
For g = (O x)’ (14.58) is equal to

(g— Do) =(g— v =(g— D)

where the first equality follows from Proposition 14.7.9.(iii). For g = (x l)

0 x

1

we have g7 = <x0 {1 ) and
X

a b 0\ [x! —x2 a 0 _ x b —a 2
0 1 0 x! 0 1/ \o0 x!
so that, in this case, (14.58) is equal to

1

-1 1.2
> o <x0 " ) =3 Ve Dx(xa D)

o «
aE]Fq aEFq

=v() Y xle'x)

"
ae]Fq

= —v(x),

where the first equality follows from Proposition 14.7.9.(iii) and the last one
from (14.56).

For g = <)(; 8) , with x # y, we have

(o D0 26 D=0 )

so that, in this case, (14.58) is equal to (g — 1) (xo

y(zl) and this van-
ishes, by Proposition 14.7.9.(iii).

Finally, if g = <? _f_
Z Z

g_1 = (_/'5116 é) and

! 0\/=B7'8 1\[a O _ —B7's ot
(o D0 o) 6 0= %)

),z € Fp \ F,,setting 8 = —zz,8 = z +Zwe have
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so that (14.58) is equal to (by Proposition 14.7.9.(iii))

— Y (=B af (=BT - B)jla B (=B

"
a€elf}

==Y v=a)xe '9)j(-a?p)

aeIF;

1
(by (7.16)) = - D ox@™s) > xG+Iv(—ax)
acky x?ceIF;:

x=—a 28

1
(r=—ax) = D ox@™'8) Y xl—aT '+ M)

acky yeIF[;:
Ww=—B
@' a) =—- Z v Y x@l8 — (v +)
ye]F ae]F
yy——ﬁ
=—= Z v Y x(@l8 — (v +)
ye]F JeE aely
\#Z
w=—p

1
- @ > x(@ls = @+

aEIF;

1
- '@ > x@s -G+

ae]F;;
_ 1 g—1 _
=242 = —— Z v(y) Z x(y)— [v(2) +v(@)]
q yeF‘;: y€el;
Y#2,Z
w=—8

1
(by (14.56)) =~ (g = D@ +v@] ~ > vl
yEIE;Z*:

Y#2.Z
w=—p

1
— L@ v - > vl

{EF{;:
w=—p

(by Proposition 7.2.3) = —v(z) — v(2),
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where =, follows from the fact that, assuming yy = —p, we have 6 =y +yif
and only if y = z or y = Z (see Section 6.8) and, if § # y + y, then we may set
y =ald - (+y] el O

Proposition 14.9.2 Let p,, and p, be cuspidal representations associated with
the indecomposable characters p and v, respectively. Suppose that

e p, and p, have the same central character;
eIy =T,.
" Y

Then p, ~ p.

Proof. From the character table of GL(2, F,) (cf. Table 14.2) we deduce that
plrs = vlp:. (14.59)

Moreover, Corollary 14.8.3 implies that

Yo (] 5)e=Se (] 3)em

XGF; xGIF:;

0 x 0 x
Pu — P
(1 o) = (1 o)

By using (14.49) and taking into account (14.59), we deduce that j, = j,,.
From Theorem 14.6.10, we finally deduce that p, ~ p,. U

forall w € IF‘;‘, so that

14.10 Induced representations from GL(2, ;) to GL(2, F;»)
In this section we give a series of formulas for the decomposition of the
GL@.Fm)
GL@F,)
GL(2, F,). These formulas may be easily obtained from the character table of

GL(2, F,) (see Table 14.2). The proofs are tedious calculations, but the results
are very interesting. We limit ourselves to:

induced representation Ind p for every irreducible representation p of

o give all the preliminary results and introduce a suitable notation in order to
simplify the exposition;

o give all the formulas;

o prove one formula to indicate the method and leaving the remaining formulas
as exercises;

¢ indicate an alternative proof for one formula that avoids the use of the char-
acter table, suggesting to the reader how to develop similar techniques.
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We fix a prime power ¢ = p" and an integer m > 2. We set G = GL(2, F,)
and G, = GL(2, Fyn).

« We indicate by ¥/, ¥, and y, characters of F; and by X, X and Xy, y, the
associated parabolic representations of G.

« Similarly, £ denotes a character of IFy,..

e Also, v (respectively ) denotes an indecomposable character of FZZ (respec-
tively IFZZW) and p, (respectively p,,) the associated cuspidal representation of
G (respectively G,,).

o By £%, v, and u* we denote the restriction of these characters to [y, that is,

F*,,
£% = Resy! &, and so on.
q

F*7”1 .
« By u” we denote the restriction of u to F?,, that is, p’ = Respl " . If mis
(]2

even, so that F» C Fyn, then §° is the restriction of £ to IFZZ, that is, £&" =
Fom
ResIF%2

e By 7, 7z (and £, if m is even) we denote the conjugate character, as in Sec-

tion 7.2, that is v(z) = v(z), for all z € IF;Z. Warning: recall that v(z) is the
complex conjugate of v(z).

e As in Section 7.5, we set ¥ = ¢ o N, where N: IFZZ — T, is the norm, that
is W(z) = Y (zz), forall z € IFZ Similarly, we set & = £F o N, that is, E(z) =
§(zz), forall z € Fpp.

Clearly,
F%, —
a a 14.60
£ s £ ( )
is a surjective homomorphism of Abelian (indeed cyclic) groups and each v is
the image of q:%ll characters of Iy,

Exercise 14.10.1 Consider the map (14.60) for m = 2, so that % =q+1.
Prove that

(1) if ¢ is not a square, then it is the image of ¢ + 1 indecomposable char-
acters;

(2) if ¢ is a square and ¢ is odd, then 1 is the image of ¢ — 1 indecompos-
able characters and 2 decomposable characters;

(3) if gis even, then each ¥ is a square and the image of g indecomposable
characters and 1 decomposable character.

Hint: Recall Proposition 6.4.4.
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When restricting an irreducible representation from G,, to G we need the
following remarks:

o if m is even, then the conjugacy class of G of type (b3) represented by

<(1) _-EZ> is contained in a conjugacy class of type (b,) in G,, (because
Z+72

G,, contains G;), and it is represented by (8 (_))
Z

0 —zZ

o if mis odd, then( _
1 z47%2

) is of type (b3) also in Gy,.

Table 14.3. The “character table” of the restrictions from G, to G.

G Gy 6o (5

Res "Xy  &(¥) £(xy) E(x?) £(2)
R
. £1(2)6:(2)
N (g"+1) E1(0)&2(y) Z m even
Reg'Tae g(oml)  +E0aw) 080 FHORE ) 0y
0 m even

Resg’”pu (@" = Dux) 0 —p(x) —u(@) —pn@ modd

‘We shall use a series of abbreviated notation:

. @st=¢ indicates the direct sum over all £ € F;\ﬁuch that £% = 1;

o @+, indicates the direct sum over all § € F, such that (£ 12 = p¥_ that
is, E(x?) = v(x) forall x € T -

o @@1 £y =t indicates the direct sum over all pairs {&, §;} where &, & € .,
£ # &, such that (£,&,)" = v®: each unordered pair is counted once;

* Sy, Indicates that we subtract (from the previous sum) the sum over all
pairs {£, &} such that (£,&,)" = v, that is, £ (2)&:(z) = v(z) forall z € FZZ;
note that (£,&,)” = v implies (£,£,)* = v*, so that we subtract terms that are
effectively present (in the previous sum).

Other notations will be clear from the context. Finally, we observe that
Resg’")?g cannot contain )’(\1}/ Xun.uns DOT py, because it is one-dimensional.
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Therefore, by Frobenius reciprocity, Indg’” 3@, Indg’” X0 and Indg’”,ov do
not contain one-dimensional representation of G,, (cf. Corollary 11.2.3).

We are now in position to give the desired decomposition formulas for the
induced representations. For three cases we have to distinguish between the
case where m is odd or even.

Suppose that m is odd. Then,

m—l_l
Indg’”ﬁ=qqz—_1 @ % |D| D e

ED=y? & )y=y?

Bl P e| | DD (14.61)
Ei=y

D| D xe|o| Do

si=ti=y w=w

m—1 -1
Indg" @5_% D z|D| D %

B & P=y> (E16) =y

DD r| | DlDx (14.62)
E=y

uE=y2

D| D % |D|Dru].

gf=gl=y H=y
and
G =
IndG Py = @ X&1.6

(E1&)F =07

Dl P | P GBUW

wi=vt

(14.63)
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Suppose now that m is even. Then,

Gooo _ 4" —1) o -
gty == || © %|D| D %
ED=y? &)=y
D\ Do) | D|DE
W=y §i=y
D 69 D 69 To

Dl & =

E&y=v

nd% 7} = ’;Z—:ll EB D e

& P= (&&=

Dl Do |D| D %
W=y si=ti=y

S @ )?Sls& )
&&=V

and

G qul_’_l ~ R
IndG’”,Ov=qT @ X @ @ X6

(E7)2=1" (E162)=v?

D(De]|le| D %=

pE=vt &)=y
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Finally, the next formula does not depend on the parity of m:

-1 _
Gz, =t— | B 2|B[ B %
(ED2=y1 ¥ (E1&2) =yn1v
(14.64)
Dl B o] |D| D xe
W=y Ei=y
&=

Exercise 14.10.2 Prove the seven last decomposition formulas; see Example
14.10.4.

Exercise 14.10.3 Prove that Indgzpv decomposes without multiplicity, write
down the decomposition (it is just (14.63) for m = 2), and check that the dimen-
sion of the left hand side equals the sum of the dimensions of the irreducible
representations in the right hand side.

Example 14.10.4 We show how to derive the seven decomposition formulas
above. We just compute the multiplicity of fg in Resg’" oy for m odd. Let x*

denote the character of Resg”" Py From Table 14.1, Table 14.2, and Table 14.3
we get

(Xg- &) =(g" = DY@ — (@ =1 Y D)l

xe]Fj; xe]F;';
2 _ — —
9 3 y@mE +ne!
ze]qu \Fy
= (@" =) Y_ Y — (@ —q) Y (@)
xelfy zeIF;Z
+(@ =) Y vEHuk)
xEIFj;
=@" =Y VOu®+ (@ -9 Y Y@ne)
xely zeIF;z

m—1
q —1
= (44 q(qZ —I(g-1) |:—q2 — Syt — 5xy,u>:|

where =) follows from Fp» \ Fy = F, \ Fj and =(..) follows from Proposi-

tion 2.3.5 and Theorem 6.7.2. That is, since |G| =q(g*> — 1)(q — 1) by Propo-
—1_
sition 10.2.18, the multiplicity of X Xy in ResG Py is equal to £ Lif g2 =
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and ¥ # u”, while it is equal to qmq;—l:ll — 1if y?> = u? and ¥ = i (note that
¥ = 1" = y? = u®). By Frobenius reciprocity, these are also the multiplici-
ties of p, in Indg’”fg. This leads to the terms

in (14.61).
Exercise 14.10.5

(1) Recalling the notation in Section 14.4 (so that, in particular, W is not
¥ o N), prove that
. Resgﬂ/ =[x XV D xy.y;
. Resgz}/]‘% = [7T X \111\1'2] &) 2)(11/]’1/,2;
e Res$p, = XP
Hint. Use the decomposition B = Aff(IF,) x Z and compute ResS by
means of the character table of G.

(2) Deduce that

Ind§[r X W] = @)’C}/l @ @ Xviw, | © @pu
=y Viva=y vi=yr

(clearly, the first term is absent if ¥ is not a square).

Exercise 14.10.6 Denote by B,, the Borel subgroup of G,, and, for &, &; €
7, denote by E X E, the corresponding representation of B,,. From Exercise
12.1.9, Exercise 11.1.10, and the decomposition B = Aff(F,) x Z, deduce that

m—1
R e g
Indg’”[bl X E,] = qT @ (rrqm X&) | ® @ (Y X W,)
=y, E{=¢1
&=V

Exercise 14.10.7

(1) Use Exercise 14.10.6, the definition of )y, y,, and transitivity of induc-
tion, to give another proof of (14.64).
Hint. Recall that xy, y, = V1 X (¥ ¥,).

(2) For the remaining six decomposition formulas for Indg'”, try to find
alternative proofs that avoid the character tables but make use of the
theory of induced representations.
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14.11 Decomposition of tensor products

In this section we give a complete series of formulas for the decomposition of
the tensor products of irreducible representations of GL(2, IF,). In general, this
is a very difficult problem: for instance, for the symmetric group (cf. Section 2.9
of the monograph by James and Kerber [82]) no complete solution is known;
nowadays it constitutes an active area of research (see [162] for a recent con-
tribution and a reference to the current literature). See also our recent papers
[35, 36] for a suitable harmonic analysis of tensor products of irreducible rep-
resentations. The style is the same as in the previous section and we keep the
same notation therein. In addition, we also write

. @w:w, s, to denote the direct sum over all indecomposable characters v €
F?, such that Vi = (YY)

e P RN for the direct sum over all unordered pairs {3, Y4} C F*, with
B —r1r
3 # ¥y and such that Y39, = y2v}, and so on.

The formulas below are given without proof; they may be proved by means
of the character table of GL(2, IF;) (see Table 14.2) and the table of conjugacy
classes (see Table 14.1). At the end, we give an example of such computations.

We have the following trivial identities:

=0 -0 _ 20 =0 =1 _ =1
Xy ® Xy = Xyyy Xyo ® Xy = Xy
=0 o ~ =0
X @ Xvnvn = Xpovivovs Xy @ Pv = Pw.
Moreover,
=1 =~1 _ =0 =1 =1
Xy @ Xy = Xyy, @ Xy, © X—yy,

2] @ 5(\1//3711/4 2] @ Pv |

Ya3va=(112)? vi=(y¥2)?

where the third term appears only if g is odd.

~1 ~ ~1 ~
Xy & Xy = @ Xy & @ X, 95
V2=y s Vas=vivn s

6921//1102,1#11//3 S @ Pv
vE=Y Ty
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~1 ~
Xy, ® Py = Xx// D ( @ X2, 93
1112 Yivt Yays=y vt
@ Py,
vi=y? v‘:
vl;é\lllv \L’]V

o~ ~ =0 =0
X192 @ Xysyy = (81//1%,‘/’21#4)(11[]1//3) D (61//11114,11'2%)(1//11&4)

~1 =1
D @ Xy @ (allfll/f,x»wzth//ll/fz)
Y=y

~1 ~
D (81#11//4,11121//3 Xy, w4) @ @ Xrs. s
Ys¥e=¥1Y2Y3Y4

® @ o] @ 5(\1//11//3,1//21//4 2] 5(\1//11//4,1//2%’
Vi=Y Y3 v

where the last but one (respectively, last) term appears only if 3 # Yy
(respectively, V1 yry # Yai3).

5(?/!1.1//2 ® oy, = @ 5&!’3»'1/4
UsPa=yvav)
ol @ nle| @ 2.
vi=y yovt 2=y Yo}

where the last term appears only if yr; vf is a square.
Finally,

P @ P, = (B, + 8u,.57) if‘f ® @ 5(\1}/
Y= n)*

WV 1y, V112

(14.65)

D @ 5(\1/11-1//2 2] @ Pv | >

Vi =(v12)? vi=(vj1p)

VFEV V2,V V2,V V2,V V)
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where the second term appears only if (v;v,)" is a square and v; # vy, V5.

Exercise 14.11.1 Prove the above decomposition formulas (cf. Example
below).

Example 14.11.2 We show how to compute the multiplicity of p, in p,, ® p,,.
Denoting by x", x", and x" the characters of p,, p,,, and p,,, respectively,
and recalling that, by (10.63), the character of p,, ® p,, is x"' x "2, we have

("% x") = (g = 1Y v — (@ = 1Y v (@va(x)v)
erFZ xe]Fj;
7 —q

D i@+ @1 nE) + nEI{E + @)

ZE]F(,Z\]F(’
=[@=1’@=1) = (@ = 1)(g = 1)] 8y
+4(@ - g — 1) Y vi@n@)vlx)

xelFy

— (@ =9 Y [M@mEVE + 1 @n@vE)
zelF%,
+01 @@V (E) + V1@ E)V(E)]
= |G| [8(1)11)2)’1,1}‘1 - (8\)1112,\) + ST]vg,v + 8W,v + 8U[Tz,U)]7

and this explains the last term in (14.65).
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Appendix
Chebyshév polynomials

In this appendix we define and study in detail the notions of a Chebyshév set,
Chebyshév polynomials of the first and second kind, and some modified ver-
sions of the latter. These play a crucial role in the spectral analysis of the DFT
in Section 4.2 as well as in the proof of the Alon-Boppana-Serre theorem (The-
orem 9.2.6). Our main sources are [104] and the monographs by Briggs and
Henson [22] and by Davidoff, Sarnak, and Valette [49].

Definition A.1 Let / € R be an interval. We say that the real valued functions
b1, @2, ..., ¢, defined on I form a Chebyshév set on I if, for all choices of
ay, a,...,a, € R, the function sz:l aj¢; has at most n — 1 distinct zeroes
inl.

Proposition A.2 Let {¢1, ¢o, ..., ¢,} be a Chebyshév set on the interval I.
Then

(1) ifti, t, ..., t, €I are distinct, then the vectors

2 = (i(t1), Gi(t2), - . ., Pr(t,)),

k=1,2,...,nare R-linearly independent in R";

(i) ift, ta, ..., 11 € I are distinct and sy, s2, . . ., Spi1 are real numbers
that alternate in sign (i.e. s;5j41 <0 for j=1,2,...,n), then the
vectors Wy = (¢r(t1), $(t2), ..., prtar 1Nk =1,2, ... ,nand w, | =
(51,82, ..., Spy1) are R-linearly independent in R+,

Proof.

(i) The linear relation Z?:l ajz; = 0 yields Z?:l ajp;(ty) =0, for k =
1,2,...,n, which forces, by definition of a Chebyshév set, a; = 0 for
all j=1,2,...,n

543
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(ii)

Appendix

Suppose that there exist ay, ay, . .., a,+1 € Rsuchthat Z';:i ajw; =0.
This is equivalent to saying

a191(tk) + axa () + -+ - + anPu(ty) = —any15¢

forall k=1,2,...,n+ 1. If g,y =0 we can argue as in (i). Oth-
erwise we deduce that Z’;’:] a;¢; alternates the sign at the points
t,t, ..., tay1. We may suppose that t; <t, < --- <t,+; and con-
clude, by virtue of the intermediate value theorem, that there exist
i € (tx, try1) such that Z;zl aj¢j(fy) =0fork=1,2,...,n. By defi-

nition of a Chebyshév set, we getthe a; = Oforall j=1,2,...,nand
thus also a,,1 = 0. O
Proposition A.3
(i) The functions 1, cos @, cos 20, ..., cos nf constitute a Chebyshév set in
[0, 7]
(ii) The functions sin6,sin20, ..., sinnf constitute a Chebyshév set in
0, ).
Proof.
(i) First of all, note that cos k6 may be written as a polynomial of degree k

(ii)

in cos 6. Indeed, De Moivre’s formula yields

k
k
coskf + isink = (cosO + isin0)f = Z (h) (cos 0" (sin9)"

h=0
(A1)
so that (since " is real if and only if / is even)
[k/2] k
coskd = hX_; (2h> (—1)(cos )" (sin )"

and, using the identity sin?# = 1 — cos®#, we get the desired expres-
sion. Therefore, a function of the form ¢(0) = ap + a;cos6 + --- +
a, cos nf can be written in the form ¢(6) = P(cos8) where P is a real
polynomial of degree < n. Since P has at most » roots in [—1, 1] and
the map 6 +— cos 9 is a bijection between [0, 7] and [—1, 1], we deduce
that ¢(6) has at most n roots in [0, 7T ].

From (A.1) we also deduce that

[(k—1)/2] k
sinkf = Z (2h+1)(—1)”(cose)k—Z”—l(sin9)2h+1

h=0
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that yields an expression of Si.n"g as a polynomial of degree k — 1 in

S1

cos 6. Then, for0 < 6 < 7, we have thaty(0) = b; sin6 + b, sin 20 +
.-+ + b, sinnf can be written in the form

sin 20 sin nd
sin 6 " sin6

Y (0) =sinb (bl + by ) = sinAP(cos )

where P is a polynomial of degree < n — 1. Then we may conclude as

in (i). O
In the proof of Proposition A.3 we have shown the existence of polynomials

T, € R[x] and U, € R[x] of degree n such that

sin(n + 1)0

cosnf = T,(cosf) and
in 6

= U,(cos9).

The T,’s are called the Chebyshév polynomials of the first kind. As we shall
see (cf. Lemma A.3) the U,’s are the so-called Chebyshév polynomials of the
second kind.

Exercise A.4 Show that the Chebyshév polynomials of the first kind are
expressed as

[n/2]
T,(x) = Z <2nk> ()C2 _ 1)kxn72k

k=0

and satisfy:
(1) the recurrence relation
L1 (x) = 2xT5(x) — Th—1 (x) for n > 1 with To(x) = 1, T1(x) = x;
(2) the differential equation
(1= x?)y" —xy +nPy =0;
(3) the orthogonality relations

. 0 ifn#m
dx .
[ nwnw s =1 itn=m=o
-1 1 —x2 .
/2 ifn=m+#0;
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(4) the multiplicative property: 7,,T,, = %(T,,er + Tin—n))s
(5) the semigroup property: 7,,(T,(x)) = T, (x);
(6) the discrete orthogonality relations

. n—1 .
1 k k
—To(cos ﬂ)72)(005 _n) + Z T,(cos ﬂ)T,(cos _rr)
2 n n - n n

) 0 if j £k
—l—lT(cos—n)T(cosk—n>— 2 ifj=k#0
2n n = l’l/ uyj= 75 ,n
n ifj=k=0,m

(7) the dual discrete orthogonality relations:

—T (DHT (1) + Z (cos —)E(cos n_r>

. 0 if j£k
+§T]-(—1)Tk(—1)= n/2 ifj=k#0,n
n if j=k=0,n;

(8) the associated generating function is:

" (ot =
~ 1—2tx+12

Exercise A.5 Let X, = {0, 1, ..., n} and X,, = {cos :j=0,1,...,n}. The
map § : L(X ) — L(X,), deﬁned by setting

1 P jm jry 1
(5100 = ~ FDTL() + = ;f(cos L)1 (cos 20) 4 = f=DT(-1)

forall f € L()?,,) and k € X, is called the Discrete Chebyshév Transform (see
the monograph [22] by Briggs and Henson for more on this). Show that the
following inversion formula holds:

1 (cos %) = %[Sf 107 cos %) + :X:::[Sf](k)Tk (cos %)

318 AT, (cos 2T,


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316856383.016
https://www.cambridge.org/core

Appendix 547

for all f € L()?,,) and j =0, 1, ..., n. Moreover, for n even, analyze the rela-
tions between the Discrete Chebyshév Transform and the Discrete Fourier
Transform of an even function (see Exercise 4.1.7 and Exercise 4.1.8).

Definition A.6 The Chebyshév polynomials of the second kind are the polyno-
mials U,,(x), m € N, defined by means of the initial positions Uy(x) = 1 and
Ui (x) = 2x and the recurrence relation

Uny1(x) = 2xUp (x) — Uy (x) (A.2)
forallm > 1.

Note that deg U,,(x) = m and the leading coefficient of U, (x) is 2™, for all
m e N.

Exercise A.7 Show that the Chebyshév polynomials of the second kind are
expressed as

[n/2] n+1
Uy(x) = Z <2k N 1)(x2 — Dk

k=0

and satisfy:
(1) the differential equation
(1 =)y = 3%y + n(n+2)y = 0;

(2) the orthogonality relations

1
/ U U VT = Pdx = 28,
-1

(3) the associated generating function is:

> 1
U, = ———
; 2 1 —2tx+12

(4) finally prove that 7, (x) = (n + 1)U, (x).

Lemma A.8

sin(m + 1)60
Um(COSG) = T (A3)

forallme Nand 0 € R\ nZ.
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sin Dkm sin 1)6
Note that we may interpret &, k € 7, as the limit of ﬂ

sin ki ) sin 0
for 6 — km that may be evaluated by means of L’Hopital’s rule, so that (A.3)
becomes

Un(coskn) = U, (=) = (=1 (m + 1).

Proof. We prove it by induction on m. Clearly,

in(0 + 1)0
sin 0

and

sin 260 _ sin(1 + 1)0

Ui(cosf) =2cosfh = — = -
sin @ sin @

showing the base of induction. Moreover,

sin(m + 2)0 = sinm6 cos 26 + sin 20 cos mf
(c0s20 =2cos’0 — 1) = 2cos> 6 sinmb — sinmb + 2 sin 6 cos 6 cos mb
= 2cosf(cos O sinmb + sinf cos mf) — sin mé

= 2cos 6 sin(m + 1)8 — sinm6

and therefore, assuming that (A.3) holds both for m and m — 1, we have:

sin(m + 2)60 sin(m+ 1)6  sinmb
———— =2cosf - - —
sin & sin O sin @

(by inductive hypothesis) = 2cosOU,,(cos8) — U,,—(cos6)
(by (A.2)) = Upyi1(cos ). O

We now define a first set of modified Chebyshév polynomials of the second
kind. Let us fix, once and for all, a positive integer k, and define P, € R[x],
m € N, by setting

m x
P,x)=(k—-12U,| — ). A4
@) =(k—1) (2 k_1> (A4)

Lemma A.9 We have Py(x) = 1, Pi(x) = x and, for allm > 1,

Pm+1(x) =xP,(x) — (k— 1)Pm71(-x)~
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Proof.
m X
xPy(x) — (k — DPy—1(x) = x(k — 1)2 U, (ﬁ)
m+1 X
¥ ()
—(k—l)"’z“[z * ( al >
N 2WWk—1 "\ 2k =1
e (5755
"\ovk=1
m+1 X
(by (A2)) = (k— 1) 2 Upp (ﬁ)
= Ppr1(x). g

Another modified version of the U,,’s is provided by the polynomials X, €
R[x], m € N, defined by setting

X,,(x) = U, (%) . (A.5)
Lemma A.10 The following properties hold for the polynomials X,,, m € N:
i 1)6
(i) Xn(2cos6) = 22T 1I
N sin 6
(1) X1 (x) = xXp (x) — X1 (%)
(iii) The roots of X, are Ay, = 2 cos "f‘—flfor h=1,2,...,m.

Proof.

(i) follows immediately from Lemma (A.8), and (ii) is obvious. Since
deg X,,, = m, the polynomial X,, has at most m roots. But by (i) we have
Xn(2cos6) =0 < sin(m+ 1)0 = 0 and sinf £ 0
& (m+1)0 = hm withh € Zand (im+ 1)) h,

so that the A;’s as in the statement are precisely the m distinct roots of
X O

Comparing (A.4) and (A.5), we deduce that

X

» — k_lm/2 ”
Pu(x) = ( ) X(ch—_l

) (A.6)

forall m € N.
Now we give deeper and more difficult properties of the polynomials X,,’s.
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Lemma A.11

(i) For0 < £ < hwe have:

¢
XXy = ZX£+h—2m-
m=0

(i) Form e N

—1
Xu(X)
T =) X1 (o)X (),
X—on
where o, = 2 cos #

Proof.

(i) The proof is by induction of £. For £ = 0 it s trivial (X, = 1), while for
£ = 1 we have X;(x) = x and, by virtue of Lemma A.10.(ii),

X1 Xy = xXp = Xpy1 + X1

The inductive step is the following: for 2 < £ < h we have, taking into
account Lemma A.10.(ii),

XeXn = xXo1 X — Xe—2Xp,

-1 )
(by inductive hypothesis) = x Z Xo 11h_om — Z Xo 21ih2m
m=0 m=0
=2
=Y (Xen-am1 = Xernam-2) +XXn-eq1
m=0
=2
(by Lemma A.10.(ii)) = ZXZ+h72m + Xi—e + Xn—e42
m=0

¢
= Z Xorn—om-
m=0
(i) First of all, note that Lemma A.10.(ii) may be rewritten as
XXj:Xj_1 +Xj+1. (A7)
Moreover,

Xo(am) =1 (A.8)

X1 () — apXo(am) = ay —ay =0 (A9)
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and, for m > 2:
Xm—2(am) - C(me—l(Olm) = _Xm(am) =0 (AIO)

where the first (resp. second) equality follows from Lemma A.10.(ii)
(resp. (iii)). Therefore,

m—1

(= o) D Xono1 j(cm)X;(x) = XX, 1 ()
j=0
m—1

) X1 ()X (x)
j=1
m—1

= X jo1 ()X (x)
Jj=0
(by (A7) and Xl (-x) = .X) = Xl (-x)mel (am)

m—1

Y X1 (o) [Xjp1 (0) + X1 (0)]
j=1
m—1

- Z Xm—j—l (Olm )aij (X)

j=0
(by rearranging) = Xo(x) [Xp—2(m) — Xin—1(ctm )t ]

m—2
+ ) X0 [Xo )

j=1
+Xon—j—2 () — o Xin—j—1(ctm) |
+ (o — 0 Xo(@n)] Xp—1(x)
+ Xo ()X ()

= Xn(x)

where the last equality follows from (A.8), (A.9), (A.10) and Lemma
A.10.(ii) applied to the main sum. U

We now define a further family of polynomials:
X5 (x)

Y, (x) = e
m

(A.11)

Since X, (x) is divisible by x — «,,, we deduce that ¥,, is indeed a polynomial
of degree 2m — 1.
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Lemma A.12
2m—1

(0 = ) yiXi(x)
i=1

where the coefficients y; € R are given by the rule

Yi = ZXZ(am)s (A.12)
4

the sum running over all £ satisfying the following conditions:

(1) 0<l<min{i—1,2m—1—1i};
2) 2m—1—1i—Liseven.

Proof. We have

(by Lemma A.11.(ii)) = X,u(x) Y X j—1 (c0)X;(x)

(A.13)
j=0
m—1 J
(by Lemma A11.()) = > X jo1 @) Y Xungj2n ().
j=0 h=0

In the above sums the summation indices j and A satisfy 0 < j <m — 1 and
—2j < —2h <0. Thus, if we seti = m + j — 2h we have

l<m—-—j<i=m+j—-2h<m+j<2m-—1

so that

2m—1

Yulr) = ) yiXi(x), (A.14)
i=1

where y; = ), X¢(a,,) with £ = m — j — 1. It remains to determine the range
of ¢ in terms of the new summation index i. Since 1 <i<2m —1 and 0 <
£ < m — 1, then the product X;(c,,)X;(x) appears in (A.13) (and therefore in
(A.14)) if and only if, recalling that j = m — 1 — £, there exists 0 < h < j such
thati =m 4 j — 2h. Since i + ¢ = 2m — 1 — 2h then 2m — 1 — i — £ must be
even (= 2h), thus showing (2), and the condition 0 < & < j is equivalent to
<2m—1—i—€ m4j—i

5 (= > =h)<m-—1—4L=))

0
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that is,

0<2m—1—i—4£<2m—2-2¢.
This is equivalent to (1). U
Proposition A.13 The coefficients y;’s in Lemma A.12 are all positive, that is,
Y, is a positive linear combination of the X;’s, 1 <i <2m — 1.

Proof. By taking the arithmetical mean of the terms appearing in the upper
bound for the index £ in (A.12), we have
i-D+Cm—-i—-1)

min{i — 1,2m —i— 1} < 5 =m—1

so that £ < m — 1. Since 2 cos 51—1

and 2 cos Z”? is the largest root of X, (by Lemma A.10.(iii)), we conclude that
Xy(ayy) >0 for £ =0,1,...,m— 1. As a consequence, (A.12) ensures that

yi>0fori=1,2,...,2m— 1. O

< oy = 2¢08 #, lim,_, 4o Xe(x) = 00,

Corollary A.14 For every ¢ € (0, 1) there exists a polynomial Z, € R[x] such
that

(i) Z.(x) = ijo Za,ij(x) with Zej = 0,
() Z:x) < —1forx <2—g¢g;
(iil) Z. > Oforx > 2.

Proof. We look for Z, of the form
Ze =2V + 7Y (A.15)

for suitable m, m’ € N and z, 77 > 0. With this choice of the form of Z,, condi-
tion (i) follows from Proposition A.13. Similarly, (iii) follows from the defini-
tion of ¥,, (see (A.11)) and the fact that ¥;,,(x) > O for x > «,, and, by definition,
one always has o, < 2.

Now, if we choose m, m’ in such a way that «,,, @,y > 2 — ¢, then, arguing
as above, from (A.11) we deduce that the corresponding Z, in (A.15) satisfies
Z.(x) < 0forx < 2 — ¢.1If, in addition, m and m’ are chosen in such a way that
the numbers (cf. Lemma A.10.(iii)) 2 cos n{%, j=1,2,..., m(theroots of ¥,;)
and 2 cos m},’—il, h=1,2,...,m (the roots of ¥ are all distinct (for instance,

it suffices to take m’ = m + 1: see Exercise A.15) then we have

Z:(x) <Oforx <2 —e. (A.16)
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Since limy_, _ Z:(x) = —00 we deduce that M = max(_cc 2-¢] Z¢(x) is ne/g—
ative. Thus from (A.16) we get (ii) by replacing z and 7’ by —; and =,
respectively. 0
Exercise A.15 Show that, for 1 <j<m and 1 <h<m+ 1, we have
#H ;é milLZ‘ . .

Hint: Write the equation ~L+ = ~/ in the form { = 1 — —L.
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2-regular segment, 252
GL(2,F), 482
center of —, 486
conjugacy classes of —, 482
spherical function for —, 515
GL(2,F,), 488
Borel subgroup of —, 488
character table for —, 529
conjugacy classes of —, 489
cuspidal representation of —, 502
decomposition of tensor products of
representations of —, 540
Gelfand-Graev character for —, 527
induced representations from — to
GL(2, Fym), 533
one-dimensional representations of —, 498
order of —, 488
parabolic induction for —, 494
representation theory of the Borel subgroup
of —, 492
Whittaker model for —, 513
p-group, 22
p-primary group, 22

Abel formula of summation by parts, 77
Abelian
— algebra, 55, 362
automorphism of a finite — group, 27
Cauchy theorem for — groups, 20
character of an — group, 50
convolution on the group algebra of an —
group, 54
dual of an — group, 50
endomorphism of a finite — group, 26
Fourier transform on an — group, 53
invariant factors decomposition of a finite
— group, 18
primary component of an — group, 22

primary decomposition of a finite — group,
21,22

action
— of a finite group on a finite set, 372
diagonal —, 377
doubly transitive —, 379
transitive —, 372

adapted basis, 397

additive character of Iy, 197
principal —, 198

adjacency
— matrix, 238
— operator, 238

adjacent vertex, 236

adjoint
—in L(G), 363
— operator, 345
— representation, 380

adjugate matrix, 36

affine group
— over [, 374, 426
— over Z/nZ, 432
— over a field, 487

algebra, 55, 361
*- —, 362
— *-anti-homomorphism, 363
— x-anti-isomorphism, 363
— x-homomorphism, 362
— x-isomorphism, 363
Abelian —, 55, 362
anti-automorphism of an —, 467
center of an —, 362
commutative —, 55, 362
convolution on the group — of an Abelian

group, 54
group —, 363
Hecke —, 462

involutive —, 362
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algebra (cont.)
involutive anti-automorphism of an —, 467
sub- —, 361
unital —, 55, 362
algebraic
— element, 171
— extension, 173
— number, 65
algorithm
Cooley-Tukey —, 129, 161, 162
decimation in frequency of the
Cooley-Tukey —, 162
decimation in time form of the
Cooley-Tukey —, 162
Diaconis and Rockmore —, 397
parallel form of the Cooley-Tukey —, 162
Rader —, 159
Rader-Winograd —, 158
vector form of the Cooley-Tukey —, 162
Alon-Boppana theorem, 299
Alon-Boppana-Serre theorem, 298
Nilli’s proof, 305
Alon-Milman theorem, 287
Alon-Schwartz-Shapira theorem, 320
ambivalent group, 468
anti-automorphism of a group, 466
involutive —, 467
anti-automorphism of an algebra, 467
involutive —, 467
Auslander-Feigh-Winograd theorem, 230
automorphism of a finite Abelian group, 27

Bézout identity, 4
generalized —, 5
Bessel
— function for GL(2, Fy), 515
— vector, 515
bicolorable graph, 246
bidual of a group, 52
bipartite graph, 245
complete —, 247
partite sets of a —, 245
block diagonal power of a matrix, 148
Borel subgroup
— of GL(2, IF), 486
—of GL(2, IF,), 488
representation theory of the — of
GL(2,F,), 492
boundary of a set of vertices in a graph, 284
Bruhat decomposition, 487
Bump-Ginzburg criterion, 468
Burnside lemma, 376

canonical form of a matrix, 482
Jordan —, 485
rational —, 485

Cartan subgroup, 488

Cartesian product of graphs, 258
Cauchy
— theorem for (not necessarily Abelian)
groups, 21
— theorem for Abelian groups, 20
Cayley graph, 280
Cayley-Hamilton Theorem, 484
center
— of GL(2, ), 486
— of a group, 431
— of an algebra, 362
central function, 364
centralizer subgroup, 487
character
—of Zy, 49
— of a representation, 355
— of an Abelian group, 50
— table for GL(2, ), 529
additive — of F, 197
conjugate —, 202
decomposable —, 201
Dirichlet —, 84
dual orthogonality relations for —s of Z,,
50
dual orthogonality relations for —s of a
group, 370
dual orthogonality relations for —s of an
Abelian group, 52
exceptional —, 523
fixed point — formula, 375
Fourier transform of a —, 382
Frobenius — formula, 405
Gelfand-Graev —, 527
indecomposable —, 201
multiplicative — of I, 199
multiplicative — of Z/mZ, 84
permutation —, 375
principal Dirichlet —, 85
real Dirichlet —, 87
characteristic
— function, 47
—of afield, 171
— polynomial of F, 116
— polynomial of F2, 103
— polynomial of a matrix, 484
— subgroup, 431
Chebotarév theorem, 68
Chebyshév polynomials of the second kind,
547
modified —, 548, 549
Cheeger constant, 284
Chevalley theorem, 227
Chinese remainder
— map, 138
— theorem, 9, 13
circulant matrix, 58
elementary permutation —, 147
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class function, 364
Clebsch graph, 243
closed path, 237
coefficient
(matrix) — of a representation, 351
Gamma —, 525
coloring
— of a graph, 243
— of an edge, 243
combinatorial Laplacian, 286
commutant
— of one representation, 349, 390
— of two representations, 349
commutative algebra, 55, 362
companion matrix of a monic polynomial,
191
complement of a graph, 242
complete graph, 247, 271, 292
lamplighter on the —, 270
composite bijection permutation, 136
composition of paths, 237
congruence permutation
elementary —, 135
product —, 135
conjugate
— character, 202
—of an element in F.», 196
— representation, 380
conjugation homomorphism, 280
connected
— components of a graph, 237
— graph, 237
convolution, 363
— formula for the spherical Fourier
transform, 478
— operator, 365
—on L(A), 56
— on the group algebra of an Abelian
group, 54
Cooley-Tukey algorithm, 129, 161, 162
decimation in frequency of the —, 162
decimation in time form of the —, 162
parallel form of the —, 162
vector form of the —, 162
core matrix, 159, 228
Courant-Fischer min-max formula, 304
Curtis and Fossum basis, 464
cuspidal representation, 502
cycle
— in a graph, 237
discrete — graph, 250
cyclic group, 48
endomorphism of a finite —, 30

decomposable character, 201
decomposition
— of a representation, 344
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invariant factors — of a finite Abelian

group, 18
primary — of a finite Abelian group, 21, 22
degree

— of a field extension, 171
— of a polynomial, 168
— of a representation, 344
— of aregular graph, 236
— of a vertex, 236
derived subgroup, 431, 486
Diaconis and Rockmore, 397, 398
diagonal
— action, 377
— matrix of twiddle factors, 153
— operator, 361
block — power of a matrix, 148
diameter of a finite graph, 237
differential operator, 68
dihedral group, 359
dimension of a representation, 344
Dirac function, 46
direct sum of representations, 344
directed graph, 236
Dirichlet
— L-function, 89
— character, 84
— double summation method, 87
— form, 286
— formula, 89
— series, 77
— theorem L(1, x) # 0, 95
— theorem on primes in arithmetic
progressions, 99
principal — character, 85
real — character, 87
discrete
— circle, 250
— cycle graph, 250
— Fourier transform (DFT), 53, 59
— Fourier transform (DFT) revisited, 443,
445
Gauss-Schur theorem on the trace of the —
Fourier transform (DFT), 116
distance
geodesic — in a graph, 237
Hamming —, 248, 264
Dodziuk theorem, 288
domain
integral —, 167
principal ideal —, 168
unique factorization — (UFD), 169
doubly transitive action, 379
dual
— group of Fy, 197
— group of Fy, 199
— group of an Abelian group, 50
— of a finite dimensional vector space, 380
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dual (cont.)

— of a finite group, 347

— orthogonality relations for characters of
Zn, 50

— orthogonality relations for characters of a
group, 370

— orthogonality relations for characters of
an Abelian group, 52

edge

— coloring, 243

— of a graph, 235

multiple —, 235

oriented — of a graph, 236
eigenidentities, 152

tensor form of the —, 153
Eisenstein criterion, 63
element

algebraic —, 171

primitive — of a Galois field, 176
elementary congruence permutation, 135
endomorphism

— of a finite Abelian group, 26

— of a finite cyclic group, 30
equivalent representations, 344
Erd6s’ proof of Euler theorem

Zp prime % = +OO’ 98

Euclid’s proof of the infinitude of primes, 6
Euclidean algorithm, 5
Euler

— identity, 31

— product formula, 82

— theorem 3, i % = +00, 97
— theorem 3, i, % = +o0 (Erdss’
proof), 98

— totient function, 7
Euler-Mascheroni constant, 82
exceptional character, 523
expander, 309, 310

— via zig-zag products, 338

Margulis —, 319
exponential set, 257
extension, 171

algebraic —, 173

degree of a field —, 171

finite —, 171

Galois group of an —, 174

infinite —, 171

norm of a field —, 187

quadratic —, 173

trace of a field —, 187

faithful representation, 344

fast Fourier transform (FFT), 129
— over a noncommutative group, 397
— revisited, 447, 455

Index

algorithmic aspects of the —, 161
matrix form of the —, 151
Fermat
— identity, 31
— little theorem, 9
field, 168
— extension, 171
Galois —, 178, 181
primitive element of a Galois —, 176
splitting — of a polynomial, 174
sub—, 171
finite
— extension, 171
— graph, 236
fixed point character formula, 375
formula
Abel — of summation by parts, 77
Courant-Fischer min-max —, 304
Dirichlet —, 89
Euler product —, 82
Frobenius character —, 405
Gauss —, 116
Mackey — for invariants, 414, 417
Parseval — for Zﬁ, 312
Parseval — for an Abelian group, 54
Plancherel — for 72, 312
Plancherel — for a finite group, 371
Plancherel — for an Abelian group, 54
Plancherel — for the spherical Fourier
transform, 478
Poisson summation —s, 60
Fourier
— transform, 367
— coefficient, 53
— inversion formula, 368
— inversion formula for an Abelian group,
53
— transform of a character, 382
— transform on an Abelian group, 53
— matrix of ¥, 227
convolution formula for the spherical —
transform, 478
discrete — transform (DFT), 53, 59
discrete — transform (DFT) revisited, 443,
445
fast — transform (FFT), 129
fast — transform (FFT) revisited, 447,
455
Gauss-Schur theorem on the trace of the
discrete — transform (DFT), 116
inverse — transform, 370
inversion formula for the spherical —
transform, 477
normalized — transform, 53
Plancherel formula for the spherical —
transform, 478
spherical — transform, 477
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Frobenius
— automorphism, 177
— character formula, 405
— reciprocity law, 409
— reciprocity law (other side), 411
— reciprocity law for one-dimensional
representations, 412
function
Bessel — for GL(2, F,)), 515
central —, 364
characteristic —, 47
class —, 364
Dirac —, 46
Dirichlet L—, 89
Euler totient —, 7
inflation of a —, 59
Riemann zeta —, 82
spherical —, 469
spherical — for GL(2, F,), 515
fundamental theorem of arithmetic, 5

Galois
— field, 178, 181
— group of an extension, 174
Gamma coefficient, 525
Gauss
— formula, 116
— law of quadratic reciprocity, 127
— law of quadratic reciprocity (second
proof), 183
— sum, 126, 210
— theorem on cyclicity of U(Z/nZ), 35
— totient function theorem, 8
— lemma, 64
Gauss-Schur theorem on the trace of the DFT,
116
Gelfand pair, 466
symmetric —, 468
weakly symmetric —, 468
Gelfand-Graev character, 527
general radix identity, 154
generalized quaternion group, 360
generalized Winograd’s method, 157
geodesic distance in a graph, 237
Good’s method, 158
graph
d-edge-colorable —, 275
— edge, 235, 236
— isomorphism, 237
— multiple edge, 235
— vertex, 235, 236
primitive —, 242
bicolorable —, 246
bipartite —, 245
boundary of a set of vertices in a —, 284
Cartesian product of —s, 258
Cayley —, 280

Cheeger constant of a —, 284
Clebsch —, 243
complement of a —, 242
complete —, 247, 292
complete bipartite —, 247
connected —, 237
connected component of a —, 237
degree of a regular —, 236
diameter of a finite —, 237
directed —, 236
directed — isomorphism, 237
discrete cycle —, 250
expander —, 309, 310
finite —, 236
geodesic distance in a —, 237
Hamming —, 264
isoperimetric constant of a —, 284
lamplighter —, 268
lexicographic product of —s, 260
Margulis —, 319
non-oriented square of a —, 338
Paley —, 308
partite sets of a bipartite —, 245
Petersen —, 243
Ramanujan —, 307
regular —, 236
replacement product of —s, 275
simple —, 235
spectral gap of a —, 292
spectrum of a —, 238
strongly regular —, 241
subgraph of a —, 236
tensor product of —s, 259
triangular —, 242
undirected —, 235
wreath product of —s, 267
zig-zag product of —s, 277
greatest common divisor, 5
Green-Tao theorem, 100
group
p-—,22
p-primary —, 22
—GL(2,F,), 488
— GL(h,F)), 40
— algebra, 363
— of units of a unital ring, 28
affine — over I, 374, 426
affine — over Z/nZ, 432
affine — over a field, 487
ambivalent —, 468
anti-automorphism of a —, 466
bidual of a —, 52
center of a —, 431
characteristic subgroup of a —, 431
cyclic —, 48
derived subgroup of a —, 431
dihedral —, 359
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group (cont.)
dual — of an Abelian group, 50
Galois — of an extension, 174
generalized quaternion —, 360
Heisenberg — over F, 457
Heisenberg — over Z/nZ, 437
inertia —, 421
involutive anti-automorphism of a —, 467
solvable —, 486
symmetric —, 349

Hamming

— distance, 248, 264

— graph, 264
Hankel matrix, 159
Hasse-Davenport identity, 216
Hecke

— algebra, 462

— operator, 295

— relations, 296

commutative — algebra, 466

Curtis and Fossum basis of a — algebra, 464

multiplicative linear functional on a —

algebra, 472

structure constants of a — algebra, 465
Heisenberg

— group over [, 457

— group over Z/nZ, 437
Hilbert Satz 90, 187, 188
Hilbert-Schmidt inner product, 395
homogenous space, 372
homomorphism

conjugation —, 280
Hua-Vandiver-Weil theorem

— (homogeneous case), 224

— (non-homogeneous case), 225
hypercube, 248

weight of a vertex of the —, 249

ideal
— of a commutative ring, 167
maximal —, 170
principal —, 168
principal — domain, 168
idempotent, 390

identity
Bézout —, 4
eigen—, 152
Euler —, 31
Fermat —, 31

general radix —, 154

generalized Bézout —, 5
Hasse-Davenport —, 216
permutational reverse radix —, 138
reverse radix —, 149

similarity —, 158

twiddle free —, 157

Index

twiddle —, 155
indecomposable character, 201
induced representation, 399
— and direct sums, 408
— and tensor products, 406
— from GL(2, ) to GL(2, F;m), 533
— of a one-dimensional representation,
403
character of an —, 404, 405
matrix coefficients of an —, 404
transitivity of —, 401
inertia group, 421
infinite
— extension, 171
— product, 76
converging — product, 76
diverging — product, 76
inflation
— of a function, 59
— of a representation, 421, 495
initial vertex of an oriented edge, 236
inner product, 345
integral domain, 167
intertwiner, 349

invariant
— factors decomposition of a finite Abelian
group, 18

— operator, 56
— subspace, 344
— vector, 344
subspace of — vectors, 344
inverse path, 237
inversion formula
— for the spherical Fourier transform,
477
Fourier — for an Abelian group, 53
invertible element in a commutative ring, 168
involutive
— algebra, 362
— anti-automorphism of a group, 467
— anti-automorphism of an algebra, 467
irreducible
— element in an integral domain, 169
— polynomial, 169
— representation, 344
isomorphism
— of directed graphs, 237
— of graphs, 237
isoperimetric
— constant, 284
Alon-Milman — inequality, 287
Alon-Schwartz-Shapira — inequality, 320
Dodziuk — inequality, 288
Reingold-Vadhan-Wigderson — inequality,
333
isotypic component, 357
— of L(G), 384
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Jacobi sum, 217, 219
Jacquet module of a representation, 496
Jordan canonical form, 485

kernel
— of a convolution operator, 365
— of a convolution operator on an Abelian
group, 56
— of a representation, 344
Kloosterman sum, 210
generalized —, 203
orthogonality relations for generalized —s,
206
Kronecker
— product, 142
— sum of linear operators, 253
factorizations of — products, 151
similarity of — products by stride
permutations, 144

lamplighter

— graph, 268

— on the complete graph, 270, 271
Laplacian

combinatorial —, 286
left regular representation, 348
Legendre symbol, 120

—on [, 307
lemma

Burnside —, 376

converse to Schur —, 351

Gauss —, 64
Mackey —, 419
Schur —, 350

Wielandt —, 378
length of a path, 237
lexicographic product of graphs, 260
little group method, 423
loop in a graph, 235

Mackey
— formula for invariants, 414, 417
— intertwining number theorem, 417
— irreducibility criterion, 417
— lemma, 419
— tensor product theorem, 421
— theory, 413
Mackey-Wigner little group method, 421, 423
Margulis graph, 319
matrix
— form of the FFT, 151
— factorization of composite bijection
permutations, 149
adjacency —, 238
adjugate —, 36
block diagonal power of a —, 148
canonical form of a —, 482

circulant —, 58

companion — of a monic polynomial, 191
core —, 159, 228

diagonal — of twiddle factors, 153
elementary circulant permutation —, 147
Fourier — of I, 227

Hankel —, 159

permutation —, 140

skew circulant —, 228

unipotent —, 486

unitary —, 345
maximal ideal, 170
minimal

— central projection, 395
— polynomial, 65, 172, 484
modified replacement product, 282
monic polynomial, 168
multiple edge, 235
multiplicative character
—of [y, 199
—of Z/mZ, 84
order of a — of I, 200
principal — of IF;, 201
multiplicative linear functional, 472
multiplicity
— of a representation, 357
multiplicity-free
— representation, 394
— triple, 466
Bump-Ginzburg criterion for a — triple, 468
spherical function associated with a —
triple, 469
multiplier operator, 444

neighborhood of a vertex, 236
non-backtraking path, 295
non-oriented square, 338
norm of a field extension, 187

operator
(monomial) differential —, 68
adjacency —, 238
adjoint —, 345
convolution —, 365
convolution — on L(A), 56
convolution kernel — on an Abelian group,
56
diagonal —, 361
invariant —, 56
multiplier —, 444
polar decomposition of an —, 346
translation —, 55, 444

unitary —, 345
orbit of a point, 372
order

— of a multiplicative character of IF;, 200
— of a differential operator, 68
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order (cont.)
— of a finite cyclic group, 7, 48
— of a finite field, 176

orientation of a graph, 236

orthogonality relations
— for characters, 356
— for characters of 7Z,,, 49
— for characters of an Abelian group, 51
— for generalized Kloosterman sums, 206
— for matrix coefficients, 354
— for spherical functions, 476, 480
—on ]FZ, 201

—onTF,, 198

Paley graph, 308
parabolic induction, 494
Parseval formula
— for 72,312
— for an Abelian group, 54
partial stride permutation, 134
partite set, 245
path
— composition, 237
— in a graph, 237
closed —, 237
initial vertex of a —, 237
inverse —, 237
length of a —, 237
non-backtraking —, 295
terminal vertex of a —, 237
trivial —, 237
permutation
— character, 375
— matrix, 140
— representation, 373
— representation of S,,, 374
composite bijection —, 136
elementary circulant — matrix, 147
elementary congruence —, 135
matrix factorization of composite bijection
—, 149
partial stride —, 134
product congruence —, 135
shuffle —, 132
stride —, 132
permutational reverse radix identity, 138
Peter-Weyl theorem, 357
Petersen graph, 243
Plancherel formula, 371
— for 72,312
— for a finite group, 371
— for an Abelian group, 54
— for the spherical Fourier transform,
478
Poisson summation formulas, 60
polar decomposition of a linear operator,
346

Index

polynomial
characteristic — of F, 116
characteristic — of F2, 103
characteristic — of a matrix, 484
companion matrix of a monic —, 191
degree of a —, 168
irreducible —, 169
minimal —, 65, 172, 484
monic —, 168
primitive —, 64
root of a —, 65
splitting field of a —, 174
Pontrjagin duality, 53
primary
— component of an Abelian group, 22
— decomposition of a finite Abelian group,
21,22
primitive
— element of a Galois field, 176
— graph, 242
— polynomial, 64
— root, 35
principal
— Dirichlet character, 85
— additive character of IF, 198
— ideal, 168
— ideal domain, 168
— multiplicative character of I, 201
product
— congruence permutation, 135
Cartesian — of graphs, 258
converging infinite —, 76
diverging infinite —, 76
infinite —, 76
inner —, 345
internal tensor — of representations, 387
Kronecker —, 142
lexicographic — of graphs, 260
outer tensor — of representations, 386
replacement — of graphs, 275
tensor — of functions, 253
tensor — of linear operators, 253
tensor — of subspaces, 253
tensor — of two spaces, 384
wreath — of graphs, 267
zig-zag — of graphs, 277
projection, 390
minimal central —, 395
orthogonal —, 390

quadratic
— extension, 173
— nonresidue, 117
— residue, 117
Gauss law of — reciprocity, 127
Gauss law of — reciprocity (second proof),
183
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Rader
— Winograd algorithm, 158
— algorithm, 159
radix identity
general —, 154
permutational reverse —, 138
reverse —, 149
Ramanujan graph, 307
rational canonical form, 485
regular
2 — segment, 252
— graph, 236
strongly — graph, 241
Reingold-Vadhan-Wigderson theorem, 333
replacement product of graphs, 275
modified —, 282
representation, 343
(matrix) coefficient of a —, 351
adjoint —, 380
character of a —, 355
commutant of a —, 349
conjugate —, 380
cuspidal —, 502
decomposition of a —, 344

decomposition of tensor products of —s of

GL(2,Fy), 540
degree of a —, 344
dimension of a —, 344
direct sum of —s, 344
equivalence of —s, 344
faithful —, 344
induced —, 399

induced — from GL(2, F) to GL(2, Fym),

533
inflation of a —, 421, 495
irreducible —, 344
isotypic component of a —, 357
Jacquet module of a —, 496
kernel of a —, 344
left regular —, 348
multiplicity of a —, 357
multiplicity-free —, 394
permutation —, 373
permutation — of S,,, 374
restriction of a — to a subgroup, 344

restriction of a — to an invariant subspace,

344
right regular —, 348
sign —, 349
spherical —, 474
sub- —, 344
unitary —, 345
restriction
— of a representation to a subgroup, 344
— of a representation to an invariant
subspace, 344
reverse radix identity, 149

Index

571

Riemann zeta function, 82

elementary asymptotics for the —, 82
Euler product formula for the —, 82

right regular representation, 348
root

— of a polynomial, 65
primitive —, 35

rotation map, 273
Ruritanian map, 138

Schur

— lemma, 350
— theorem on the DFT, 115
converse to — lemma, 351

self-adjoint

— element in a x-algebra, 362
— projection, 390

semidirect product

— with an Abelian group, 424
external —, 281
internal —, 280

sequence

strictly multiplicative —, 79

shuffle permutation, 132

sign representation, 349

similarity identity, 158
simple

— tensor, 384
— graph, 235

solvable group, 486
spectral gap of a graph, 292
spectrum of a graph, 238
spherical

— Fourier transform, 477

— function associated with a — triple, 469

— function for GL(2, Fy), 515

— representation, 474

convolution formula for the — Fourier
transform, 478

inversion formula for the — Fourier
transform, 477

orthogonality relations for — functions,
476, 480

Plancherel formula for the — Fourier
transform, 478

splitting field, 174

existence and uniqueness, 174

stabilizer of a point, 372
strictly multiplicative sequence, 79
stride permutation, 132

partial —, 134

strongly regular graph, 241

structure constants of an Hecke algebra, 465
sub-representation, 344

subalgebra, 361

subfield, 171

subgraph, 236
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symmetric Gelfand pair, 468
symmetric group, 349

Tao’s uncertainty principle for cyclic groups,
62
tensor
— form of the eigenidentities, 153
— product of functions, 253
— product of graphs, 259
— product of linear operators, 253
— product of subspaces, 253
— product of two spaces, 384
— product and induced representations, 406
decomposition of — products of
representations of GL(2, F), 540
internal — product of representations, 387
outer — product of representations, 386
simple —, 384
terminal vertex of an oriented edge, 236
theorem
Alon-Boppana —, 299
Alon-Boppana-Serre —, 298
Alon-Boppana-Serre — (Nilli’s proof), 305
Alon-Milman —, 287
Alon-Schwartz-Shapira —, 320
Auslander-Feigh-Winograd —, 230
Cauchy — for (not necessarily Abelian)
groups, 21
Cauchy — for Abelian groups, 20
Cayley-Hamilton —, 484
Chebotarév —, 68
Chevalley —, 227
Chinese remainder —, 9, 13
Dirichlet — L(1, x) # 0, 95
Dirichlet — on primes in arithmetic
progressions, 99
Dodziuk —, 288

Euler — 3=, e % = +00, 97
Euler — Zp prime % = +o00 (Erd6s’ proof),
98

Fermat little —, 9
fundamental — of arithmetic, 5
Gauss — on cyclicity of U(Z/nZ), 35
Gauss totient function —, 8
Gauss-Schur — on the trace of the DFT, 116
Green-Tao —, 100
Hasse-Davenport —, 216
Hilbert Satz 90, 187, 188
Hua-Vandiver-Weil — (homogeneous case),
224
Hua-Vandiver-Weil — (non-homogeneous
case), 225
Mackey intertwining number —, 417
Mackey tensor product —, 421
Mackey-Wigner little group method —,
423

Index

Peter-Weyl —, 357
Reingold-Vadhan-Wigderson —, 333
Schur — on the DFT, 115
Tao’s uncertainty principle — for cyclic
groups, 159
Warning —, 227
trace
— of a field extension, 187
— of a linear operator, 353
Gauss-Schur theorem on the — of the DFT,
116
Hasse-Davenport identity, 216
transitive
— action, 372
doubly — action, 379
translation operator, 55, 444
triangular graph, 242
trivial path, 237
twiddle
— free identity, 157
— identity, 155
diagonal matrix of — factors, 153

uncertainty principle
— for Abelian groups, 61
Tao’s — for cyclic groups, 62
undirected graph, 235
unipotent matrices subgroup, 486
unipotent matrix, 486
unique factorization domain (UFD), 169
unit, 55
— in a commutative ring, 168
— in an algebra, 362
unital algebra, 55
unitary
— matrix, 345
— operator, 345
— representation, 345

vector
Bessel —, 515
invariant —, 344
vertex

— of a graph, 235, 236

—neighbor, 236

adjacent —, 236

degree of a —, 236

initial — of a path, 237

initial — of an oriented edge, 236
terminal — of a path, 237

terminal — of an oriented edge, 236

Warning theorem, 227

weight of a vertex of the hypercube, 249
Weil-Berezin map, 447

Whittaker model, 513

Wielandt lemma, 378
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Winograd Rader — algorithm, 158
— method, 157 wreath product of graphs, 267
— similarity, 158
generalized — method, 157 zig-zag product of graphs, 277
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